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Abstract: With the processes of industrialization and urbanization, heavy metal ion pollution has
become a thorny problem in water systems. Among the various technologies developed for the
removal of heavy metal ions, the adsorption method is widely studied by researchers and various
nanomaterials with good adsorption performances have been prepared during the past decades. In
this paper, a variety of novel nanomaterials with excellent adsorption performances for Pb(II) and
Cu(II) reported in recent years are reviewed, such as carbon-based materials, clay mineral materials,
zero-valent iron and their derivatives, MOFs, nanocomposites, etc. The novel nanomaterials with
extremely high adsorption capacity, selectivity and particular nanostructures are summarized and
introduced, along with their advantages and disadvantages. And, some future research priorities for
the treatment of wastewater are also prospected.
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1. Introduction

Water is an essential element for the birth and maintenance of life, and it has been a
top priority in human history since ancient times. However, the pollution of heavy metal
ions in water systems has been a serious problem caused by the continuous development
of industrialization and urbanization [1,2], although their presence in water is not so
obvious [3]. The wastewater from industrial production is the main source of heavy metal
ions. During the past half-century, people realized that the accumulation of PPb levels of
heavy metal ions can cause serious diseases in the human body and the amount of heavy
metal is gradually enriched in the biological body along the food chain with irrigation,
drinking water and other ways [4–6].

Nowadays, many countries have set strict standards for heavy metal ion pollution
in water bodies for ecological environment protection. According to the GB3838-2002
standards in China [7], the concentration of Pb, Cu, Zn, Cd and Cr in surface water environ-
ments should be less than 0.01, 0.01, 0.05, 0.001 and 0.01 mg/L, respectively. In the water
system, heavy metal pollution mainly comes from the following sources: (1) Exhaust gas
from industry and automobiles, wastewater from mining and industry, waste residue and
waste materials. (2) Pesticides, fertilizers and additives used in agriculture. (3) Domestic
waste, medical waste, discarded appliances, etc. [8].

Pb and Cu are widely used in the chemical industry, and their pollution degree is
particularly serious in soils (mines, urban soils and agricultural soils) [9–13] and various
water systems (wastewater, surface water, groundwater, rivers, lakes and ponds) [14–18],
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which has become a very representative problem in heavy metal pollution in China and
worldwide. With the fast development of the copper industry in China, it was reported
that the concentrations of Pb(II) and Cu(II) in river water around the typical copper mines
(Dabaoshan, Dahongshan, Jingchuan, Baiyin and Dexing) in China had increased up to 2.9
and 136 mg/L, respectively, which indicated that the wastewater from mining activities
had heavily contaminated the natural water bodies [14]. The concentrations of Pb and Cu
were found far beyond the allowable limits, which became the main ecological risk sources
in water systems. Table 1 summarizes the sources of Pb(II) and Cu(II) pollution and their
allowable concentrations from different institutions, along with their toxicity, hazards and
vulnerable populations.

Table 1. The sources, allowable concentrations, toxicity, hazards and vulnerable groups for Pb(II)
and Cu(II).

Heavy Metal Ion Source Allowable Concentration
(mg/L) Toxicity and Hazard Vulnerable Groups

Pb(II)
Electroplating, mining, paints,

batteries, pesticides, coal
burning, etc.

0.01 (ISO)
0.01 (WHO)

0.015 (USEPA)
0.01 (MEP)

Gastrointestinal injury,
anorexia, anemia,

Decreased IQ, loss of
appetite, brain damage,

malaise, etc.

People with weakened
immunity and residents in
areas with serious heavy

metal pollution

Cu(II)

Paints, electroplating,
metallurgical and mining

processes, pesticides, alloy
manufacturing, etc.

0.05 (ISO)
2.00 (WHO)

1.30 (USEPA)
1.00 (MEP)

Reduced cell viability,
kidney damage, anemia,
gastrointestinal distress,

coma, death

Workers and residents of
the industrial zone

ISO: International Organization for Standardization, WHO: World Health Organization, USEPA: United States
Environmental Protection Agency, MEP: Ministry of Ecology and Environment of the People’s Republic of China.

To date, the pollution of Pb(II) and Cu(II) ions in water systems is still serious due
to the high cost of the nanomaterials used in various types of water treatment equipment.
Thus, in order to control heavy metal pollution in a wider range, adsorption nanomaterials
that are low-cost and easy to operate have been one of the most important methods for
wastewater treatment.

Over the past few years, the efficient removal of Pb(II) and Cu(II) ions from wastewa-
ters has attracted much attention and various novel nanomaterials with double the adsorp-
tion ability for both ions have been reported [19–28]; however, a comprehensive review of
the relevant works is still lacking. Therefore, this review focuses on the recent progress on
novel nanomaterials for the adsorption of Pb(II) and Cu(II) ions, introducing the character-
istics of wastewater, the structure and performance of the most used adsorption materials,
as well as their adsorption mechanisms and parameters.

2. Characteristics and Toxicological Properties of Wastewater Containing Pb(II)
and Cu(II)
2.1. The Toxicological Effects of Pb(II) and Cu(II)

Lead (Pb) is a highly toxic heavy metal, and it has become a significant health risk for
humans and animals. Pb(II) may exist in the forms of Pb2+ and PbOH+ in water at acid and
neutral conditions, Pb2OH3+ and Pb(OH)4

