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Abstract: Copper-filled vertically aligned carbon nanotubes (Cu@VACNTs) were grown directly on
Cu foil substrates of 0.1 mm thicknesses at different temperatures via plasma-enhanced chemical
vapor deposition (PECVD). By circumventing the need for additional catalyst layers or intensive
substrate treatments, our in-situ technique offers a simplified and potentially scalable route for fabri-
cating Cu@VACNTs with enhanced electrical and thermal properties on thin Cu foils. Comprehensive
analysis using field emission scanning microscopy (FESEM), transmission electron microscopy (TEM),
energy-dispersive X-ray spectroscopy (EDS) mappings, and X-ray diffraction (XRD) revealed uni-
form Cu filling within the VACNTs across a range of synthesis temperatures (650 ◦C, 700 ◦C, and
760 ◦C). Field emission (FE) measurements of the sample synthesized at 700 ◦C (S700) showed low
turn-on and threshold fields of 2.33 V/µm and 3.29 V/µm, respectively. The findings demonstrate
the viability of thin Cu substrates in creating dense and highly conductive Cu-filled VACNT arrays
for advanced electronic and nanoelectronics applications.

Keywords: VACNTs; copper; PECVD; field emission

1. Introduction

Since their discovery in 1991 by Ijima [1], CNTs have been extensively researched
for possible applications in myriads of fields. They exhibit exceptional chemical stability,
high aspect ratio, low work function, large field enhancement factor, superior mechani-
cal strength, and excellent electrical and thermal conductivities, making them promising
materials for field emission applications [2–7]. VACNTs, a special kind of CNT, consist
of individual CNTs aligned perpendicular to the substrate [8–10]. Although they share
similar alignment with the three-dimensional (3D) vertically aligned graphene nanosheets
(VAGNAs) comprising interconnected graphene sheets arranged vertically relative to the
substrate and forming a porous, 3D network [11–13], both materials have marked differ-
ences. For instance, the individual CNTs forming the VACNTs possess hollow cylindrical
(tube-like) structures characterized by a high aspect ratio, whereas the VAGNAs retain the
planar shape (sheet-like) structure of the component graphene sheets while providing a
large surface area. The hollow nature of the CNTs provides a unique advantage over the
3D VAGNAs for applications requiring material encapsulation, allowing the CNTs to be
filled with other foreign materials. Studies have suggested that due to the hollow cavities
of the CNTs, filling them with foreign materials will drastically improve their intrinsic
properties and enhance their performances in field emission devices and several other
nanoscale applications, including nanosensors [14], nanomagnets [15], nanoswitches [16],
nanothermometers [17], batteries [18], supercapacitors [19], etc.

The resulting filled CNTs (X@CNTs) display the characteristic features of both the host
CNTs and the foreign filler materials, together with elongated cavities acting as templates
to generate 1D nanostructures such as nanowires [20]. For instance, studies have shown
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that CNTs filled with ferromagnetic materials (Fe, Co, and Ni) display excellent magneto-
resistance and, thus, can be used as nanomagnets in magnetic data storage devices [21–24].
The CNTs ensure durability and stability by protecting the ferromagnetic filler from possible
oxidation. In field emission devices, the electrical and thermal conductivities of CNTs are
greatly improved by encapsulating highly conductive nanowires inside the cores of the
CNT arrays. This greatly increases the field enhancement factor and reduces the turn-on
and threshold fields. In 2021, our group reported very low turn-on and threshold fields
of 1.57 V/µm and 2.43 V/µm, respectively, and a high field enhancement factor (ß = 3061)
for Cu-filled VACNTs (Cu@VACNTs) grown on bulk Cu disks [25]. These excellent field
emission properties resulted from synergetic contributions from the VACNTs and the highly
conductive encapsulated Cu nanowires.

