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Abstract: This paper investigates the performance of vacuum gate dielectric doping-free carbon
nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational anal-
ysis employing a quantum simulation approach. The methodology integrates the self-consistent
solution of the Poisson solver with the mode space non-equilibrium Green’s function (NEGF) in the
ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened
functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free
paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient
in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain
doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical
investigation comprehensively examines potential distribution, transfer characteristics, subthreshold
swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the
robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications.
Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize
band diagrams and improve switching performance at ultra-scaled regimes is successfully presented.
These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for
ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics.

Keywords: vacuum; radiation hardness; carbon nanotube (CNT); graphene nanoribbon (GNR);
field-effect transistor (FET); tunnel FET (TFET); non-equilibrium Green’s function (NEGF); quantum
simulation; doping-free

1. Introduction

Radiation-sensitive field-effect transistors (RADFETs) serve as indispensable sensors
for radiation monitoring and sensing, providing critical data for ensuring safety across vari-
ous industries and domains [1–3]. Their unique functionality enables high-performance and
efficient detection and measurement of radiation levels and rates, making them practical
tools in military and defense, medicine (including radiotherapy and radiation dosimetry),
space exploration, and high-energy physics experiments [4–6]. These field-effect transistors
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feature a sensitive gate oxide that, when exposed to radiation under some biasing condi-
tions, traps charges within the oxide layer and/or interfaces. This results in a change in the
transfer characteristics of the field-effect transistors, including the threshold voltage [1–6].
In this context, the use of an appropriate readout circuit to track these electrical changes
enables accurate measurement of radiation dose [7,8].

In fact, any field-effect transistor can operate as a radiation-sensitive field-effect transis-
tor if its gate dielectric is radiation-sensitive, with some considerations in terms of biasing
conditions and sensing principles [9]. However, using FETs for switching and digital appli-
cations within radioactive environments presents challenges, mainly due to the radiation-
induced threshold voltage shift mentioned earlier [10–12]. This shift can profoundly affect
device performance, impacting parameters such as speed, power consumption, and noise
margins, potentially resulting in fluctuations in system functionality [9–13]. In aerospace
applications, these radiation-induced electrical issues can lead to serious consequences, in-
cluding long-term reliability concerns, loss of control, communication breakdown, and even
mission failure [14–17]. Radiation shielding using a specific metal chassis is a prevalent
solution to mitigate the effects of radiation on electronic components, including field-effect
transistors, in aerospace and other radiation-intensive environments [18]. The metal chassis
acts as a barrier, absorbing or deflecting incoming radiation and minimizing its impact on
sensitive electronics [18,19]. However, employing a metal radiation shield can significantly
increase the weight of the relevant equipment, thereby impacting the overall launch cost.
Even with the utilization of advanced materials to address the weight-immunity trade-off,
cost remains a primary concern [18,19]. Another innovative solution is the use of FETs based
on the vacuum paradigm [20–23]. The fundamental concept behind radiation-immune
vacuum devices involves eliminating the local cause of radiation-induced effects, which is
the gate oxide and/or channel [20–26]. In other words, the immunity of vacuum devices to
radiation stems from the absence of a semiconductor channel and/or dielectric material,
where radiation-induced multi-defects occur. The vacuum FETs have shown intriguing
and promising performance in terms of immunity to radiation, electrical and switching
behavior, and miniaturization [20–29].

On the other hand, utilizing carbon nanotubes (CNTs) and graphene nanoribbons
(GNRs) as channels in FETs provides advantages, including elevated carrier mobility, de-
creased susceptibility to defects, and heightened mechanical flexibility. Particularly, the low
surface-to-volume ratio of CNTs and GNRs significantly minimizes the interaction between
radiation and the channel, reducing the probability of radiation-induced effects [30–33].
These materials facilitate the creation of compact, high-efficiency devices with enhanced
resistance to radiation, rendering them well-suited for a wide array of electronic applica-
tions, including radiation-immune nanoelectronics [30–33]. In this context, the combination
of carbon-based FET channels with the vacuum paradigm can create intriguing vacuum
devices with high performance and superior immunity to radiation.