2- at higher pH conditions, or organic complexes
with various organic compounds. Pb(II) enters the human body and circulates mainly in
the form of a glycerophosphate protein complex and lead ion. Most Pb(II) is stored in the
bones and no symptoms of poisoning occur at this time. Symptoms of Pb(II) poisoning
occur when the concentration of Pb(II) is too high in the internal organs, soft tissues and
blood. The poisoning mechanism of Pb(II) in the human body is to inhibit the enzyme
containing sulfhydryl in cells, which harms the biochemical and physiological functions of
human body, which could cause problems in early childhood neurodevelopment [29,30],
behavioral disorders [31], a drop in IQ, etc. [32]. It can cause devastating damage not only
to brain development, but also to kidney function [33,34], histopathological changes and
oxidative damage [35,36].
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Copper (Cu) is also toxic when its level is greater than 0.01 mg/L. The main form of
Cu in water is the hydrated ion Cu2+ or [Cu(H2O)6]2+, and it is also able to form [CuCl4]2−

according to the difference in anions. Cu(II) is widely used in agriculture as a pesticide
and fungicide, resulting in its ability to easily pollute underground rivers and irrigation
lakes, but also its ability to easily harm the ecological environment due to the food chain
and enrichment [37]. Excessive copper compounds can lead to soil flora disturbance [38],
weight loss and impairment of the reproductive activity of earthworms [39], poor growth
of crops and the contamination of grains. In the human body, when the intake of copper
exceeds the processing capacity of the human liver, the liver will release copper directly
into the blood, where it bonds to the sulfhydryl group of the red blood cell membrane and
inhibits G6PD activity, resulting in damage to hemoglobin and red blood cell membrane.
In addition, copper can oxidize the fat of lysosomes, resulting in the rupture of lysosome
membranes and the release of a large amount of hydrolase, which would cause liver tissue
necrosis. Cu2+ ions can inhibit cell viability and alter the mRNA expression of cell cycle-
related genes and the production of antioxidant oxidation [40], resulting in kidney damage,
gastrointestinal distress [41], anemia, coma, and eventually death [42].

2.2. Characteristics of Wastewater Containing Pb(II) and Cu(II)

Various wastewaters containing Pb(II) and Cu(II) ions are discharged from polluted
mining areas, industrial wastewater and urban and agricultural areas. According to the
characteristics of the environment, the contents and forms of Pb(II) and Cu(II) in sewage
varies in different areas, among which the industrial effluent and domestic sewage dis-
charge as the major sources are mostly caused by insufficient and limited water purification
treatment [18]. Ogamba et al. [15] reported that the lead and copper concentrations in the
surface water of Taylor creek, Bayelsa State, Nigeria, were 0.00–0.48 and 0.05–0.61 mg/L,
respectively. Paul et al. [16] studied the distribution of heavy metal ions within different
regions of the Ganges River and found that their concentrations in water from some regions
were far above the acceptable levels. In Rishikesh-Allahabad, Pb(II) and Cu(II) concentra-
tions reached 0–36,000 and 2400–26,900 µg/L, respectively. In the Yamuna River, Pb(II)
and Cu(II) concentrations reached 12.09–23.31 and 12.01–19.36 mg/L, respectively. Similar
pollution conditions were also found by Kumar et al. in the Harike wetland and the Sutlej
River [17]. Drozdova [43] investigated the distribution and concentration of heavy metal
ions in wastewater from different functional areas in the city of Ostrava, Czech Republic.
The results showed that the highest concentrations of Pb(II) and Cu(II) were 26.0 ± 9.3 and
62.3 ± 18.6 µg/L, respectively, indicating that pollution in domestic wastewater in densely
populated areas of cities is sometimes more important than industrial wastewater.

Pb(II) and Cu(II) can also contaminate groundwater through rivers, lakes and sewers.
Groundwater is often used for irrigation, which can lead to direct contamination of soil
and crops [44]. Jaboobi [45] investigated heavy metal contamination in shallow wells using
wastewater, soil and vegetables in Morocco. The results showed that the contents of Pb(II)
and Cu(II) in shallow wells were 0.014 and 0.062 mg/L, respectively, and the concentrations
of heavy metals in canal wastewater were significantly higher than the recommended
values of the FAO and WHO, with average values of 0.043 and 0.093 mg/L, respectively. It
is worth noting that the concentrations of Pb(II) and Cu(II) in vegetable test samples were
13.78 and 16.41 mg/kg, exceeding the allowable content, which indicated that wastewater
used for irrigation would lead to excessive heavy metal content in crops and indirectly
harm the human body.

3. Methods for the Treatment of Heavy Metal Pollution

In view of the current industrial production process, many methods are applied to
reduce the concentration of heavy metal ions in sewage, such as the electrochemical method,
the membrane filtration method, the chemical precipitation method, the ion exchange
method, the adsorption method, etc. At present, each method has its advantages and
disadvantages. In practical applications, in the face of complex and changeable pollution
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and water conditions, it is usually necessary to use a variety of methods to enhance water
pollution treatment capacity.

The electrochemical method is an environmentally friendly technology that converts
heavy metal ions into precipitation and gas after a redox reaction through the action of an
electric current, which removes multiple pollutants at the same time and does not introduce
secondary pollution [46]. However, the high energy consumption, the frequent replacement
of the electrode material and the drawback of complex pollutants limits the application of
the electrochemical method.

Membrane filtration technology has the advantages of high removal efficiency, simple
operation, low energy consumption and environmental friendliness [47]. However, the
traditional polymer separation membranes are easily contaminated and have limited
stability, which hinders the wide application of membrane filtration.

The chemical precipitation method is a traditional method with the advantages of
simple operational, high efficiency and low cost [48]. The precipitating agents such as
hydroxide, sulfide and barium salt, can convert soluble heavy metal ions into insoluble
sediments in water. However, secondary pollution of the precipitant is the main problem.

The ion exchange method refers to the exchange of ions in the water body with ions
on a certain ion exchanger to achieve the purpose of removing heavy metal ions in the
solution [49]. Because the ion exchange method involves the diffusion process, most of the
ion exchange process is reversible and has strong recyclability. However, the speed of the
ion exchange method in removing heavy metal ions is slow, and it is difficult to use to treat
sewage in large quantities.

The adsorption method is easily operational and low-cost, with a low residue of heavy
metal ions [32]. According to the nature of the interaction between the adsorbent surface
and the adsorbate, adsorption can be divided into physical adsorption and chemical adsorp-
tion, the cause of which can be divided into dispersion force, dipole interaction, quadrupole
interaction, electrostatic force, charge transfer interaction, surface modification and pore
adsorption. Physical adsorption is mainly generated by intermolecular attraction, which is
weak and has low selectivity. Electrostatic attraction is an important mechanism in physical
adsorption. Since heavy metals are mostly in the form of positively charged ions in water
bodies, the surface electrical properties of adsorbed materials may be conducive to the accu-
mulation and adsorption of heavy metal ions. Chemical adsorption involves the formation
of chemical bonds between the adsorbent and adsorbate, which are stronger and more
selective. The complexation reaction is the most important component in the chemisorption
mechanism of heavy metal ions. It refers to the way by which the organic groups on the
surface of the adsorption material are bound to heavy metal ions to form complexes. These
groups include amino and sulfhydryl groups, as well as hydroxyl, carboxyl, carbonyl and
other oxygen-containing groups. Organic compounds containing the above groups are
often used for the surface modification of adsorption materials. A good adsorbent for
heavy metal adsorption usually has the following characteristics: large specific surface area
and pore volume, suitable pore structure, high selectivity and would not react with the
medium and other substances in the application environment to cause secondary pollution.
However, it might also be influenced by parameters such as the number of active sites,
temperature, pH, the number of adsorbents and adsorbate/competing ions, contact time
and the detailed mixing methods.