Depending on whether filling occurs during or after CNT growth, the techniques are
classified into two broad categories: ex-situ and in-situ. The ex-situ techniques, which
include the sonication-assisted wet chemical method [26], supercritical fluid chemical
deposition (SFCD) [27], the solution infusion method [28], the chemical fluid deposition
method (CFD) [29], and the electrochemical deposition method [30], involve encapsulating
foreign materials into the hollow cavities of CNTs post CNT synthesis. On the other hand,
in-situ filling occurs simultaneously with CNT growth. The arc-discharge [31] and chemical
vapor deposition (CVD) [32] methods are the most used in-situ methods. Meanwhile,
unlike the ex-situ techniques, which involve multiple steps that require opening the closed
ends of CNTs, the in-situ methods present a single-step synthesis route for filled CNTs
(X@CNTs) with well-preserved capsules and closed ends [33].

Several foreign materials, including metals [34–36] and metal oxides [37–39], organic
molecules [40–42], carotenes [43–45], fullerenes [46–48], fluorescent NPs [49], etc., have been
used to fill CNTs for several applications. Among these materials, Cu-filled CNTs (Cu@CNTs)
have gained huge recognition owing to their excellent electrical and thermal conductivities, the
low cost of Cu, and weak interaction with carbon. Furthermore, studies have demonstrated
that the inherent high conductivity of CNTs can be increased by encapsulating Cu inside the
core of the CNTs [50–52]. Despite these impressive results, the filling methods employed
are fraught with several issues, such as poor yield of filled CNTs, multiple intricate steps,
improper alignment of the resulting Cu@CNTs, and the need for Cu salts.

Furthermore, to achieve Cu@CNTs via the in-situ technique, the CNTs need to be
grown directly on the Cu substrates without any extra catalyst layers. However, reports
have shown that it is challenging to synthesize CNTs on Cu because of its poor catalytic
activity and extremely low carbon solubility [53]. Cu has occupied 3d orbitals, which
prohibit the formation of covalent bonds with hydrocarbon molecules. The small binding
energy of Cu with carbon also suppresses CNT graphitization during growth [54]. Atthipalli
et al. [55] grew multi-walled CNTs (MWCNTs) on bulk Cu wafers but by first depositing
Ni film as a catalyst layer. Similarly, Yin et al. [56] reported bamboo-like CNTs on an
oxygen-free Cu substrate by first sputtering Ni particles as catalysts on the Cu substrate.
Rao et al. [57] also reported CNT growth on TEM Cu grids coated with Ni. Sepahvand
et al. [58] obtained dense VACNT arrays by depositing Ni and chromium (Cr) as both
catalyst and barrier layers, respectively. Meanwhile, it is important to point out that prior
to the catalyst deposition, an intermediate buffer layer is first deposited onto the substrate
material to prevent the diffusion of the catalyst particles into the Cu substrates. Aside from
this being a tortuous procedure, the presence of the intermediate layer increases the contact
resistance between the CNTs and the Cu substrates. In addition, it is impossible to achieve
in-situ filling of the CNTs with Cu following the procedure described above because the
CNTs grow on the deposited catalyst particles and are more likely to be filled with them.
There are a few successful reports on the direct synthesis of MWCNTs on Cu substrates by
first activating the catalytic properties of the Cu substrates by either acid or sulfur treatment
for many hours [53,59,60]. However, this process is long and expensive. Our group has
tried to address these intricacies by developing a facile in-situ method for filling VACNTs
with Cu [25]. Although the technique obviates the deposition of extra layers and acid
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treatment, the Cu@VACNTs were grown directly on thick Cu disks (thickness = 0.6 mm),
which are not good for practical micro- and nanoelectronics applications.

Herein, we report the direct synthesis of Cu@VACNTs on thin Cu foils (thickness= 0.1 mm)
at different temperatures. Generally, compared to thick substrates, it is more difficult to
grow CNTs on their thinner counterparts because they lack the structural integrity to
withstand the high mechanical and thermal stress during the CNT growth process. They
crack, melt, or undergo other structural deformations, which could in turn impact the
uniformity and quality of the resulting CNTs.