In light of the above technological developments, this paper investigates the perfor-
mance of new proposed vacuum gate dielectric doping-free carbon nanotube/nanoribbon
field-effect transistors (VGD-DL CNT/GNRFETs) using computational methods. We em-
ploy a quantum simulation approach that solves the Poisson equation self-consistently with
the mode space non-equilibrium Green’s function (NEGF) in ballistic limit [34–40]. The
adoption of the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened opera-
tion, while the doping-free approach streamlines fabrication and avoids the very high/low
temperature-induced dopant detrimental behavior. FET and TFET doping profiles are
achieved electrostatically via source and drain doping gates. Our numerical investigation
covers potential distribution, transfer characteristics, subthreshold swing, leakage current,
on-current, current ratio, and scaling capability. The vacuum devices fulfill the prerequi-
sites for high-performance, radiation-hardened switching applications. Furthermore, our
assessment proposes an extrinsic improvement strategy involving doping gate voltage
setting to optimize band diagrams and enhance the switching performance of vacuum
FET and TFET in the ultrascaled regime. The obtained numerical results underscore the
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significant potential of the proposed vacuum gate dielectric carbon-based nanotransistors
to be a part of the future radiation-immune nanosystems characterized by reconfiguration,
high performance, energy-efficient, and radiation hardness. The obtained findings promise
to give new impulses to various technological domains, offering solutions that not only
enhance reliability but also mitigate the detrimental effects of radiation exposure.

The remaining sections of this paper are structured as follows to provide a compre-
hensive understanding of the subject matter and its implications. Section 2 will explicitly
outline the structural aspects of these novel devices, elucidating their composition and
design principles while referring to the relevant references. Building upon this founda-
tion, Section 3 will describe the quantum simulation approach meticulously employed in
this computational study. It will delineate the methodologies, algorithms, computational
techniques, and theoretical frameworks utilized to numerically model and analyze the
behavior of these cutting-edge nanodevices at the atomistic level. Subsequently, Section 4
will comprehensively present and critically discuss the results gleaned from these sim-
ulations, shedding light on key observations, trends, and insights garnered throughout
the investigation. Finally, Section 5 will serve as a conclusive synthesis, encapsulating the
findings, implications, and potential avenues for future research in this particular field.

2. Nanodevice Structure

Figure 1 illustrates the designs, structures, and 3D perspectives, as well as cross-
sectional views, of the proposed and investigated nanotransistors. In fact, carbon nanotubes
(CNTs) can be seen as GNRs wrapped around with nanoscale diameters, while GNRs can
be produced by slicing graphene sheets into narrow ribbons with nanoscale widths. Both
carbon nanotubes and GNRs can display semiconducting or metallic properties. It is worth
noting that there are three types of CNTs (zigzag, armchair, and chiral) and two types
of graphene nanoribbons (zigzag and armchair). In this computational study, we have
employed the (n,0) zigzag CNT type and armchair-edge GNR type due to their suitabil-
ity in FET applications. Additionally, it is essential to highlight that the channels under
consideration are presumed to be flawless, lacking any crystalline defects like stone-wales
transformations, edge roughness, or vacancy defects [39–44]. In addition to considering
the vacuum gate dielectric, monolayer dielectrics can conceptually be adopted to cover
the carbon channels, thus avoiding the high radiation-induced trapped charge densities
associated with thicker oxide materials [45] and improving the effective coupling capaci-
tance. This enhancement can be particularly significant as the consideration of vacuum gate
dielectric alone tends to degrade the coupling capacitance. Note that the impact of channel
imperfections can be investigated using advanced quantum computational approaches
(e.g., DFT-NEGF-Poisson), which are beyond the scope of this work.