4. Research Progress on Pb(II) and Cu(II) Adsorption

During the past decades, various nanomaterials have been reported for the adsorption
of heavy metals, such as carbonaceous materials [50,51], MOFs [52], clay [53], nano zero-
valent iron (nZVI) [54] and other nanocomposite materials. Carbonaceous adsorbents
include activated carbon (including low-cost biomass-based activated carbon), carbon
nanotubes, graphene, graphene oxides (GOs), modified GOs, GO-based nanocomposite,
charcoal, plant ash, furnace ash, etc. Clay adsorbents include montmorillonite, kaolinite,
zeolite, diatomite, sepiolite, halloysite and various modified clay materials in combination
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with organic components of resin sorbents, chitosan sorbents, etc. Various types of nZVI
and their derivatives, with excellent recyclable abilities, have also been selected.

Tables 2 and 3 list several typical adsorption materials and some superior nanomateri-
als reported recently for the efficient adsorption of Pb(II) and Cu(II) in water. The surface
area (SSA), pH, adsorption capacity, selectivity, cost, regeneration ability and recyclable
ability of the nanomaterials are summarized. It is found that only few nanomaterials
exhibit good selectivity and regeneration ability, and the synthesis cost for most of them
is high. The addition of magnetic components, such as Fe or Fe3O4, makes some of the
nanomaterials recyclable. And the microstructures of some novel adsorption materials
with outstanding adsorption capacity for Pb(II) and Cu(II) are given in Figures 1 and 2,
respectively.

Table 2. Adsorption performances of different types of adsorption materials for Pb(II).

Adsorbent
Type Sample SSA

(m2/g) pH
Adsorption

Capacity
(mg/g)

Selectivity Cost Regeneration Recyclable Ref.

Activated
carbon

Poultry litter-based
activated carbon 403 5.0 195.804 / low / / [55]

Eucalyptus bark-based
activated carbon 1239.38 5.0 109.71 / low / / [56]

Magnetized activated
carbons 699.9 6 253.2 low low / Yes [57]

Carbon foam 458.59 7 491 / low / / [58]

Amine-functionalized
nano-porous carbon 157 6–8 161.41 low low low / [59]

Magnetic pomelo peel
biochar / 6 205.39 high low / Yes [60]

CNTs

CNTs / 5 102.04 / high / / [61]

Multiwall CNTs / 3 8118 / high / / [62]

CNT–steel slag composite 49.85 6.5 427.26 / high / / [63]

Graphene Graphene nanosheets 1000 4 22.42 / high / / [64]

GO

GO / 5 1119 / high / / [65]

GO / / 120 / high / / [66]

FGO 120 7 1850 / high / / [67]

Modified GO

EDTA-GO 623 6.8 479 / high / / [68]

Polyethyleneimine-
grafted GO / 6 64.94 / high / / [69]

Dipyridylamine-GO / 4.94 369.749 / high high / [70]

rGO/Poly(Acrylamide) / 6 1000 / high / / [71]

GO-based
nanocomposite

GO-MnFe2O4 196 5 673 / high / Yes [72]

3D graphene/δ-MnO2 / 6 643.62 / high high / [73]

Fe3O4/SiO2-GO / 7 385.1 / high high Yes [74]

Clay

Montmorillonite / 5.7 31.1 / low / / [75]

Kaolinite 18.4 5 31.75 / low / / [76]

Natural kaolin 7.98 5 165.117 / low / / [77]

Kaolinite / 5.5 2.37 / low / / [78]

Kaolinite 3.7 6.5 4.2 / low / / [79]

Sodic montmorillonite 93 5 68.5 / low / / [80]

Zeolite 16.3 6 106.61 / low / / [81]
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Table 2. Cont.

Adsorbent
Type Sample SSA

(m2/g) pH
Adsorption

Capacity
(mg/g)

Selectivity Cost Regeneration Recyclable Ref.

Clay
Zeolite 473.54 6 15.96 / low high / [82]

L-lysine-modified
montmorillonite / 5.5 89.72 / low / / [83]

Modified clay
Modified kaolinite 10.2 6 20 / low / / [79]

Amino-modified
attapulgite / 6 50.66 / low / / [84]

Clay-based
nanocomposite

Fe-Mg LDH@bentonite
Surface 154.83 7 1215.81 high low / / [85]

Polyamide-amine–
magnetic halloysite

nanotubes
/ 5.6 194.4 / high high / [86]

Magnetic halloysite
nanotubes/MnO2

/ 6 59.9 / high high Yes [50]

Halloysite/Fe3O4/polyethylene
oxide/chitosan 38.23 5 160 / high high Yes [87]

Titanium
hydroxyl-grafted silica

nanosheets
259 5.8–6.0 184 high high high / [88]

SiO2/kaolinite/Fe2O3 / 6 166.67 / low / / [89]

Tourmaline–
montmorillonite

composite
/ 6 303.21 high low / / [90]

Aminopropyltriethoxysilane-
modified magnetic

attapulgite@chitosan
/ 6 625.34 / low high Yes [91]

Nano
zero-valent iron

g-C3N4-nZVI / 5.5 400 / high high Yes [54]

nZVI / 7 119 / high / Yes [92]

nZVI / 6 199 / high / Yes [93]

undried nZVI / 6 807.23 / high / Yes [94]

ZVI
nanocomposite

Phosphoric titanium
dioxide-3nZVI / 6 303.03 / high / Yes [95]

Zeolite-supported nZVI / 6.5 85.37 / high / Yes [96]

