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Abstract: Two-dimensional (2D) materials promise advances in electronic devices beyond Moore’s
scaling law through extended functionality, such as non-monotonic dependence of device parameters
on input parameters. However, the robustness and performance of effects like negative differential
resistance (NDR) and anti-ambipolar behavior have been limited in scale and robustness by relying
on atomic defects and complex heterojunctions. In this paper, we introduce a novel device concept
that utilizes the quantum capacitance of junctions between 2D materials and molecular layers. We
realized a variable capacitance 2D molecular junction (vc2Dmj) diode through the scalable integration
of graphene and single layers of stearic acid. The vc2Dmj exhibits NDR with a substantial peak-to-
valley ratio even at room temperature and an active negative resistance region. The origin of this
unique behavior was identified through thermoelectric measurements and ab initio calculations to
be a hybridization effect between graphene and the molecular layer. The enhancement of device
parameters through morphology optimization highlights the potential of our approach toward new
functionalities that advance the landscape of future electronics.

Keywords: 2D materials; negative differential resistance; Langmuir–Blodgett; molecular layer;
quantum capacitance

1. Introduction

Two-dimensional materials have received significant attention in future electronics
due to their high carrier mobility and crystalline quality at atomic dimensions. Their
wide range of compositions and unique properties make them particularly well-suited for
electronic functionality in the “more-than-Moore” era [1].
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To realize functionality beyond conventional electronics, non-monotonic effects have
received significant attention. Compared to conventional electronics, non-monotonic effects
introduce complexities that enable unprecedented functionalities and capabilities. Negative
Differential Resistance (NDR), for instance, exhibits regions where the current decreases
with increasing voltage and offers the potential for ultrafast switching speeds and reduced
power consumption, which are essential in a modern electronic system [2]. Memristive
devices emulate synaptic plasticity and exhibit non-monotonic hysteresis that enable next-
generation memory and neuromorphic computing systems [3]. Non-monotonic effects have
been investigated in 2D materials recently [4]. Zhao et al. characterized the NDR arising
from resonant tunneling through defects in hBN. Roshini et al. produced bi-anti-ambipolar
transconductance by adjusting the contribution of basal plane and edge injection in strained
InSe/SnSe2 heterojunctions [5].

Unfortunately, these approaches require careful control of 2D materials’ properties,
the introduction of atomic defects, or high-quality heterojunctions, thus limiting their ro-
bustness. Moreover, the limited scalability of the device fabrication restricts the commercial
impact of such devices.

We here introduce a novel device concept that we term variable capacitance 2D
molecular junction (vc2Dmj). Through a combination of scalably producible graphene
and a molecular dielectric, a heterojunction was realized that exhibits pronounced NDR
and even active resistance control (ANR). The device operation relies on the variable and
low quantum capacitance of graphene and shows high robustness at room-temperature
operation and in the presence of device geometry variation. Our analysis found a peak-
to-valley ratio of 2.5, which demonstrates the potential of our approach. Finally, the
thermoelectric characterization revealed a high thermoelectric performance that opens up
new routes toward powering future electronics.

2. Materials and Methods

Graphene was produced by chemical vapor deposition, following previous reports [6].
Briefly, copper foil was placed into a clamshell furnace (1” diameter) before flowing argon
and hydrogen, while maintaining a low pressure (100 mTorr). Methane (CH4) was utilized
as a carbon-containing precursor that was introduced at elevated temperatures (1000 ◦C).
After 6 h of growth, the sample was cooled naturally to room temperature under Ar and
H2 flow.