2. Experimental Section
2.1. Cu@VACNTs Synthesis

Arrays of copper-filled VACNTs (Cu@VACNTs) were synthesized on 0.1 mm thick
Cu foil substrates using the direct current (DC) PECVD method described in our previous
report [61]. The Cu foil substrates were ultrasonicated with acetone and isopropyl alcohol
for 10 min each to eliminate organic and inorganic contaminants. After cleaning, the
substrates were allowed to dry in the open air before being transferred to the PECVD
chamber for CNT growth.

The growth chamber was pumped down to a base pressure of 0.01 Torr. Subsequently,
ammonia (NH3) gas was introduced at a flow rate of 110 sccm, maintaining a constant
chamber pressure of 7 Torr to create the reduced environment necessary for CNT growth.
Under these conditions, the Cu substrates were heated to growth temperatures of 650 ◦C,
700 ◦C, and 760 ◦C at a rate of 50 ◦C/min. Uniform catalytic active sites were formed on the
substrate surface due to the etching effect of NH3 on the substrate at elevated temperatures.
These catalytic sites were necessary for the nucleation of CNTs. Upon reaching the desired
growth temperature, the DC plasma was turned on, and the power was maintained at 70 W.
This was immediately followed by introducing acetylene (C2H2) as the carbon precursor
gas at a constant flow rate of 30 sccm. The system was turned off after 30 min of growth and
was allowed to cool down at the base pressure. The samples of Cu@VACNTs synthesized
at 650 ◦C, 700 ◦C, and 760 ◦C were named as S650, S700, and S760, respectively.

2.2. Material Characterization

A field emission scanning electron microscope (FESEM) was used to characterize the
surface structure of the as-synthesized Cu@VACNTs at an accelerating voltage of 15 kV.
The XRD patterns of the different samples were obtained using the Siemens Diffractometer
D5000 (Munich, Germany) with Cu Kα radiation (λ = 1.54 Å). The nanostructures of
the as-synthesized Cu@VACNTs were examined using an image-aberration-corrected
ThermoFisher Titan 80–300 (Waltham, MA, USA) fitted with an EDAX Octane Elite T solid-
state X-ray spectrometer operated at 300 kV. The Cu@VACNT samples were prepared for
TEM by gently scrapping them off the Cu foil substrate with a surgical blade and flushed
off onto the TEM grid by dropping alcohol on the blade. Low-magnification images were
taken to reveal the continuity of the Cu filling inside the CNTs. High-magnification images
of the CNT shell and the filled Cu core were taken to show their structures and interfaces.
TEM-EDS mapping was also carried out to confirm the chemical constituent of the guest
material inside the cores of the CNTs.

2.3. FE Measurement

As shown in the Electronic Supplementary Information (ESI), Figure S1, a diode config-
uration was used to measure the field emission properties of the sample S700 Cu@VACNTs
in a vacuum chamber with a base pressure of approximately 1 × 10−6 Torr. Using a sil-
ver paste, the cathode was prepared by gluing the as-synthesized Cu@VACNTs onto the
stainless-steel plate. The anode was a solid cylindrical stainless-steel rod with a 0.803 cm2

diameter. The separation distance between both electrodes was maintained at 615 µm
with the aid of ceramic and plastic spacers. Fifty-volt increments of voltage bias were
applied using a DC power source (Matsusada AU-15P20, Otsu, Japan), and the emission
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current was measured with a Keithley 236 unit. At least five cycles of current density vs.
electric field (J vs. E) characteristics were recorded with multiple samples to ensure the
reproducibility of data.