Other
nanocomposite

Fe3O4-FeMoS4 / 5 190.75 / high high Yes [97]

Dithiocarbamate
chitosan@sewage

sludge-derived biochar
53.16 5.5 228.69 / high high / [98]

Fe3O4@3-
aminopropyltriethoxysilane
@ acrylic acid–co-crotonic

acid

/ 6 78.8 / high high Yes [99]

Mg/Fe LDH with
Fe3O4-carbon spheres 4.38 7 696.19 / high high Yes [100]

MoS2 nanosheets. / 6 740 high high high / [101]

Chitosan–cellulose-Fe(III) / 4 99.86 / high high Yes [8]

PVA/chitosan nanofibers
membranes / 6 266.12 high high / Yes [102]

2-aminoterephtalic
acid-modified

Fe3O4@triamine-
triethoxysilane

114 5.7 205.2 / high high Yes [103]

Titanate nanotubes 272.31 5 546.48 high high high / [104]
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Table 2. Cont.

Adsorbent
Type Sample SSA

(m2/g) pH
Adsorption

Capacity
(mg/g)

Selectivity Cost Regeneration Recyclable Ref.

MOFs

Zr-MOF 42.9 4 273.2 high high high / [105]

Amino-citric
anhydride-MIL-53 / 5.8 390 / high / / [106]

MOF-808-EDTA 1173 313 / high / / [52]

ZIF-67 1289 6 1348.42 / high / / [107]

MOF-545 2192 7 73 high high high / [108]

Magnetic cellulose
nanocrystal/Zn-BTC 65.10 5.45 558.66 high high high Yes [109]

Cu-MOFs/Fe3O4 35.4 / 219.00 / high high Yes [110]

Melamine-MOFs 371 5 122 / high high / [111]

Thiourea-modified
UiO-66-NH2

470 / 232 / high / / [112]

ZIF-60 / 4 1905 / high / / [32]

Table 3. Adsorption performances of different types of adsorption materials for Cu(II).

Adsorbent
Type Sample SSA

(m2/g) pH
Adsorption

Capacity
(mg/g)

Selectivity Cost Regeneration Recyclable Ref.

Activated
carbon

Palm shell activated
carbon 6.3 30.72 / low / / [113]

Chestnut shell activated
carbon 1319 5 100 / low / / [114]

Grapeseed activated
carbon 916 5 48.78 / low / / [114]

Eucalyptus bark-based
activated carbon 1239.38 5.0 27 / low / / [56]

Carbon foam 458.59 7 247 / low / / [58]

Porous carbon 157 7–8 46.88 / low / / [59]

Magnetic pomelo peel
biochar / 6 81.91 high low / Yes [60]

Activated carbon-Na 786 5 17.80 / low / / [115]

Banana straw biochar 13.30 6.5 66.23 / low / / [116]

Hydroxyapatite-sludge-
based biochar / 6 89.98 / low / / [117]

CNTs

As-produced CNTs 82.2 6 8.25 / / / / [118]

Multiwalled carbon
nanotubes / 5 24.49 / / / / [119]

NaOCl-modified CNTs 94.9 6 47.39 / / / / [118]

CNTs–steel slag
composite 49.85 6.5 132.79 / / / / [63]

GO

GO / 5 46.6 / / / / [120]

GO / 3–7 294 / / / / [65]

GO / 5.3 117.5 / / / / [121]

GO-based
nanocomposite 3D graphene/δ-MnO2 / 6 228.46 / / high / [73]
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Table 3. Cont.

Adsorbent
Type Sample SSA

(m2/g) pH
Adsorption

Capacity
(mg/g)

Selectivity Cost Regeneration Recyclable Ref.

Modified GO

Amino-modified
magnetic GO with
polyamidoamine

dendrimer

/ 7.2 353.59 / / / / [122]

Magnetic chitosan–GO 132.9 8 217.4 / / / Yes [123]

Dipyridylamine-GO / 5 358.824 / / / / [70]

PVP-rGO / 3.5 1689 / / / / [124]

Peat Peat 5 14.3 / low / / [125]

Fly ash Mesoporous
aluminosilicate 704 4.4 221 / low / / [126]

Clay

kaolinite / 6 10.787 / low / / [127]

kaolinite 12.57 5 44.66 / low / / [128]

Modified kaolinite 32.91 6.5–7.0 1.16 / low / / [129]

Natural bentonite / 6 32.26 low high / [130]

Na-montmorillonite / 5.6 33.3 / low high / [131]

Modified Clay

Bentonite-NH2 27.1 5–6 45.8 / low high / [132]

Bentonite-COOH 25.5 5–6 53.1 / low high / [132]

Polyethylene
oxide–chitosan–magnetic

halloysite nanotubes
38.23 7 150 / low high Yes [87]

Acid-activated
montmorillonite-illite 251 4.15 26.09 / low / / [133]

Clay-based
nanocomposite

SiO2/kaolinite/Fe2O3 / 6 153.85 / low / / [89]

TiO2–acid-activated
kaolinite 32.98 7 0.169 / low / / [134]

Other
Nanocompos-

ite

MCs@Mg/Fe-LDHs 4.38 6.5 341.12 high / high Yes [100]

Goethite 71.49 5.2 149.25 / low / Yes [135]

Hematite 24.82 5.2 84.46 / low / Yes [135]

Fe3O4-FeMoS4 / 5 110 / / high Yes [97]

Nanohydrated zirconium
oxide in polymer
exchangers D201

/ 7 130 high / high [136]

Magnetic ferrite
nanoparticles 26.78 8 124.80 / low / Yes [137]

Zwitterion–chitosan bed / 6 123.50 / low high / [138]

Hollow
Fe3O4@polydopamine 39.96 8 86.35 / / high Yes [139]

Melamine-based
dendrimer

amines–SBA-15
293 5 126.2 / / / / [140]

Mesoporous silica / 5.2 182.39 / / / Yes [141]

Titanate nanotubes 272.31 6 122.88 high low high / [104]

Biomaterial

Tetrazole-bonded bagasse / 7 132.5 high low high / [142]

Caulerpa lentillifera 0.044 6 5.61 / low / / [143]

Hydroclathrus clathratus / 6.2 43.4 / low / / [144]

Rosa petal waste biomass / 5 52.84 / low / / [145]

MOFs Fe3O4@ZIF-8 724.7 6 301.33 high / high Yes [146]
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Figure 1. SEM images of (a) CNTs synthesized for 45 min (reproduced with permission from
Ref. [63] from MDPI). (b) Three-dimensional graphene–MnO2 (reproduced with permission from
Ref. [73] from Elsevier), (c) FeMg-LDH@ bentonite (reproduced with permission from Ref. [85] from
Elsevier), (d) nZVI (reproduced with permission from Ref. [94] from Elsevier), (e) Mg/Fe LDH with
Fe3O4–carbon spheres (reproduced with permission from Ref. [100] from Elsevier) and (f) ZIF-67
(reproduced with permission from Ref. [107] from Elsevier).

