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Abstract: Metal–support interaction plays a critical role in determining the eventual catalytic activity
of metals loaded on supporting substrates. This interaction can sometimes cause a significant drop
in the metallic property of the loaded metal and, hence, a drop in catalytic activity in the reactions,
especially in those for which low charge carrier transfer resistance is a necessary parameter. Therefore,
there should be a case-by-case experimental or theoretical (or both) in-depth investigation to under-
stand the role of support on each metal. Here, onto a layered porous carbon nitride (g-CN), we grew
single crystalline Pt nanodisks (Pt@g-CN) with a lateral average size of 21 nm, followed by various
characterisations such as electron microscopy techniques, and the measurement of electrocatalytic
activity in the O2 reduction reaction (ORR). We found that intercalating Pt nanodisks in the g-CN
interlayers causes an increase in electrocatalytic activity. We investigated the bonding mechanism
between carbon support and platinum using density functional theory and applied the d-band theory
to understand the catalytic performance. Analysis of Pt’s density of states and electronic population
across layers sheds light on the catalytic behaviour of Pt nanoparticles, particularly in relation to their
thickness and proximity to the g-CN support interface. Our simulation reveals an optimum thickness
of ~11 Å, under which the catalytic performance deteriorates.

Keywords: metal–support interaction; hard template; crystalline Pt; oxygen reduction reaction (ORR);
porous layered nitride; density functional theory; d-band theory

1. Introduction

Investigating the synthesis of atomically thin noble metals and their stabilisation
can reveal new aspects of metals absent in bulk and isotropically synthesised nanoscaled
metal structures [1–3]. However, the stabilisation of these metals is cumbersome due
to the high cohesive energy that causes the metals to aggregate into larger sizes. So
far, only a few methods have been available to synthesise such atomically thin materials,
including templating approaches [4,5], the use of some specific precursors [1], and topotactic
conversion of layered oxide into layered metal by reduction [2]. Still, in the case of the
templating method, the final metal may undergo further aggregation if the template
is removed from the final metal. In such a case, the metal’s interlayer can stack and
eventually form a bulkier material. When the hard template remains with the metal
nanosheets, a metal-supported hybrid nanostructure is formed, helping the metal retain its
thin morphology. Here, the final material can be utilised as a stable candidate for various
fields of catalysis [4]. In such a case, the hard template supports the metal. Therefore,
the nature and features of support influence the metal through what has recently been
distinguished as the metal–support interaction (MSI) [6,7]. The support–metal interface
determines the electronic destiny of states at the catalyst reactant interface [8]. The MSI
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phenomenon in catalysis has been considered in terms of different aspects, such as leaching,
stability, conductivity, and the electronic properties of metal impacted by the support [6,9].
Studying all these parameters all at once can be somehow overwhelming. In addition,
the MSI effects vary from one metal or support to another. Therefore, a comprehensive
case-by-case investigation should be performed for each metal loaded on a specific support.
For instance, the electron population in the valence band, the band structure, density of
electron state (DOS) [8], the ensemble of the supported metal [10], and the available surface
area (active catalyst surface area) [11] can also be influenced by the type of support. The
d-band theory is a promising approach to investigating the electronic properties of the
supported metal [12]. From the d-band shifts, electronic changes in the supported metal
can also be distinguished, explaining the changes in the catalytic activity. Accordingly, the
d-band centre in metal nanostructures is responsible for the charge transfer and, therefore,
the catalytic performance [13,14].

Platinum is one of the highly active metals in catalysis that has been used in many types
of redox catalysis applications. Consequently, Pt has been the subject of many investigations
in sizes engineered from nanoscale to a single atom [15]. However, the shape and types
of support can still play a game-changing role in the catalytic activity of the supported
platinum. Recently, Pt nanoparticles supported on TiO2 have been investigated through
d-band theoretical calculations, showing that the d-band centre shifts from −2.2 to −2.3 eV
because of the slight charge transfer across the Pt/TiO2 interface [13]. Likewise, Pt with
different particle sizes on ceria (CeO2) was demonstrated to have particle-size-dependent
charge transfer properties that can affect the catalytic impact [16]. We also previously
demonstrated that Pd nanoparticles’ electronic state can be significantly influenced by the
support’s surface and its functional groups, significantly altering the catalytic activity [8,17].