3. Results and Discussion
3.1. VACNT Structure

The FESEM images in Figure 1a–c reveal the effect of different growth temperatures on
the morphology and density of the VACNT arrays. In Figure 1a, sparsely grown VACNTs
of non-uniform height (between 0.4 and 10 µm), diameter (between 300 and 670 nm), and
inter-tube spacings can be observed, some of which appear in bundles. The poor growth,
non-uniformity, and bundled nature of these VACNTs can be attributed to the fact that the
growth temperature (650 ◦C) was insufficient to break the surface of the Cu substrate into
uniform and distinct nanosized islands for CNT growth. In addition, 650 ◦C may not be
high enough to sufficiently dissociate the C2H2 into carbon atoms, leading to insufficient
carbon species for further dissolution into the available nano islands. At a much higher
synthesis temperature of 700 ◦C, the VACNTs appear as freestanding uniform VACNTs
with average diameter and height of 940 nm and 14 µm, respectively (Figure 1b). At 760 ◦C
(Figure 1c), the average diameter of the VACNTs was measured as 1.2 µm. Interestingly,
the CNTs were slightly shorter than the S700 samples, with an average height of 8.5 µm.
This might be attributed to the excessive carbon deposition at a higher temperature, which
caused early growth termination. Also, most CNTs appear as bundles due to Ostwald
ripening, which causes individual nanoparticles to coalesce and form bigger ones. As a
result, numerous individual VACNTs grow from these bigger but single catalyst sites to
form bundles [62].
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Figure 1d–f show the corresponding TEM images of the VACNTs filled with foreign
materials. Herein, it is evident that all the samples were filled with the guest material from
their roots to the tips, creating core–shell structures. It can be seen that all the Cu@VACNT
samples possess tapered structures with the number of graphitic layers decreasing from
the roots to the tips. As a result, it can be said that the VACNT walls close to the tip of
the Cu core were formed at the later stages of the synthesis process [63]. This implies
that the growth procedure follows the tip growth mechanism described in our previous
report [25], where the Cu tips serve as the catalytically active sites for the decomposition
and precipitation of carbon atoms to form VACNT shells. Figure 1f shows that, although
the individual VACNTs in the bundle are filled, the Cu nanowires are discontinuous and
characterized by segments and dots. This can be attributed to the high internal energy
from the very high growth temperature (760 ◦C). Consequently, the atomic activity of
the Cu atoms in the nanowires increases. As a result, the Cu nanowires stretch due to
pre-melting [64], decreasing the bonding strength of the Cu atoms and causing atomic
gliding dislocations and grain boundary movement to occur [65].

The EDS mappings in Figure 2(a1–c2) reveal that the interior regions of darker contrast
identified in the TEM images in Figure 1d–f are Cu nanowires. Figure 2(a1,a2) are the
EDS mappings of two carbon nanotubes synthesized at a temperature of 650 ◦C; the two
CNTs are in contact at their roots. Figure 2(a2) shows that the two carbon nanotubes are
filled with continuous Cu nanowires. Figure 2(b1,b2) are the EDS mappings of a nanotube
synthesized at a temperature of 700 ◦C; the nanotube is also filled with a long continuous Cu
nanowire. From the mapping, we can also deduce that each of the individual VACNTs has
Cu nanowires completely encapsulated in them. Figure 2(c1,c2) show the EDS mappings
of a bundle of nanotubes synthesized at a temperature of 760 ◦C. Figure 2(c2) shows Cu
nanowires’ discontinuity and Cu dots inside the carbon nanotubes.
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Figure 3a–c are the HRTEM images of the various Cu@VACNT samples (the insets
provide zoomed-out views of the corresponding Cu@VACNTs). In Figure 3a, two sets of
regular crystal lattice spacings, 0.21 and 0.34 nm [66,67], related to the separation between
two (111) planes of face-centered cubic (fcc) Cu crystal and (002) graphitic carbon planes are
observed. Figure 3b,c indicate the presence of the (110) and (111) planes of the fcc Cu crystal
with lattice spacings of 0.25 and 0.21 nm, respectively [66]. These observations demonstrate
that the Cu nanowires encapsulated inside the S650, S700, and S760 Cu@VACNTs are single
crystals with good crystallization.
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Figure 3. HRTEM images of (a) S650, (b) S700, and (c) S760 Cu@VACNTs. The insets provide
zoomed-out views of the corresponding Cu@VACNTs.