Selectivity is an important factor to evaluate whether an adsorbent will function well
in real water systems, which is tested by adding high concentrations of other common
metal ions in the solution. Usually, an adsorbent with physical bonds to the metal ions
lacks selectivity while an adsorbent with chemical bonds to the metal ions possesses certain
selectivity via orbital couplings. Normally, bonding to heavy metal ions via specific groups
and particles is the main source for the good selectivity of adsorbent materials, such as
-OH [85,104], -TiOH [88], -S [101], Fe3O4 [146], -COOH [100], etc. In addition, for the ion
exchange process, the ionic electricity price, radius, hydration energy and other factors
will also affect the selectivity ability of the nanomaterials [85]. Figure 3 lists some novel
adsorption materials that have been reported with good selectivity for Pb(II) and Cu(II).
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Figure 2. SEM images of (a) chestnut shell activated carbon (reproduced with permission from
Ref. [114] from Elsevier), (b) CNTs (reproduced with permission from Ref. [63] from MDPI), (c) PVP-
rGO (reproduced with permission from Ref. [124] from Springer), (d) TiO2–acid-activated kaolinite
(reproduced with permission from Ref. [134] from Springer), (e) Mg/Fe LDH with Fe3O4–carbon
spheres (reproduced with permission from Ref. [100] from Elsevier) and (f) Fe3O4@ZIF-8 (reproduced
with permission from Ref. [146] from Elsevier).
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Figure 3. (a) FeMg-LDH@bentonite (reproduced with permission from Ref. [85] from Elsevier),
(b) titanium hydroxyl-grafted silica nanosheets (reproduced with permission from Ref. [88] from
Wiley), (c) titanate nanotubes (reproduced with permission from Ref. [104] from Elsevier), (d) MoS2

nanosheets (reproduced with permission from Ref. [101] from ACS), (e) Fe3O4@ZIF-8 (reproduced
with permission from Ref. [146] from Elsevier) and (f) Mg/Fe LDH with Fe3O4–carbon spheres
(reproduced with permission from Ref. [100] from Elsevier).

4.1. The Influence of Various Parameters on Adsorption Properties

The adsorption properties of adsorbent materials for Pb(II) and Cu(II) are usually
affected by pH, temperature, initial concentration, environmental organic matter content
and other factors [147].

Most adsorbent materials exhibit very low adsorption capacities at low pH due to
the ion exchange of H+ with the adsorbed ions. Generally, the adsorption performance
increases rapidly with the increase in pH at acid conditions (pH < 5), and the increase
rate slows down and converges at pH = 5–7, due to the weakened competitiveness of
H+ and the precipitation of heavy metal ions at higher pH [68,83,95,103,106,116]. For
example, the adsorption capacity of EDTA-grafted graphene oxides (EDTA-GO) increased
slowly at pH = 2–4, rapidly at pH = 4–6, and reached its maximum at pH = 6–8 for the
adsorption of Pb(II) [68]. Similarly, the adsorption capacity of zero-valent iron–phosphate–
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titanium dioxide (PTO-nZVI) for Pb(II) was negligible at pH = 2, but it increased rapidly
at pH = 2–4, and reached its maximum at pH = 4–7 [95]. Although, for the adsorption in
alkali conditions (pH > 7), the adsorption capacities become extremely large but this is not
so meaningful, since Pb mostly precipitates to form Pb(OH)+ or Pb(OH)2 at pH > 8 and Cu
mostly precipitates to form Cu(OH)+ or Cu(OH)2 at pH > 9.

The adsorption of Pb(II) and Cu(II) for most of the adsorption materials is an en-
dothermic reaction due to the formation of physical and chemical bonds, and normally the
adsorption performance will increase with the temperature [83,114]. In the range of low
temperature, temperature has little effect on the adsorption capacity, which is a secondary
factor affecting the adsorption capacity. But when the temperature is too high, it may
destroy the structure of the adsorption material, resulting in the reduction in adsorption
capacity. Zhu et al. [83] investigated the adsorption capacity of the clay composite L-Mt for
Pb(II) at 25–55 ◦C and found that it increased slowly with the increase in temperature and
the effect was not obvious. Didem [114] investigated the adsorption capacity of activated
carbon for Cu(II) at 25 and 45 ◦C. The maximum adsorption capacity was 98.04 mg/g at
25 ◦C. When the temperature increased to 45 ◦C, it rose to 100.00 mg/g.

The initial concentration of metal ions can also affect the adsorption capacity. Generally
speaking, as the concentration of ions in the solution increases, the adsorption capacity
will rise and then stabilize, because the high concentration of ions will provide a greater
adsorption driving force and dimer structures might be formed, and then the maximum
adsorption capacity will be reached after the adsorption site is fully saturated [82,85]. For
example, Ibrahim et al. [82] studied the effect of heavy metal ions at different concentrations
of 10–80 mg/L on the adsorption efficiency of zeolite. When the initial concentration was
10–50 mg/L, the adsorption capacity increased significantly. At a concentration above
50 mg/L, it remained stable with little change. Guan et al. [85] studied the adsorption
capacity of FeMg-LDH@bentonite at a Pb(II) concentration between 75 and 375 mg/L. The
outcome is the same, in that the adsorption capacity in the range of low concentrations
(75–250 mg/L) increases continuously, and the adsorption capacity in the range of high
concentrations (250–375 mg/L) maintains a balance.