In all nanodevices, zigzag carbon nanotubes (ZCNTs) and armchair-edge graphene
nanoribbons (A-GNRs) serve as carbon-based channels for CNT- and GNR-based (T)FETs,
as shown in left and right figures, respectively [41,42]. It is worth indicating that coaxial
gate configurations (left figures) and double gate configurations (right figures) have been
adopted for CNT- and GNR-based devices, respectively [39–44]. Note that our study
encompasses FET and tunnel FET modes. Additionally, the DL-TFET is not a combination
of the Schottky barrier and tunnel FETs because it lacks a Schottky junction between the
electrically doped source and the CNT/GNR [46]. Figure 1a,b present lengthwise cut
views of the conventional Gate-All-Around (GAA) CNT(T)FET and Double Gate (DG)
GNR(T)FET, respectively. These devices feature SiO2 gate dielectrics and n-i-n or p-i-n
chemical doping profiles [45,47]. The control gate covers the intrinsic channel region
for both devices. Figure 1c,d showcase the proposed vacuum gate dielectric doping-free
CNT(T)FET and GNR(T)FET, respectively. As their names suggest, these devices operate
under dielectric-less [27–29] and doping-free [46] paradigms. Electrostatic control is utilized
to achieve the doping profile necessary for FET and TFET operation via electrical source
and drain doping gates. Figure 1e,f offer lengthwise cut views of the two proposed vacuum
devices, revealing the absence of a bulk dielectric material around the channel, which is
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entirely controlled electrostatically, while 2D dielectrics can conceptually be adopted to
cover the carbon channels forming metal-vacuum-2D dielectric-carbon structure, which is
beneficial than MOS structure for radiation hardness. Notably, the CNT- and GNR-based
vacuum devices are fully reconfigurable and can operate as FETs, TFETs, or BTBT FETs
depending on applied biasing conditions (doping and control). Figure 1g,h present cross-
sectional views perpendicular to the carbon-based channel. In the case of the CNTFET,
even the inner environment of the CNT is considered a vacuum, which offers benefits
in terms of immunity against radiation effects. Table 1 provides details of the proposed
designs, encompassing configuration, structure, and physical, dimensional, and electrical
parameters of the vacuum nanodevices. It is important to note that this information
and parameters are nominal, and any changes for parametric investigation’s sake will be
explicitly highlighted.
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Figure 1. Lengthwise cut views of (a) the conventional GAA CNT(T)FET and (b) DG GNR(T)FET.
Three-dimensional structures of (c) the proposed VGD-DLCNT(T)FET and (d) VGD-DLGNR(T)FET.
Lengthwise cut views of (e) the proposed VGD-DLCNT(T)FET and (f) VGD-DLGNR(T)FET. Cross-
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Table 1. Details of proposed vacuum nanodevice designs.

Parameter Symbol VGD-DLGNR(T)FET VGD-DLCNT(T)FET Unit

Gate configuration DG/CG Double gate Coaxial gate -
Dimmer number/chirality n 13 (13, 0) -
Gap energy EG ~0.86 ~0.81 eV
Width/diameter WGNR/dCNT ~1.47 ~1 nm
Main Gate length LMG 15 15 nm
S/D gate length LS(D)G 15 15 nm
Spacing LSS(D) 1 1 nm
S/C/D doping (DL) NS/C/D 0 0 nm−1

Oxide/vacuum thickness tOX/tVAC 1 1 nm
Dielectric constant εVAC 1 1 -
Temperature T 300 300 K
Gate-to-source voltage VGS sweep sweep V
Source doping gate voltage VS 1.6 (−1.6) 1.6 (−1.6) V
Drain doping gate voltage VD 1.6 1.6 V
Drain-to-source voltage VDS 0.4 0.4 V