Figure 4 shows the XRD pattern of the as-synthesized Cu@VACNTs at 600 ◦C, 700 ◦C,
and 760 ◦C. Figure 4a shows diffraction peaks (2θ) for all samples at 26◦ related to the (002)
graphitic planes. Figure 4b is the close-up view of Figure 4a in the 2θ range of 40–80◦, it
shows the diffraction peaks of pure Cu crystals at 43.18◦, 50.34◦, and 74.06◦, which can
be indexed as (111), (200), and (220) planes of the fcc Cu phase. However, we observed
a broad diffraction peak at 52.30 related to the (020) crystalline phase of copper oxide
(CuO). The observed CuO impurity could be from residual Cu nanoparticles attached to the
surface of the VACNTs which are susceptible to oxidation upon exposure to atmospheric
conditions. During the VACNT growth and Cu filling processes, not all Cu particles are
fully encapsulated within the VACNTs. Some residual nanoparticles adhere to the external
surfaces of the VACNTs due to surface energy interactions [68]. These surface-bound Cu
nanoparticles, when exposed to air, readily oxidize to form CuO [69].
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From these findings, it can be clearly seen that all the growth temperatures resulted
in Cu-filled VACNTs, although their densities and structures are different. These results
are slightly different from previous findings where we reported discrete Cu nanorod-
filled CNTs at 650 ◦C [25]. Here, due to the thinness of the Cu foil, heating under the
reduction environment was able to induce surface breakup of the Cu substrates even
at a lower temperature of 650 ◦C. As a result, the disintegrated solid Cu nanoparticles
were transformed into their quasi-liquid state, facilitating the filling of the VACNTs via
quasi-liquid capillary adsorption [70,71].

3.2. Field Emission (FE) Measurements
3.2.1. Field Emission Theory

Electrons from the surfaces of metals or semiconductors can only be knocked off
when an external force supplies additional energy [72]. This extra energy can be produced
using a variety of methods, including thermal processes, energy storage in an electric field,
using the kinetic energy of charges, or light energy. Depending on the type of source,
there are four primary ways to eject electrons from the solid surfaces: (1) cold emission,
(2) heated emission, (3) field emission (FE), and (4) secondary emission. The FE method,
which involves electron emission from a conductive metal surface by applying a strong
electric field, takes advantage of sharp electrodes to enhance the local electric field [73]. In
contrast to the other three techniques, the FE process transfers energy to trapped electrons
in the material by deforming the potential barrier on its surface.

When an external electric field is applied, the potential barrier changes depending on
the strength of the field. Figure 5 illustrates the potential as a simple plane with the electron
needing enough energy to exit the material. This energy is known as the work function of
the metal and is typically expressed in electron volts (eV). The red dashed line depicts the
potential barrier before applying an external electric field. When an electric field is applied
(blue dashed line), this potential barrier is distorted, which is shown as a curved dashed
line (image potential) in the image. The stronger the applied electric field, the more the
barrier is lowered and narrowed (effective barrier) and as a result, cold-trapped electrons
near the Fermi energy (EF) level can escape into the vacuum by the ‘quantum tunneling’
effect, leading to field emission [74].
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With the advancement of micro and nanofabrication technology in recent decades,
generating high electric fields has been made possible by using sharp cathodes with few-
hundred-nanometer tip diameters. However, compared to conventional metal emitters,
CNTs possess a smaller tip curvature from which electrons are extracted. The reduced tip
diameters in CNTs translate to a larger field enhancement factor and a greatly reduced
turn-on field. In addition to the nanosized tips of the CNTs, their other properties, such
as high mechanical strength, high electronic and heat conductivities, chemical inertness,
and high aspect ratio, contribute to the excellent FE properties exhibited by CNTs. The FE
behavior strongly depends on the CNTs’ morphology, spatial distribution, diameter, degree
of alignment, the contact resistance between the CNTs and the substrate, and the nature of
the CNTs’ tips [75].