In addition, the content of organic matter in the water body usually also affects the
adsorption performance. Some organic compounds, such as carboxylic acid and humic
acid, can form complexes with Pb(II) and Cu(II), change the existence form of Pb(II) and
Cu(II), and seriously reduce the binding efficiency of their adsorption sites on the adsorption
materials, thus reducing the adsorption performance [103]. Abdullah [103] studied the effect
of humic acid concentration on Fe3O4@TATS@ATA adsorption of Pb(II), and found that
when humic acid concentration increased, it would bind to Pb and inhibit the adsorption of
Pb(II), but when humic acid and adsorption material were pre-balanced, it would promote
the adsorption of Pb(II) due to partial combination of humic acid and adsorption material.

4.2. Regeneration

Regeneration is an important part of evaluating the comprehensive properties of
adsorbent materials. Among all adsorption mechanisms, physical adsorption, electrostatic
attraction, surface coupling and ion exchange do not destroy the integrity of the adsorption
material during the adsorption process, and the process itself is reversible after the des-
orption of Pb(II) and Cu(II). Acid treatment with various acids, such as HCl [73,132,142],
HNO3 [87,139] and citric acid [100] have been used for the desorption of metal ions from
the adsorption materials. Since the ion exchange rate of H+ with the adsorbed ions in-
creases with the concentration of H+, the commonly used concentrations are in the range of
0.1–1 mol/L. In acid treatment, alkali metal or alkaline earth metal salt corresponding to
acid can also be added to remove the Pb(II) and Cu(II) at adsorption sites [136]. In addition
to acid treatment, chelating and alkali treatment have also been used to desorb Pb(II) and
Cu(II) from the adsorption material, by the formation of precipitates and complexes via
desorption agents such as EDTA, NaOH [146] and KOH [73]. After the above regeneration
and purification, the adsorbed material can be reused. In contrast, for the adsorption mate-
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rials based on precipitation, reduction and other reactive mechanisms, their nanostructures
would be damaged during the adsorption process and hard to regenerate. Furthermore,
the regeneration ability of the nanomaterials with large numbers of micropore structures
(sizes smaller than 2 nm) compared to other nanomaterials with more macropore structures
and better connectivity is normally much lower, since the diffusion efficiency is lower
and the microporous structures are more easily blocked by chelating complexes and large
organic molecules.

4.3. Carbon-Based Nanomaterials

Carbon-based nanomaterials, with large specific surface areas, rich pore structures
and abundant active sites, such as activated carbon, CNTs, graphene and porous carbon,
are widely used for environmental protection.

Activated carbon has been widely used in industry for the adsorption of heavy metals.
Although several methods have been proposed to prepare activated carbon materials with
excellent adsorption properties, their production cost still remains high, and the higher
the quality of activated carbon, the greater its cost. There are various sources of activated
carbon, and the largest proportion of activated carbon is made from biomass. During the
past decades, the preparation of biomass-derived activated carbon with a high specific
surface area, high stability, and large adsorption capacity using agricultural waste as raw
materials have been extensively studied, since it is abundant, low-cost and easy to produce.

The general preparation process for activated carbon is calcination of the organic
raw materials under the certain conditions to reduce the non-carbon components, and
then activation by physical (using steam or CO2) or chemical methods (KOH, K2CO3,
H2SO4, etc.) to produce a substance with multi-microporous structures and abundant
active groups (Figure 4). The adsorption mechanism of activated carbon is mainly physical
adsorption via electrostatic forces, and the adsorption capacity of activated carbon for Pb(II)
is usually below 100–200 mg/g, and for Cu(II) is usually around 100 mg/g. Didem [114]
used chestnut shell and grape seed as raw materials to prepare activated carbon, which
exhibited a huge specific surface area of 1319 m2/g, and maximum adsorption capacity of
100 mg/g for Cu(II) at pH = 5.
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Figure 4. SEM images of (a) eucalyptus bark activated carbon (reproduced with permission from
Ref. [56] from Elsevier), (b) activated carbon (reproduced with permission from Ref. [148] from
Nature), (c) carbon foam (reproduced with permission from Ref. [58] from Elsevier) and (d) magnetic
activated carbon (reproduced with permission from Ref. [149] from MDPI).
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Furthermore, the adsorption capacity of activated carbon can be significantly im-
proved by grafting organic groups, polymers and loaded nanoparticles on activated carbon.
The composite of various materials provides more types of adsorption mechanisms for
activated carbon. For example, oxygen-containing or amine-containing organic groups
can be complexed, and nanoparticles can be reduced and coprecipitated with Pb(II) and
Cu(II) [150]. Figure 5 shows the adsorption mechanism of some activated carbon compos-
ites. Zhang et al. [57] prepared magnetized activated carbon by activating rape grass meal,
conducting pyrolysis at different temperatures, and then magnetizing activated carbon by
the hydrothermal method. The maximum adsorption capacity of MAC-300 for Pb(II) was
253.2 mg/g. The adsorption isotherm and kinetics were consistent with the Freundlich
model and the pseudo-second-order kinetic model, respectively, which indicated that the
adsorption behavior of the adsorbent depended mainly on the non-uniform active points
on the surface of the material. The adsorption mechanism includes surface electrostatic
attraction, surface complexation and co-precipitation. Kettum [148] prepared functional
carbon materials (C-SO3H, C-COOH or C-NH2) from coconut shell waste. The composite
foam has a porous structure and good carbon dispersion. The adsorption properties of
copper ions were also studied. It was found that the maximum adsorption capacity of Cu(II)
by C-SO3H, C-COOH and C-NH2 was 56.5 mg/g, 55.7 mg/g and 41.9 mg/g, respectively.
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Recently, Chen et al. synthesized a novel low-cost tourmaline–montmorillonite
nanocomposite (TMM) by the vacuum sintering method, which exhibited excellent adsorp-
tion capacity of Pb(II) (303.21 mg/g) in a water system [90]. The absorption mechanisms
of Pb(II) on TMMs were found to be mainly multi-layer adsorption, with strong chemical
bonding to inner sphere complexes on the surface of the TMMs, which were attributed
to the polarization of tourmaline, the adsorption of silanol hybridized groups and the
electrostatic forces. The TMMs were considered a promising low-cost nanomaterial with
an efficient adsorption ability to remove Pb(II) from water systems.