The stearic acid was produced by dissolving stearic acid (1 mg) in hexane (1 mL)
and then compressed using the Langmuir–Blodgett through from KSV NIMA Instruments
(Biolin Scientific, Vastra Frolunda, Sweden). By spreading the hexane solution of stearic acid
of 80 µL by using a microsyringe (Hamilton Company Inc., Reno, NV, USA) on DI water
with a resistivity ≥18.2 MΩ cm, the monolayers were formed. The isothermal compression
rate was maintained at 10 mm/min, and once the desired surface tension was achieved,
the monolayer was allowed to equilibrate for about 5 min. Then, we employed the LB
deposition technique to transfer a single layer or multilayer of stearic acid on the substrate
(graphene over SiO2 wafer) through withdrawing them vertically out of the subphase at
the rate of 5 mm/min. The quality, structure, and behavior studies of the monolayer were
performed with a KSV NIMA Micro-BAM Brewster Angle Microscope (Biolin Scientific,
Biolin Scientific, Vastra Frolunda, Sweden). A Wilhelmy plate was used to measure the
surface pressure.

To measure the electric properties of the device, a probe station with four manual
manipulators (Keithlink Technology Co., Ltd., Taipei, Taiwan) was used. Electrical contact
to the device under test was made through four tungsten probes in micromanipulators that
were connected to a semiconductor analyzer (HP-4156B by Hewlett-Packard Company,
Fort Collins, CO, USA). Temperature-dependent IV characteristics were conducted in a
Janis probe station under vacuum (<1E-6Torr), while other measurements were conducted
in an ambient environmental and light conditions.
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Morphology measurements were conducted by Atomic Force microscopy (VEECO by
Veeco Taiwan Co., Hsinchu, Taiwan) and optical microscopy (Olympus BX53 by Evident
Corp. and Olympus Scientific Solutions Americas Corp., Tokyo, Japan). Raman spectra
were collected by a NANOBASE XPER RF Raman system (NBOS-220012) by Nanobase Co.,
Seoul, Republic of Korea with a 532 nm excitation laser.

Ab initio simulations were conducted using QuantumATK (Synopsys Taiwan Co.,
Ltd., Hsinchu, Taiwan). We utilized a computational LCAO basis set to calculate the density
of state for both stearic acid and the stearic acid/graphene junction.

3. Results

The proposed vc2Dmj exploits the quantum capacitance of a graphene channel that is
electrostatically floating between a source and drain contact (Figure 1a). For this purpose,
graphene was separated from Au electrodes through a molecular film of stearic acid. Stearic
acid consists of a linear chain with 18 carbon atoms and an oxygen head group. Our DFT
calculations demonstrate a 6.7 eV band gap in the stearic acid, with a negligible density of
localized states in the band gap (Figure 1b).
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Figure 1. Concept of vc2Dmj device structure: (a) band structure of proposed device showing variable
capacitance graphene layer between Au source and drain contacts, (b) DFT calculated density of
states for stearic acid (inset) depiction of stearic acid, and (c) schematic of device realization with
indication of current pathway.

To simplify the assembly of the graphene/molecule junction, we devised a device
structure that only required one graphene/molecule interface. A graphene layer is covered
by stearic acid, and then two contacts are placed on top of it (Figure 1c). In this geometry,
carrier transport first occurs in the vertical direction between the source and graphene. Then,
carriers move within the graphene in the lateral direction before crossing the molecular
layer a second time to reach the drain. Due to the high barrier associated with transport
within the molecular layer, the alternative lateral conduction pathway in the stearic acid
film is significantly less efficient.

The fabrication of the proposed vc2Dmj structure requires the atomically precise
assembly of the dielectric with molecular-scale thickness, as this parameter represents the
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critical channel dimension. We employed Langmuir–Blodgett deposition for this purpose,
due to its proven ability to produce wafer-scale films with uniform single-layer thickness. In
LB deposition, a sub-monolayer of molecules is compressed on the interface of an insoluble
subphase [7]. Brewster-angle microscopy (BAM) was used to investigate the formation of
stearic acid monolayers. A series of images were taken during compression (Figure 2a) that
illustrate the transition from gaseous phases to liquid phases as the compression progresses.
With further compression, the liquid phases transformed into a solid state. This evolution
is supported by surface pressure measurements (Figure 2b) that indicate the compression
until 30 mN/m, which agrees with previous reports for the solid phase of stearic acid [8].
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Figure 2. Characterization of dielectric molecule deposition: (a) series of Brewster-angle micrographs
at different compression values showing condensation of molecular layer, (b) corresponding surface
pressure curve vs. compression, (c) atomic force micrograph of deposited single molecular layer,
(d) atomic force micrograph of deposited triple molecular layer, (e) cross-section corresponding to (c),
and (f) cross-section corresponding to (f).