In this article, using carbon nitride material as a support, we demonstrate that Pt
nanodisks with atomic thickness and significantly sizeable lateral dimensions can be
synthesised as a single crystal particle. Through density functional theories, we also study
this material’s charge distribution through Pt and its effect on its catalytic performance. We
also investigate the loaded Pt nanostructures in the oxygen electroreduction reaction (ORR)
and show how Pt nanodisks can influence the catalytic performance of carbon nitride
in ORR.

2. Materials and Methods
2.1. Chemical and Apparatus

Layered sodium silicate was purchased from Nippon Chemical Industrial Co. Ltd.
(Tokyo, Japan), Pt(acac)2 (97%) was purchased from Sigma-Aldrich (Darmstadt, Germany),
and C16TMACl (95%) was purchased from FUJIFILM Wako Pure Chemical Corporation
(Tokyo, Japan). Transmission electron microscopy (TEM) images were recorded on a JEOL
(Tokyo, Japan) JEM-2100F microscope (operated at 300 kV).

2.2. Synthesis of g-CN and Pt@g-CN

The synthesis of g-CN was performed according to the literature published else-
where [18]. After the synthesis of g-CN, for Pt growth in the interlayers, the obtained g-CN
(3.5 mg) was dispersed in the DMF (20 mL) and sonicated with a probe sonicator for 2 h.
Then, the Pt(acac)2 was added to the g-CN dispersion. After stirring the dispersion for 2 h,
the precipitate was separated with centrifugation and washed with MeOH. Further, the
obtained precipitate was redispersed in MeOH to reduce the adsorbed Pt complexes with
NaBH4 (1 mM, 5 mL) at room temperature for 1 h. Finally, the product (Pt@g-CN) was
obtained after centrifugation, washed with MeOH, and dried at 60 ◦C in a vacuum.

2.3. Electrocatalytic ORR

A homogenous ink was prepared as follows: Initially, the as-prepared samples were
ground. Subsequently, 5.0 mg of the ground sample was dispersed in a mixture of 950 µL
ethanol and water (volume ratio of 1:3), along with 50 µL of 5.0 wt% Nafion. After 60 min
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of sonication, a 5 µL suspension was deposited onto a glassy carbon electrode (GCE) with
an area of 0.1256 cm2 and allowed to dry gradually. The resulting mass loading was
0.2 mg cm−2. Prior to the GCE activation, the electrode was pre-polished using 1 µm
diamond and 0.05 µm alumina powder, followed by thorough washing with water. Electro-
chemical measurements were conducted using a CHI 842B instrument (Austin, TX, USA),
including linear sweep voltammetry (LSV) at different rotator speeds at 10 mV s−1, and
chronoamperometry (i-t) measurements in O2-saturated 0.1 M KOH at ≈ 0.5 V vs. the
reversible hydrogen electrode (RHE) with a rotation speed of 1600 rpm. The electrolyte so-
lution was purged with ultra-pure O2 and N2 for at least 60 min before ORR measurements.
A platinum wire served as the counter electrode, while a silver–silver chloride (Ag/AgCl)
electrode functioned as the reference electrode. The overall electron transfer numbers per
oxygen molecule were determined from the slope of the Koutecky–Levich plots using the
following equation:

1
J
=

1
Jk

+
1
JL

=
1
Jk

+

(
1

0.62nFC0(D0)
2/3ν−1/6

× 1
ω1/2

)
, (1)

where J denotes the current density, Jk represents the kinetic current density, JL shows the
diffusion-limited current density, n indicates the transferred electron number, F refers to the Fara-
day constant (F = 96,485 C mol−1), C0 represents bulk O2 concentration (1.2 × 10−6 mol cm−3),
D0 is the O2 diffusion coefficient (1.9 × 10−5 cm2 s−1), ν is the electrolyte’s kinematic viscosity
(0.01 cm2 s−1), and ω refers to the electrode rotating rate [19].