Carbon nanotubes (CNTs) are one-dimensional materials with special pore structures
and a high density of π electrons, which make their adsorption potential significantly
higher than other materials with the same size. Alizadeh [62] prepared multi-walled
carbon nanotube–polyrhodanine nanocomposites using a one-step chemical oxidation
polymerization method. According to the Langmuir isotherm, it is found that the maximum
single-layer adsorption capacity for Pb(II) of the material is 8118 mg/g. The adsorption
rate of Pb(II) increased with the increase in solution temperature and followed the quasi-
second-order kinetics, indicating that the adsorption mechanism may be a chemisorption
process. Although the adsorption effect of carbon nanotubes is excellent, the price of carbon
nanotubes is expensive, and there are many difficulties that have not been overcome in
practical applications.

Graphene is a well-known two-dimensional material with a unique physical structure
and large specific surface area (2630 m2/g). However, it is more common to use graphene
oxide (GO), since traditional graphene has some drawbacks of site exposure and low
adsorption ability [152]. Graphene oxide is one of the graphene derivatives, which contains
plenty of highly active functional groups (Figure 6), such as hydroxyl (-OH), carboxylic
(-COOH), epoxy (-COC-) and other O-containing functional groups [153]. The mechanism
of the adsorption of heavy metal on graphene oxide is relatively complex, including physical
adsorption, chemical adsorption and other aspects of influence, which are related to the
presence of groups on its surface. Oxygen atoms on the functional groups of graphene oxide
can share electrons with metal ions to form metal complexes. These properties increase the
heavy metal ion adsorption capacity of graphene oxide to 40–300 mg/g. Raghubanshi [66]
used “Hummers” and “improved” methods to prepare GO. Its adsorption capacity for
Pb(II) is 120 mg/g. The maximum adsorption capacity of GO for Cu(II) prepared by
Yang [120], Sitko [65] and Wu [121] was 46.6, 294 and 117.5 mg/g, respectively.

The adsorption mechanism for the adsorption of Pb(II) and Cu(II) by GO is a combina-
tion of physical adsorption, chemical adsorption and electrostatic attraction. The adsorption
performance of GO is mainly determined by the properties and concentration of its surface
functional groups, and increases with the increase in the surface density of surface groups
such as carboxylic acid, the hydroxyl group and the carbonyl group [68].

In order to further improve the adsorption capacity of GO, researchers have grafted
various functional groups on GO, such as amino [71], polymers [154] and multi-dentate
chelating ligands [70], to achieve better adsorption effects than oxy-containing groups.
Outstandingly, the adsorption capacity of some types of GO grafted with functional groups
can reach thousands of mg/g. Yang et al. [71] prepared a polyacrylamide (PAM) polymer
brush (RGO/PAM) on reduced graphene oxide sheets by in situ radical polymerization.
The adsorption capacity of Pb(II) by RGO/PAM is up to 1000 mg/g. Mohammed et al. [69]
synthesized polyvinylimide grafted graphene oxide (PEI/GO). The maximum adsorption
capacity (qm) is 64.94 mg/g. Chemisorption is the main method at low concentrations,
and physical adsorption is the main method at high concentrations. The adsorption rate is
controlled by the boundary layer diffusion step. In addition, isotherm studies confirmed
the strong interaction between Pb2+ ions and PEI/GO. Clemonne et al. [68] successfully
attached chelating groups to the graphene oxide (GO) surface through a silanization
reaction between N-(trimethoxy-silyl) ethylenediamine triacetic acid (EDTA-silane) and the
hydroxyl group on the GO surface. Due to the chelating ability of EDTA, the adsorption
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capacity of graphene oxide was improved. When the pH was 6.8, the adsorption capacity
of Pb(II) was 479 ± 46 mg/g, and the adsorption process was completed within 20 min.
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Figure 6. SEM images of (a) 3D graphene aerogels (reproduced with permission from Ref. [73] from
Elsevier), (b) magnetic chitosan–GO (reproduced with permission from Ref. [123] from Elsevier),
(c) RGO (reproduced with permission from Ref. [71] from ACS) and (d) Fe3O4/SiO2-GO (reproduced
with permission from Ref. [74] from Elsevier).

Loading functional nanoparticles on GO provides additional functionality, improving
reusability, separability and selectivity in the face of more ions (Figure 7). Liu et al. [73] fab-
ricated 3D graphene/δ-MnO2 by uniformly depositing a large number of MnO2 nanosheets
onto a graphene framework. The material has a fast adsorption kinetic rate and excel-
lent adsorption capacity for heavy metal ions. The saturated adsorption capacities of
3D graphene–c aerogel for Pb2+, Cd2+ and Cu2+ was up to 643.62 mg/g, 250.31 mg/g
and 228.46 mg/g, respectively, significantly exceeding that of the corresponding origi-
nal 3D graphene and d-MnO2 nanosheets. And the material has good circulation and
separation ability.

By combining two composites with high adsorption capacity and reusability, Hos-
sein et al. [123] synthesized a novel magnetic chitosan–graphene oxide nanocomposite
(MCGON). The magnetic MCGONs have a high specific surface area (132.9 m2/g), large
pore volume (4.03 cm3/g) and pore size (15 nm) and strong saturation magnetization
(3.82 emu/g). The maximum adsorption capacity of Cu2+ by MCGON is 217.4 mg/g. Bao
et al. [74] used n-propyl trimethoxy silane as a crosslinking agent to connect Fe3O4/SiO2
to prepare a magnetic graphene oxide nanomaterial. The prepared magnetic graphene
oxide can be quickly separated from its aqueous solution by permanent magnets, and has
excellent adsorption properties for Cd(II) and Pb(II), with a maximum adsorption capacity
of 128.2 and 385.1 mg/g, respectively. In addition, the prepared Fe3O4/SiO2-GO adsorbent
can be recycled and has good repeatability.
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Figure 7. (a) Synthesis mechanism of Fe3O4/SiO2-GO (reproduced with permission from Ref. [74]
from Elsevier). (b) Schematic illustration of the methods used for preparation of amino-modified
magnetic GO with polyamidoamine dendrimer (reproduced with permission from Ref. [122] from
Elsevier). (c) Chemical structure of EDTA-GO (left) and its interaction with heavy metal cations (right)
(reproduced with permission from Ref. [68] from ACS).