The solid film of stearic acid resulting from this compression process was then trans-
ferred onto a graphene layer, which was positioned on Si/SiO2 substrates. For this purpose,
a Langmuir–Blodgett process was utilized where the sample is moved out of the subphase
while the lateral surface pressure is maintained (Figure 2c).

The morphology of the resulting graphene/stearic acid structure was examined using
atomic force microscopy (AFM). A film-like structure is observed that exhibits regions of
larger height. These protrusions represent over-compressed domains where stearic acid
film corrugates in an out-of-plane direction [9]. Due to their larger separation from the
graphene, these regions are not expected to contribute to the tunneling process.

A boundary was created in the stearic acid film, and the thickness of a single stearic
acid layer on graphene was measured to be 1 nm, which agrees with previous results [10,11].
To demonstrate the robustness of the LB transfer process, we also deposited triple layers of
stearic acid on graphene by conducting sequential LB steps. We observed the formation of
a uniform layer with a thickness of 3 nm, as expected.

To establish the quality of the interface, we first investigated the heat transport
in the graphene/molecular junction. Time-domain thermoreflectance (TDTR) shows a
high thermal conductivity value, with a value of around 6000 W/mK (Figure 3a). The
high out-of-plane thermal conductivity also confirmed by power-dependent Raman spec-
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troscopy, which demonstrates the adherence to a linear relationship between Raman
intensity and excitation power throughout the power range, without the indication of
saturation as indicative for overheating [12]. The observed large thermal conductivity of
the graphene/molecule junction is surprising, as stearic acid exhibits a low conductivity
value [13]. We therefore hypothesize that graphene and stearic acid are forming a hybrid
structure by bonding between the electronegative oxygen head group and the graphene
basal plane.
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To corroborate the formation of a stable hybrid, we immersed the junction into a
liquid electrolyte and conducted electrochemical impedance spectroscopy. We observed
a decreased heterogeneous charge transfer efficiency compared to bare graphene, thus
confirming the presence of stearic acid acting as a barrier layer (Figure 3c). Even prolonged
exposure to the electrolyte does not dissolve the stearic acid layer, corroborating its stability.

The hybrid graphene/molecular layer structure was further investigated by thermo-
electric measurements; for this purpose, contacts were deposited on the graphene and
the stearic acid. We extracted the Seebeck voltage by providing a temperature difference
between the substrate and the top. A value of 2.99 µV/K was observed, which is sig-
nificantly lower than expected for graphene at realistic carrier concentrations [14]. This
observation corroborates the deviation of the graphene/molecule hybrid from pristine
graphene. Finally, a ZT coefficient of 0.05 was extracted by Harmann-type measurements
which is comparable to previous reports on the junctions between graphene and conductive
molecules [15].
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Our results suggest that stearic acid is modifying graphene’s electronic structure
significantly. To investigate the effect of this modification on the quantum capacitance,
we conducted DFT calculations. Compared to the density of states of pristine graphene
(Figure 4a), we observed a large increase in DOS around the Fermi level (Figure 4b).
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Figure 4. Carrier transport in vc2Dmj: (a) DFT calculated density of states of bare graphene;
(b) density of states for graphene/stearic acid junction; (c) representative current–voltage char-
acteristics showing negative differential resistance (NDR) and active negative resistance (ANR); and
(d) current–voltage characteristics of vc2Dmj, where graphene is replaced by a Au film.