From a fabrication point of view, high-quality carbon nanotubes and graphene nanorib-
bons can be within reach using advanced bottom-up chemical synthesis approaches. Note
that the high quality can be verified by high-resolution imaging [42–44]. The doping-free
paradigm, together with electrostatic doping, enables the formation of source and drain
doping reservoirs without the need for any doping, thus facilitating the relevant fabrication
processes [46]. The vacuum gate dielectric, with a given thickness, can be formed via a sac-
rificial layer deposition and removal process [29]. A gate electrode can be deposited using
advanced physical/chemical vapor deposition. Electron beam lithography techniques can
be employed to pattern the gate contact, while the etching processes can be then used to
precisely define the gate structure and remove unwanted materials. It is worth highlighting
that, given the strides in nanotechnology and current advancements in nano-fabrication
processes, we believe that the proposed devices are viable [42–44].

3. Quantum Simulation Approach

Quantum simulations using Non-Equilibrium Green’s Function (NEGF) techniques are
crucial for the advancement of nanotransistors, offering essential insights into the intricacies
of electron devices on the nanoscale. Via precise simulations of charge carrier behavior,
NEGF-based quantum simulations can provide a foundational understanding of how
these nanodevices operate, thus guiding their design and optimization processes. A key
aspect is accurately predicting and analyzing transport phenomena within nanotransistors,
including quantum tunneling effects, carrier scattering mechanisms, and electrostatics. This
understanding is vital for addressing challenges related to miniaturization and enhancing
device performance. Additionally, NEGF simulations empower researchers to explore
innovative device architectures, emerging nanomaterials (as channels, dielectrics, gates,
and electrodes), and improved designs, namely carbon nanotransistors utilizing the vacuum
gate dielectric paradigm in this case study [34–40].

Figure 2 illustrates the self-consistent procedure coupling Poisson’s solver with the
non-equilibrium Green’s function solver [34,35]. The NEGF formalism employs mode
space (MS) representation to optimize computation [36,37]. Only relevant modes are
considered in NEGF computations [38–40]. Moreover, the assumption of ballistic transport
has been made by neglecting the scattering mechanisms (ΣSCAT = 0) arising from the ultra-
scaling of the vacuum gate dielectric carbon nanotube/graphene nanoribbon field-effect
transistors under investigation [36–40]. The CNT and GNR Hamiltonians utilized in the
NEGF-based computational approach are derived from the atomistic nearest-neighbor
pz-orbital tight-binding approximation. In other words, only the couplings of pZ-orbitals
of the CNT and GNR channels have been taken into account [36–40]. The NEGF solver
involves computing the retarded Green’s function, G(E), the density of states, DS(D), and
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the energy level broadening, ΓS(D). These quantities are utilized to calculate the charge
density, ρGNR/CNT, which feeds into the Poisson solver [34]. In turn, the Poisson solver
provides feedback to the NEGF solver via potential distribution [39,40]. This iterative
process continues until convergence or self-consistency is achieved. Subsequently, drain
current can be computed from the converged NEGF quantities [34–40]. Other outputs such
as charge density, potential profile, local density of states, energy-position-resolved current
spectrum, and band diagrams are also attainable. In brief, the general procedure for the
self-consistent simulation can be outlined as follows:

(1) Adjusting the operating bias and providing an initial estimate for the electrosta-
tic potential.

(2) Determining the charge density by solving the NEGF equations.
(3) Utilizing the obtained charge density to solve the Poisson equation and derive a new

self-consistent potential to feed the NEGF solver.
(4) Iterating Steps 2 and 3 until achieving self-consistency.
(5) Extracting and computing any device characteristics.
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It is worth noting that the radiation-induced trapped charge density, present in con-
ventional CNT/GNR FETs, is integrated into the Poisson solver, as depicted in the same
figure [45]. The finite difference method (FDM) is employed to solve the Poisson equation,
assuming potential invariance in the width (coaxial) direction in the GNRFET (CNTFET)
case [36–38]. In the vacuum area, the dielectric constant is set to unity in the finite difference
nodes of the Poisson solver. Dirichlet boundary conditions are enforced at all gate con-
tacts, while Neumann boundary conditions are applied to the remaining external ungated
boundaries. In previous relevant computational studies, outputs of the quantum simu-
lator have been cross-validated against experimental and advanced computational data,
demonstrating good agreement and confirming the accuracy, validity, and predictability of
the simulators [45,48]. For further details on the quantum simulation approach employed,
readers are referred to classic literature and relevant works [34–40,45,47–51].