3.2.2. Field Emission Results

The emission currents from the Cu@VACNTs were measured at different electric
fields to understand the performance of the Cu@VACNT emitters. Figure 6 presents the
FE results from this study. To ensure reproducible emission characteristics, a ‘cleaning
conditioning’ procedure was conducted during the first five current density vs. applied
electric field (J vs. E) cycles [76]. The conditioning process evaporates surface absorbates
from the VACNTs, which could otherwise trigger the FE quicker than their absorbate-
free counterparts, resulting in instabilities and significant fluctuations in the measured
emission current densities. Thus, the FE results presented in Figure 6a,b were from the
subsequent five cycles after the initial cleaning process. Figure 6a,b are the semi-log and
linear scale representations of the J vs. E properties of the Cu@VACNTs, respectively. From
the curves of the J vs. E plots in Figure 6a, we estimated the turn-on (Eturn-on) and threshold
(Eth) electric fields. Eturn-on was defined as the applied electric field required to obtain
an emission current density of 10 µA/cm2 and Eth as the applied electric field required
to produce an emission current of 1 mA/cm2. The Cu@VACNTs showed low Eturn-on
and Eth values of 2.33 V/µm and 3.29 V/µm, respectively. Compared to the Eturn-on and
Eth (1.77 V/µm and 2.43 V/µm) values previously reported by our group, the slightly
larger Eturn-on and Eth reported in this work could be a result of increased screening effect,
stemming from reduced inter-tube spacing between individual VACNT emitters and lower
aspect ratio caused by the larger diameter of the VACNTs. From Figure 6b, the maximum
emission current density was found to be in the range of 20.5 to 21.0 mA/cm2 at an applied
electric field of 4.5 V/µm.

The emission current density of CNT emitters can be expressed by the following
Fowler–Nordheim (F-N) equation [77]:

J =

(
Aβ2E2

Φ

)
exp

(
−BΦ

3
2

βE

)
(1)

where J is the emission current density, A (1.56×10−6 A V−2 eV) and B (6.83 × 109 eV− 3
2 Vm−1)

are constants dependent on the work function of the material and the local electric field at
the emission tip, Φ (5 eV) is the work function of the VACNT field emitters, E is the applied
macroscopic electric field between the VACNT emitters and the anode, and β is the field
enhancement factor. Equation (1) can further be transformed as follows:

In
(

J
E2

)
= In

(
Aβ2

Φ

)
− BΦ

3
2

βE
(2)
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From Equation (2), it can be seen that In
(

J
E2

)
is linearly proportional to 1

E with a slope

of −BΦ
3
2

β Hence, the field enhancement factor, β, can be calculated from the slope of the F-N
plot shown in Figure 6c. The straight line in the F-N plot indicates the quantum mechanical
tunneling process [78]. From the calculation, we obtained a high field enhancement factor
of β = 2037.
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of the S700 sample at initial currents of 0.108 mA and 1.04 mA.

It is important to note that Equation (1) used in our analysis is a simple approximation of
the F-N equation employed by Edgcombe et al. [79] in their study. While the F-N equation is
theoretically derived for electron emission from flat surfaces at 0 K [74], it has been found to be
experimentally valid at much higher temperatures. This is because field emission is primarily
driven by the electric field, and the tunneling mechanism described by the F-N equation
continues to be valid and dominant even when thermal effects are present. The simplified
version used in our study omits the correction factor v(y), which accounts for exchange
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and correlation effects for very small tip diameters. Given the relatively large average
diameter of our Cu@VACNTs compared to their length, we estimate that the impact of
curvature corrections is minimal.

Additionally, the work function of 5 eV used for our analysis is a common value
employed in field emission studies involving CNT emitters. This value is well established
in the literature for pure CNTs and provides a standardized basis for comparison [80].
Although our CNTs are filled with Cu, which typically has a work function of 4.6 to
4.9 eV [81], the interaction between the Cu and the carbon matrix could alter the Fermi level and
affect the overall work function [82]. Thus, choosing 5 eV provides a reasonable approximation,
allowing us to maintain consistency with previous studies and ensure ease of comparison.