2.4. Computational Settings

Spin-polarised density functional theory (DFT) calculations were conducted using the
VASP 5.2.2 package with projector-augmented wave potentials [20,21]. The dispersion effects
were accounted for using the DFT-D3 level of theory as per the Grimme scheme [22,23].
The generalised gradient approximation was used to approximate the exchange-correlation
functional [24]. The energy cut-off was set to 550 eV. The Brillouin Zone was sampled using
a 3 × 3 × 1 Monkhorst–Pack mesh. The CN support was approximated with a cubic C3N2
structure from the literature [25] (Materials Project ID = mp-1188347). This g-CN structure has
a cubic symmetry and a cell parameter of 5.085 Å, which is close enough to that of face-centred
cubic Pt, which is 3.9239 Å. C3N2 structure was multiplied and cleaved along a lattice direction
to form a 2u × 1v structure that was two-unit cells deep. On one side of the g-CN facet, 8 layers
of cubic Pt were added to simulate the Pt@g-CN interface. The C atoms on the opposite g-CN
facet were saturated with OH groups. Finally, a 20 Å vacuum slab was added to prevent
the two ends of the interface structure from interacting with each other. The unit cell had a
composition of C48N32(OH)4Pt64. This structure was carefully optimised to force components
smaller than 0.01 eV/Å and with an energy threshold of 10−7 eV.

3. Results and Discussion
3.1. Synthesis and Characterisation of Pt@g-CN

In our previous investigation, we utilised layered silicate as a 2D nanospace for the
synthesis of carbon nitride with a ratio of C6N (g-CN) and showed that this material is
an excellent option for catalysis and supercapacitor applications. We also identified a
thermodynamically stable configuration for C6N [18]. Here, we evaluated the capability
of synthesised nanoporous g-CN as a template for the oriented growth of metallic Pt.
We used a Pt(acac)2 organometallic precursor for the intercalation since this complex is
hydrophobically favourable to interacting with the g-CN layers. The reduction of Pt ions
was also conducted using sodium borohydride in a methanolic solution. In Figure 1a,b,
HAADF-STEM and TEM images illustrate that the flakes of Pt with an average lateral
size of ~21 nm are synthesised two-dimensionally in abundance, reaching a maximum
dimension of 126 nm (Figure 1b, see inset). The SAED pattern also shows that the grown
Pt nanodisks are single crystalline and are perpendicular to the [111] vector (Figure 1c).
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Furthermore, the HAADF-STEM mapping images also confirm the existence of Pt, O, N,
and C elements (Figure 1d).
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mapping images of Pt-grown g-CN.

3.2. Theoretical Insight into Pt’s Performance from d-Band Theory

According to the optimised structure shown in Figure 2A, the distance between the
g-CN support and Pt slab is only ~2.231 Å. This short distance promotes a strong chemical
interaction between C and Pt, which may affect Pt’s electronic structure and, consequently,
its catalytic potency. How the transition metal electronic structure determines its catalytic
performance is generally understood through the d-band theory [26]. The d-band theory
suggests that a transition metal catalyst’s ability to catalyse chemical reactions depends
on the availability of empty (or partially filled) d orbitals on its facets. These empty d
orbitals can interact with the molecular orbitals of reactant molecules, forming a new set
of molecular orbitals that could facilitate the formation of new chemical bonds and lower
the catalytic reaction’s activation energy. Here, two factors play more significant roles: the
occupancy of the d orbitals and the d-band centre. As for occupancy, the extent to which
these orbitals are filled or empty influences the catalytic activity. Surface atoms with only
partially filled d orbitals are typically more active as catalysts. As for the d-band centre, a
higher d-band centre within the valence band, or in other words, closer to the Fermi level,
generally correlates with higher catalytic activity, as it indicates a greater ability of the
transition metal to donate electrons to the catalytic products [27]. Both these factors can be
investigated using the density of states of the relaxed structure of Figure 2A.