4. Results and Discussion

Figure 3 depicts the two-dimensional electrostatic potential distribution of the pro-
posed vacuum gate dielectric doping-free carbon nanotube/nanoribbon (tunnel) field-effect
transistors. Both nanodevices are biased with VGS = 0 V and VDS = 0.4 V. The electrostatic
potential, color-mapped after achieving self-consistency, is based on a meshing distance
of 1 Å. In all figures, the electrostatic doping effect of the source (drain) auxiliary gate is
evident on the left (right) side. Additionally, the electrostatic gating of the middle (main)
gate, responsible for controlling the charge carrier, is observable in all nanodevices. In
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Figure 3a,c, the four corner regions demonstrate similar n-type doping by the two auxiliary
gates, forming n-type doped reservoirs akin to conventional MOSFET-like CNT/GNR
FETs [52,53]. Conversely, in Figure 3b,d, the p-type (n-type) electrical doping of the source
(drain) side, ensured by the negative (positive) applied voltage, is clearly distinguished,
forming the required doping profile for tunnel FETs operation. Inspecting the electrostatic
figures of the CNTFETs, we can also clearly observe the electrostatic potential correspond-
ing to the empty interior of the CNT, as well as its features within the overall electrostatic
potential in comparison to the GNRFET cases.
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Figure 3. Two-dimensional potential distributions of (a) VGD-DLCNTFET, (b) VGD-DLCNTTFET,
(c) VGD-DLGNRFET, and (d) VGD-DLGNRTFET.

Figure 4 illustrates the IDS-VGS transfer characteristics of the VGD-DLCNT(T)FETs and
VGD-DLGNR(T)FETs under investigation. It is evident that all vacuum nanoscale devices
exhibit normal off-on switching behavior. MOSFET-like transistors demonstrate higher on-
state current compared to their TFET counterparts, consistent with their different working
mechanisms. Additionally, TFET devices exhibit steeper subthreshold drain currents than
MOSFET-like nanodevices. Upon closer inspection, TFET transistors manifest the well-
known ambipolar behavior, attributed to the p-type conduction branch due to drain-channel
tunneling. The latter starts with gate voltage decreasing when the edge of the valence band
underneath the main gate aligns with the edge of the conduction band of the drain, leading
to the second type of tunneling mechanism. It is noteworthy that the observed behavior
aligns with conventional MOSFET and TFET devices; however, the fully configurable
nanodevices studied here are doping-free and dielectric-free. This characteristic offers
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benefits in terms of fabrication flexibility and radiation immunity, respectively [54,55],
making them highly advantageous for radiation-immune nanoelectronics.
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Figure 4. IDS-VGS transfer characteristics of (a) the VGD-DLCNT(T)FET and (b) the VGD-DLGNR(T)FET.

In fact, vacuum gate dielectrics offer significant advantages in terms of radiation
hardness. However, their effectiveness in controlling carriers is compromised by the low
dielectric constant, leading to degraded electrostatics. For this reason, considering 2D
dielectrics on carbon channels while maintaining a vacuum environment can offer great
benefits. In this context, assessing the subthreshold swing behavior becomes imperative for
this performance projection study. It is noted that the subthreshold swing (SS) denotes the
alteration in gate voltage necessary to elicit a tenfold augmentation in the drain current of
the nanotransistor while it functions in the subthreshold region or beneath the threshold
voltage, wherein the transistor demonstrates low drain current and is on the verge of
conduction. Numerically, the subthreshold swing can be calculated from the transfer
characteristics using the formula [∆VGS/∆log(IDS)].