Stability is another essential factor to be considered in determining the applicability of
CNTs as field emission devices. To assess this, we tested the stability of two Cu@VACNTs
as shown in Figure 6d. At a low initial test current, the Cu@VACNTs showed good
stability, decreasing from 0.108 mA to only about 0.079 mA, which represents about 26%
current degradation from the initial test current after the 5 h test. At a higher initial test
current of 1.04 mA, the Cu@VACNTs showed good stability in the first 1.5 h with only 19%
degradation from the initial test current. Thereafter, the current degraded rapidly from
0.89 mA to a low of 0.264 mA, representing a total degradation of 74% from the initial
test current after the 5 h test. The significant current degradation at elevated test current
is likely due to joule heating effects exacerbated by the low inter-tube spacing within the
arrays. In a closely packed VACNT array, individual VACNTs shield each other from
the applied electric field due to electrostatic screening [83]. This leads to a reduction in
the effective emission area and the field enhancement factor (β), as only a fraction of the
VACNTs actively participate in the emission process [84]. When this happens, the active
VACNT emitters experience increased localized heating (joule heating) impeding effective
thermal dissipation. This effect becomes more pronounced at high emission currents as the
resulting overheating weakens the bond between the VACNTs and the substrate, leading to
the peeling of the VACNTs from the substrate surface [85].

Figure 7a,b show the SEM images of the VACNTs after the stability tests at initial test
currents of 0.108 mA and 1.04 mA, respectively. Figure 7b shows that more VACNTs were
peeled off from the Cu substrate during the test at 1.04 mA compared to the VACNTs tested
at the low current of 0.108 mA (Figure 7a). As discussed earlier, the observed degradation
at the higher test current is most likely a result of the increased joule heating at 1.04 mA,
exacerbating thermal stress within the VACNT array, and weakening the adhesion between
the VACNTs and the substrate, hence the peeling. Figure 7c,d are the TEM images of
samples presented in Figure 7a,b, respectively, showing the tip geometry change after the
stability test. At the tip of the VACNTs, where the electric field is concentrated, the field
emission can lead to the evaporation of carbon atoms [86]. This field-induced evaporation
occurs because the strong local electric fields at the tips can overcome the cohesive energy of
carbon atoms, causing them to be ejected from the tips. This process gradually reshapes the
tip, leading to blunting [87]. Figure 7d reveals that the tip of the VACNT sample, subjected
to a high test current of 1.04 mA, not only exhibited blunting but also suffered significant
damage to its structural integrity. This deterioration is attributed to the stronger local
electric fields and increased joule heating associated with higher test currents, accelerating
the degradation of the tips, which serve as the primary emission sites.
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4. Conclusions

In this study, we have successfully synthesized Cu-filled VACNT (Cu@VACNT) arrays
on thin Cu foils of 0.1 mm thickness at different temperatures, via the PECVD technique.
Our findings highlight the significant role of substrate thickness in promoting the Cu-
filling process at lower temperatures. This was evident from the complete filling of the
as-synthesized VACNTs with Cu at a temperature as low as 650 ◦C, which contrasts with
our previous studies on thicker Cu substrates where filling occurred only at temperatures
ranging from 700 to 750 ◦C. The detailed SEM and TEM analysis revealed a consistent
core structure with the encapsulated Cu nanowires showing good crystallinity, despite
the occurrence of some discontinuities and dislocations at a higher growth temperature
of 760 ◦C. The field emission measurements of the S700 Cu@VACNTs indicated favorable
field emission properties, with low turn-on and threshold fields. This underscores the
huge potential of Cu@VACNT emitters in field emission applications due to the synergetic
effect of the sharp tips of the VACNTs and the highly conductive Cu nanowire fillers.
The stability test revealed satisfactory performance at a lower emission current, though
challenges remain at a much higher emission current likely due to the increased joule
heating effect caused by the low inter-tube spacing within the VACNT arrays. To fully
utilize the potential of these Cu@VACNTs, further work is required to control the density
of the VACNTs and optimize the inter-tube spacing for reduced screening effects.
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