Figure 2B(I–VIII) shows the layer-resolved density of states (DOS) of the Pt ions. Here,
Pt atoms were defined to belong to a specific layer if their z coordinates differed by less
than 1 Å. We chose this criterion because, upon more nuanced inspection, we found that Pt
atoms with this proximity had very similar DOS profiles. As a result, this definition of the
layer would not result in any loss of accuracy while simplifying our analysis. Although
the DOS plots offer a reliable visual tool to judge the Pt oxidation state and the location of
5d states, to objectively examine the variation in the Pt 5d characteristics across the layers,
we integrated the 5d states in each layer to obtain the electronic population. The results of
these integrations are presented in Table 1. Integration over the entire valence band shows
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the total occupied 5d electronic population. Integration over narrower ranges below the
Fermi level indicates the portion of 5d electrons that is labile for catalysis, as those electrons
are more accessible to interact with adsorbates and catalytic products. Because this range is
not rigorously defined [8,28,29], here, we examine two ranges, the first from −3.5 eV to the
Fermi level and the second from −3.0 to the Fermi level.
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The eight subsets of Figure 2B(I–VIII) show that the Pt layers near the Pt@g-CN
interface have a larger total 5d population compared to the upper layers far away from
the interface. This trend is demonstrated by visibly smaller empty DOS above the Fermi
level above for layer 1. For Pt atoms near the facet, the 5d population is remarkably smaller.
This trend is marked by red arrows in Figure 2B(I–VIII). The DOS integration over the
entire valence band shows that each Pt atom in layer 1 has 9.508 e, which is larger than
the anticipated value of 9 e for Pt ([Xe] 4f 145d96s1). Larger than 9 d electrons for Pt at the
Pt@g-CN interface indicate a charge transfer from the g-CN support to the Pt layer right
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above the interface, reducing the amount of empty DOS in layer 1. Layers 2, 3, and 4 also
show a 5d population larger than 9 e per Pt, although with decreasing significance. Contrary
to the total 5d population throughout the entire valence band, the 5d population near the
Fermi level, i.e., the catalytically most potent, consistently increases for the Pt layers that
are away from the g-CN interface, reaching a maximum at layer 8, with a population of
5.847 e/Pt and 5.037 e/Pt when integrated from 3.5 eV and 3 eV below the Fermi level,
respectively. One should note that in the absence of the g-CN support, the DOS and the
electronic population at the top and bottom Pt layers would be the same due to symmetry.
Accordingly, for the standalone Pt slab, we calculated a uniform population of 4.478 e/Pt
and 3.487 e/Pt for integrations starting from −3.5 eV and −3 eV, respectively.

Table 1. The layer-resolved electronic population in the Pt 5d band presented as per Pt atom. Layer
positions with respect to the Pt@g-CN interface are as in Figure 2. The last two columns show the
electronic populations within narrower energy ranges below the Fermi level for which the 5d electrons
are catalytically more labile.

Layer Entire Valence Band −3.5 ≤ EFermi ≤ 0 −3.0 ≤ EFermi ≤ 0

8 (Outermost) 8.927 5.847 5.037
7 8.961 5.124 4.396
6 8.992 5.227 4.455
5 8.988 5.235 4.527
4 9.343 5.170 4.528
3 9.548 5.202 4.533
2 9.605 5.218 4.543

1 (Pt@g-CN Interface) 9.580 5.387 4.665

The density of states and the electronic population analyses show that the Pt nanopar-
ticle thickness plays a critical role in determining its catalytic activity. For those Pt ions near
the g-CN support interface, the charge transfer from C atoms into Pt’s 5d orbitals fills up
the empty 5d states that were supposed to form antibonding molecular orbitals with the
adsorbate molecules. Furthermore, the centre of the 5d states for those Pt ions closer to the
g-CN interface shifts closer to the bottom of the valence band. Such a position inhibits their
participation in catalysis. We only see a favourable electronic structure for Pt atoms in layer
5 and upwards. These results hint at minimum Pt nanoparticle thickness, comprising five
atomic layers, for optimal catalytic performance when supported on g-CN. These five Pt
atomic layers correspond to the thickness of ~11 Å.