Figure 5a,b show the subthreshold swing factor as a function of VGS drawn from
the IDS-VGS transfer characteristics of the VGD-DLCNT(T)FET and VGD-DLGNR(T)FET,
respectively. The plots reveal that the best subthreshold swing of MOSFET-like vacuum
devices is approximately 60 mV/dec, while the TFET transistors have manifested minimum
sub-thermionic subthreshold swing (<60 mV/dec) values of 23.4 mV/dec and 14.3 mV/dec
for CNT and GNR-based TFET, respectively. In addition, sub-60 mV/dec values have been
recorded for a range of drain currents of TFET devices, which is beneficial for switching ap-
plications. Note that the I60 metric (i.e., the highest value of drain current that corresponds
to 60 mV/dec [56]) is found to be 80 nA (21 nA), recorded approximately at VGS= 0.425 V
for VGD-DLCNTTFET (VGD-DLGNRTFET). It is to indicate that the I60 factor serves as
a crucial figure of merit for steep FETs [56]. Figure 5c,d shows the ION/IOFF current ratio
as a function of on-state current (ION) considering a power supply voltage (VDD) equal
to 0.4 V. Note that the two figures are also extracted from the IDS-VGS characteristics of
the VGD-DLCNT(T)FET and VGD-DLGNR(T)FET considering the aforementioned VDD
window. The plots are derived from the transfer proprieties utilizing a window with bound-
aries set at VGS−ON (right extremity) and VGS−OFF = VGS−ON−VDD (left extremity). By
shifting the VDD window, we extract IDS−OFF (IDS−ON) corresponding to VGS−OFF (VGS−ON)
at each interval until covering the entire VGS range. Then, the ratios are within reach. It
is important to note that this representation enables the visualization of potential current
ratios in relation to off- and/or on-current and facilitates the calculation of the maximum
reachable current ratio (MRCR). In the CNT-based nanodevices case (Figure 5c), we can
see that the two vacuum nanodevices exhibit a maximum reachable current ratio of about
~2 × 105, while in Figure 5d, the recorded MRCR is about ~2 × 106 (~6 × 107) for VGD-
DLGNR(T)FET. In both TFET cases, it can be observed that the current ratio decreases as the
on-state current decreases. This behavior is attributed to ambipolar behavior, specifically
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drain-channel tunneling, which is unsuitable for switching applications. Upon comparing
the on-state currents corresponding to the maximum reachable current ratio in both bottom
figures, it is evident that TFET devices (for both CNT and GNR-based devices) exhibit the
highest ones. This is due to their subthermionic subthreshold swing values, which enable
low off-state currents and high on-state currents even with low VDD values. The recorded
results indicate that the vacuum gate dielectric DLCNT(T)FETs and DLGNR(T)FETs can be
reliably operated for radiation-immune switching applications.
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Figure 5. (a,b) Subthreshold swing versus the gate-to-source voltage, (c,d) ION/IOFF current ratio
versus ION for VGD-DLCNT(T)FET (left figures) and VGD-DLGNR(T)FET (right figures).