This increased quantum capacitance at an accessible voltage range imparts our vc2Dmj
device with unique opportunities. To illustrate this capability, we measured the current–
voltage characteristics of the device using source and drain contacts on the stearic acid. We
observed a clear negative differential resistance (NDR) region in the devices (Figure 4c) [16].
Surprisingly, however, the device also demonstrates active negative resistance (ANR)
behavior, where a positive current is flowing at negative applied voltages. Active negative
resistance has not been observed in 2D material devices and points toward a novel operating
mechanism. The observation that no NDR or ANR is observed when replacing the graphene
layer with Au (Figure 4d) indicates the importance of the graphene component to the
underlying mechanism.

Based on the presented observations, we propose the following operating mechanism:
The application of a bias between source and drain will result in the accumulation of
carriers in the graphene, due to the slow transport through the molecular dielectric. This
accumulation will charge the graphene and increases its quantum capacitance. The change
in quantum capacitance in turn increases the ability to store charges and enhances the
injection current from the source (Figure 5a).
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Figure 5. Mechanism of vc2Dmj operation: (a) schematic of current flow under different charging
conditions of graphene; (b) fitting of current–voltage characteristics to simple quantum capacitance
model; (c) comparison of carrier transport for junction consisting of graphene and single- or triple-
layer stearic acid, respectively; and (d) temperature dependent current at 0.5 V with fit to thermally
activated emission.

Temperature-dependent carrier transport measurements confirm the proposed trans-
port process (Figure 5b). Our device exhibits a pronounced increase in device current with
temperature, indicating thermionic emission. This operating mechanism is fundamentally
different from the direct tunneling-based mechanism in conventional 2D NDR devices [17].

We can capture the vc2Dmj behavior through the effect of a changing capacitance on
the measured current according to

itotal = iresistive + icharging =
1

R(V)
V + C(V)

dV
dt

where R(V) is the voltage-dependent device resistance, C(V) is the changing capacitance,
and dV/dt is the voltage scan rate.

Approximating the observed density of states of the graphene/molecule junction in
Figure 4b with two Gaussian peaks is shown to properly reproduce the observed NDR
and ADR regions (Figure 5c). The good agreement between the simple model and the
experimental observation indicates the importance of variable quantum capacitance to the
device performance.

The novel operating mechanism has several advantages over conventional NDR
devices. First, thermionic emission into a smoothly varying DOS relaxes the requirements
of device tolerances and materials quality compared to traditional resonant tunneling
processes into specific states. This robustness in operation permits the realization of vc2Dmj
devices at a large scale and from various material systems. Finally, the NDR is expected to
be less sensitive to temperature, permitting operation at room temperature and above.

A second advantage of the device concept is the adjustability of the device properties
through morphology changes. Capacitance variation, as the operating mechanism, is
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sensitive to the total electrostatic capacitance of the device that contains contributions from
electrodes and surfaces. Therefore, modifying the device geometry is expected to control
the electrostatics of its operation. We demonstrate this ability by increasing the contribution
of the quantum capacitance in the vc2Dmj and enhancing the NDR and ADR.

The total capacitance of the vc2Dmj can be considered as follows:

1
Ctotal

=
1

Cquantum(V)
+

1
Ces

Minimization of the electrostatic capacitance will increase the effect of voltage change
on the total capacitance. This decrease in the electrostatic capacitance can be achieved by
increasing the spacing between source and drain contacts to the graphene.

We utilized single-layer molecular dielectrics and triple-layer dielectrics to increase
the spacing and observe the same non-monotonic behavior for both structures, confirming
the robustness of the process (Figure 5d). As expected, the vc2Dmj with larger vertical
separation exhibits a better ADR and NDR performance, and the NDR reaches a peak-
to-valley current ratio (PVCR) of 2. This parameter is comparable to previously reported
graphene-based resonant tunneling devices and exceeds the performance of many 2D
heterojunctions [18]. In the future, this parameter could be further enhanced through
electrostatic control through a gate terminal.

4. Conclusions

We demonstrated the realization of a novel electronic device design that leverages the
non-monotonic quantum capacitance of a graphene/molecular layer junction. Scalable pro-
duction and a unique active negative resistance region make this vc2Dmj diode promising
for non-traditional circuit designs in future electronics.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano14110972/s1, Reference [19] is cited in the supplementary
materials.
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