Finally, we examine the bonding nature at the Pt@g-CN interface to elucidate the
mechanism for charge transfer from C to Pt. The charge density profile (ρ) in the plane
containing the Pt-C bond at the interface, shown in Figure 2C, indicates a diminishing
charge density in the middle of the bond (marked with a circle). Such a ρ profile rules
out the formation of any covalent or metallic bonds as these bonds tend to have a large
charge density along the bonds [30,31]. Additionally, the electronic localisation function
(η) profile shown in Figure 2D demonstrates an η peak near the C centre, which fades
away at the mid-bond region. Note that η is a function derived from the calculated wave
function that maps the probability density of electrons onto a scalar field, allowing for
the visualisation of electron localisation [32]. Low charge density ρ and low probability
of electronic localisation η in the mid-bond region strongly hint at a bonding with ionic
character between C and Pt [33]. Such bonding is speculated to be weaker than the bond
formed between Pd and oxide supports, which is more covalent [8].

3.3. Electrocatalytic Activity Investigations

Electrochemical measurements were carried out in an O2-purged KOH (0.1 M) solution
to explore the catalytical activity of Pt@g-CN towards ORR. Figure 3a shows rotating disc
electrode (RDE) polarisation curves at different rotational rates (from 400 up to 2000 rpm).
As expected, as the rotation rate increases, the limiting current density increases since the
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diffusion layer becomes shorter. Additionally, a reduction peak originating from the ORR
reaction is observed, which has an Eonset potential at ≈0.84 V vs. RHE. Compared to pristine
g-CN (Eonset ≈ 0.78 V), this value is enhanced by almost 60 mV (Figure 4). Compared to
the bulk (Bare) Pt, Pt@g-CN has a slightly lower Eonset, which is expected because a pure
Pt may have higher electrocatalytic activity, but the electrode preparation process is not
economical [34–36]. The Eonset of the commercial Pt/C (≈1 V) is also marginally better
than that of our proposed electrode. However, the conventional Pt/C electrodes also have
a high Pt load compared to Pt@g-CN [37–40], increasing the cost significantly.
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Electron transfer numbers during the ORR were determined via the Koutecky–Levich
equation (see equation above) extracted from the RDE curves. Figure 3b shows a linear
relationship between J−1 and ω−1/2 at different potentials that proposes a first-order ORR
concerning dissolved O2 concentration. Figure 3c shows the calculated transferred electron
numbers using the slope derived from Figure 3b. They were found to be between 3.2 and
3.5, which suggests a pseudo 4e− reduction mechanism as opposed to the 2e− pathway
involving peroxide formation. It is expected from an ideal ORR catalyst to directly reduce
O2 to OH− by gaining 4e− in a single step under alkaline conditions [41]. The stability
measurement of the Pt@g-CN electrode was also analysed by chronoamperometry at 0.5 V
vs. RHE in the O2-saturated KOH solution (Figure 3d). It is observed that the current value
undesirably drops by 27% within almost 2 h. This drop might be due to the difference in
the size of synthesised Pt nanoparticles (inset of Figure 1b), causing the Ostwald ripening
phenomenon [42].

4. Conclusions

C6N carbon nitride was developed for the oriented growth of single-crystal Pt nan-
odisks (confirmed by SAED analysis). The charge transfer profile critically changes upon
the metal–support interaction. In this regard, we performed density functional theory
calculations at the DFT-D3 level of theory that includes dispersion effects. Our calculations
demonstrate that the optimised Pt@g-CN structure exhibits a close ~2.231 Å between the
g-CN support and Pt slab, resulting in an ionic interaction and influencing Pt’s catalytic
potency, as explained by the d-band theory. The analysis of the density of states on a
layer-by-layer basis reveals notable differences in the populations of Pt 5d electrons. Specif-
ically, Pt layers close to the Pt@g-CN interface show higher electron populations. However,
despite this, they exhibit lower catalytic activity. This is attributed to a shift in the d-band
centre to lower energies within the valence band. These findings underscore the crucial
influence of Pt nanoparticle thickness on achieving optimal catalytic performance. We also
found that Pt nanodisks play a positive role in the catalytic improvement of g-CN in ORR,
albeit not significantly, which is probably due to the atomically thin thickness of Pt, for
which the ionicity at the interface with g-CN increases the electric resistivity.
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