Figure 6a,b show the behavior of the swing factor as a function of gate length downscal-
ing, considering sub-15 nm gate lengths for VGD-DLCNT(T)FETs and VGD-DLGNR(T)FETs,
respectively. As expected, subthermionic subthreshold swing values have been recorded
for VGD-DLCNTTFET (VGD-DLGNRTFET) with gate lengths superior then 10.5 (8.2) nm,
while in the case of MOSFET-like transistors, the subthreshold swing decreases with gate
length increasing to reach the ideal SS value of 60 mV/dec at LG = 15 nm. Inspection of the
same figures reveals that at ultrascaled regime (i.e., 5 nm), the MOSFET-like devices exhibit
lower SS values than the TFET devices, which is attributed to the high direct source-to-drain
tunneling current responsible for the degradation of the TFET subthreshold performance.
Figure 6c,d show that the maximum current ratio increases with the gate length increasing
for the MOSFET-like and TFET nanodevices, whether in the CNT or GNR case. Note that
the MOSFET-like transistor shows a slight superiority in terms of maximum current ratio
over its TFET counterpart over the whole considered range in the CNT-based devices case.
The same observation has been recorded in the GNR-based devices case. However, the
TFETs exhibit greater current ratios for devices with gate lengths greater than 11.7 nm. This
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behavior can be understood by the steep subthreshold swing (SS) recorded in Figure 6b
at the corresponding gate lengths. It is worth noting that similar behavior is expected
for CNTTFETs with longer gate lengths. The recorded results indicate that vacuum gate
dielectric doping-free carbon nanotube/nanoribbon (tunnel) field-effect transistors have
demonstrated a standard scaling capability.
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Figure 6. (a,b) Subthreshold swing; (c,d) MRCR versus the control gate length for VGD-
DLCNT(T)FETs (left figures) and VGD-DLGNR(T)FETs (right figures).

Figure 7a,b depict the IDS-VGS transfer characteristics of the proposed VGD-DLCNT(T)FETs
and conventional CNT(T)FETs before and after irradiation, with the conventional CNT(T)FETs
included for benchmarking purposes. It is noteworthy that the conventional designs are
assumed to be as described in [57,58], where silicon dioxide (SiO2) is typically consid-
ered in the baseline CNT-based (T)FETs. It is evident that the proposed vacuum nanode-
vices exhibit insensitivity to radiation-induced trapped charge density of approximately
4 × 1012 cm−2 [45,59] owing to the vacuum environment, which is impervious to radiation-
induced electrostatics in the nanodevices. Equivalently, there is no radiation-induced
generation of electron-hole pairs due to the absence of dielectric, where such generation
could occur. However, in the case of conventional CNT(T)FETs, a noticeable shift in thresh-
old voltage (∆VTH) toward the positive direction is observed, which may be suitable if the
device is operated as a radiation sensor [45,59] but is undesirable when the nanodevice
is intended for switching applications [60]. For GNR-based devices, we observe almost
identical behavior, as shown in Figure 7c,d, where the proposed designs are immune to
radiation-induced threshold voltage shifts, while the conventional designs exhibit sensitiv-
ity. Inspecting the recorded shift in GNR-based devices and CNT-based devices, we can
observe that the magnitude of the threshold voltage shift is not the same, which may be
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attributed to the difference in gate configuration (i.e., DG in GNR(T)FET case and GAA in
CNT(T)FET case).
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Figure 7. IDS-VGS transfer characteristics of (a,b) the VGD-DLCNT(T)FETs, (c,d) VGD-DLGNR(T)FETs
before and after irradiation, with conventional CNT/GNR-based (T)FETs included for comparison.

Leveraging the doping gates serves not only to embrace the doping-free paradigm and
simplify the fabrication process but also to potentially enhance performance. This enhance-
ment can be achieved by adjusting the band diagram to improve transport behavior. In this
context, we investigated the possibility of enhancing device performance by adjusting the
voltage settings of the doping gates, namely the source gate voltage (VS) and drain gate
voltage (VD).

Equivalently, it is about the adjustment of doping electrostatically. As shown in
Figure 8a, by decreasing the source and drain doping gates, the leakage current, as well
as the subthreshold swing, decreases. Quantitatively, using VS(D) = 1.6 V, The VGD-
DLCNTFET (VGD-DLGNRFET) has manifested subthreshold swing and a current ratio of
120.9 mV/dec (78.4 mV/dec) and 426.57 (9.9 × 103), respectively. When using VS(D) = 0.6 V,
The VGD-DLCNTFET (VGD-DLGNRFET) has manifested improved subthreshold swing
and a current ratio of 80.7 mV/dec (65 mV/dec) and 6.4 × 103 (1.54 × 105), respectively.
The same improvements in terms of subthreshold swing and current ratio have been
recorded in the TFET case. Quantitatively, using VS(D) = 1.6 V, The VGD-DLCNTTFET
(VGD-DLGNTRFET) has manifested subthreshold swing and current ratio of 113.4 mV/dec
(59 mV/dec) and 141.78 (2.82 × 103), respectively. When using VS(D) = 0.6 V, The VGD-
DLCNTTFET (VGD-DLGNRTFET) has manifested enhanced subthreshold swing and a
current ratio of 93.7 mV/dec (50.2 mV/dec) and 632.88 (1.95 × 104), respectively. It should
be noted that the improvements observed were recorded for ultra-scaled transistors with
an 8-nanometer gate length.
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Figure 8. The IDS-VGS transfer characteristics of (a) MOSFET-like vacuum nanodevices and (b) TFET
vacuum nanodevices for different electrical doping voltages.

Simulation of such devices and their derivatives (considering different gate configura-
tions) while taking into account scattering mechanisms within the NEGF framework can
provide a deeper insight into the behavior and performance projection of carbon-based
nanotransistors in radiative environments. Additionally, exploring the analog/RF perfor-
mance of these devices presents an intriguing avenue for further investigation. Moreover,
the study, analysis, and advanced simulation and experimentation on relevant integrated
circuits based on vacuum-based transistors, such as static random-access memory (SRAM),
microcontrollers (MCUs), field-programmable gate arrays (FPGAs), analog-to-digital con-
verters (ADCs), digital-to-analog converters (DACs), memory modules (Flash Memory,
EEPROM), sensor interface ICs, and communication ICs (Transceivers, Modems), offer
promising subjects for further research [61–65].

In addition to the aforementioned insights, optimizing vacuum-based devices and elec-
tronic systems using bio-inspired optimization approaches (e.g., Ant Colony Optimization
(ACO), Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Simulated Anneal-
ing (SA)) holds considerable promise [66,67]. Since the vacuum gate dielectric degrades
the coupling capacitance, leading to worse carrier control, leveraging negative capacitance
ferroelectric materials [68–70] to improve such carbon nanodevices can be a matter for
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further investigation. Furthermore, very interesting results are presented in [71–73]. Self-
powered application presented in [74,75]. Finally, other directions of research can be found
at [76–78].

5. Conclusions

In this paper, we have computationally proposed vacuum gate dielectric doping-
free carbon nanotube/nanoribbon field-effect transistors utilizing a quantum simulation
approach. The computational method uses a quantum simulation approach that self-
consistently solves the non-equilibrium Green’s function with the electrostatics considering
ballistic transport conditions. These novel vacuum nanodevices offer electrostatic recon-
figurability, enabling operation in MOSFET-like or TFET-like modes. Our simulations
highlight the reliability of the proposed VGD nanotransistors in harsh environments, par-
ticularly radioactive mediums, demonstrating high-current ratios, stable threshold voltage,
low subthreshold swings, and good scaling capability. Furthermore, we have introduced
an effective extrinsic improvement technique involving adjusting the doping gate voltage
to enhance transport characteristics via engineered band diagrams. Via rigorous simulation
and testing, we have recorded high performance with explicit stability, confirming their
immunity to radiation. These compelling numerical results position the proposed VGD
carbon transistors as promising candidates for applications in high-energy physics experi-
ments, medical devices, defense systems, aerospace technologies, and other fields where
radiation-immune and high-performance nanoelectronics are prerequisites. The unique
characteristics of carbon nanotube and graphene nanoribbon field-effect transistors, which
involve exhibiting band-to-band tunneling mechanisms in reverse applied gate voltage
due to the light effective mass of carriers and a small band gap, present an opportunity
for conducting deeper investigations into ultrascaled vacuum gate dielectric BTBT FETs.
Such investigations can reveal the capabilities of VGD BTBT devices for high-performance
switching and radiation-hardened applications.
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