4.4. Clay

Clay is generally formed by the weathering of silica aluminate minerals on the earth’s
surface and is widely distributed all over the world. The adsorption of heavy metal on
clay materials have been widely studied, using 1:1 layered clay (kaolin and halloysite),
2:1 layered clay (montmorillonite, vermiculite, attapulgite and sepiolite) or other clay
minerals [155]. The edges and faces of the clays are generally the most favored positions
for the adsorption of various species (cations and anions forms of heavy metal contami-
nants) in water systems. In addition, for montmorillonite and layered double hydroxide
(LDH), the cations or anions in the layer spaces are positions for heavy metal adsorption
through the ion exchange mechanism. The cation exchange capacity of clay minerals is
highly influenced by the pH value of the solution, since their surfaces would be protonated
(positive charged) or deprotonated (negative charged) at a pH below or above the Zero
Point of Charge. Although the layered structure of clay minerals possesses a large specific
surface area, rich hydroxyl content and good ion exchange ability, the adsorption capacity
of natural clay is generally poor. For example, the adsorption capacity of kaolinite and
montmorillonite for Cu(II) is only 10.8 [127] and 33.3 mg/L [131], respectively. Based on the
mineral characteristics described above, the adsorption mechanism for the adsorption of
Pb(II) and Cu(II) on clay materials mainly includes ion exchange, physical adsorption, elec-
trostatic attraction, ion chelation and so on [82,85,88]. In recent years, modified clays, using
acid/alkali activation, surface modification (such as amino, carboxyl, hydroxylated groups,
etc.) [132], intercalation and pillaring methods, have also been widely studied to improve
the adsorption capacity and efficiency of clay minerals (Figure 8). Most of the adsorption
mechanisms are related to the acid–base, charge transfer, or ion exchange reactions [156].
Xu et al. [84] grafted amino groups on attapulgite and obtained a nanocomposite (M-ATP)
with a maximum adsorption capacity of 50.66 mg/L for Pb2+ (Figure 8a). Fourier transform
infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRD) showed that a new
Si-O-Si bond was formed after modification and the grafting reaction took place on Si-O
tetrahedral surface.
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Figure 8. (a) Scheme of the modification process of attapulgite and the effect of pH on the adsorption
process (reproduced with permission from Ref. [84] from Elsevier). (b) Synthesis and adsorption
mechanism of FeMg-LDH@bentonite (reproduced with permission from Ref. [85] from Elsevier).
(c) Schematic illustration for the preparation of titanium hydroxyl-grafted silica nanosheets (repro-
duced with permission from Ref. [88] from Wiley).

Nanoparticle loading is also an efficient approach to prepared novel clay materials
with organic/inorganic composite structures [50]. Guan et al. [85] prepared FeMg-LDH-
loaded bentonite (FeMg-LDH@bentonite) by an in situ co-precipitation method (Figure 8b).
The maximum adsorption capacity of the material for Cd(II) and Pb(II) was found to be as
high as 510.2 mg/g and 1397.62 mg/g, respectively, which is much higher than other con-
ventional adsorbents. The adsorption mechanism showed that the high adsorption ability
was caused by the surface complexation, ion exchange and chemical deposition between
FeMg-LDH@bentonite and heavy metals (Figure 9a–d). Yan et al.[88] prepared a novel
TP-SiNSs nanocomposite with plenty of TiOH groups on its surface by combining calcina-
tion, acid leaching and Ti(OH)4 grafting methods (Figure 8c). The obtained nanomaterial
with dispersed TiOH groups on silica layers (Figure 9e–h) exhibited a short adsorption
equilibrium time (within 5 min), large adsorption capacity (TP-SiNSs ≈ 38,000 kg per kg of
contaminated drinking water, effluent Pb(II) content <10 µg L−1) and excellent renewable
and selective properties. Liang et al. [91] prepared APTS-Fe3O4/APT@CS composite hydro-
gel beads by loading functional nanoparticles and groups on attapulgite, which exhibited a
maximum adsorption capacity of 625.34 mg/g for Pb(II).
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images of titanium hydroxyl-grafted silica nanosheets and (f) HAADF-STEM image (inset EDS
spectrum), EDS mapping of (g) Ti element and (h) Si element (reproduced with permission from
Ref. [88] from Wiley).

4.5. Nano Zero-Valent Iron (nZVI)

The separation of the adsorbents from the adsorption system in industry equipment is
one of the challenges for the recycling and regeneration of the adsorbents, since most of
the adsorbents are well dispersed in the water system during the adsorption process. To
overcome this challenge, magnetic nanoparticles such as nanosized zero-valent iron (nZVI),
iron oxides (hematite, magnetite and maghemite) and mixed spinel ferrites are introduced
to overcome the separation problem.

nZVI, with excellent magnetic properties and redox activity, is widely used for the
removal of heavy metal pollutants. The main adsorption mechanism of nZVI is precipitation
and reduction. nZVI can increase the pH value of water and precipitate heavy metal
ions. At the same time, Pb(II) and Cu(II) can receive electrons from nZVI and thus be
reduced and precipitated [54,96]. However, several issues, such as strong agglomeration of
nZVI in aqueous solutions and its weak stability and low selectivity to target pollutants
remain [92,93]. Various methods, such as polymer modification, surfactant modification,
and stabilizer modification using porous materials (activated carbon, montmorillonite,
zeolite, carbon nanotubes, metal–organic frame materials, etc.) have been studied. Recently,
Ren et al. [95] developed zero-valent iron–phosphate–titanium dioxide (PTO-3nZVI and
PTO-nZVI) nanocomposites by phosphoric acid treatment and zero-valent iron loading
(Figure 10a). The adsorption capacity of PTO-3nZVI and PTO-nZVI for the target heavy
metal Cd(II) (308 mg/g for PTO-3nZVI and 206 mg/g for PTO-nZVI) was significantly
increased by complexation and co-precipitation. In addition, there is competitive adsorption
between Cd(II) and co-existing heavy metal ions Pb(II) and Cu(II), resulting in different
adsorption effects of PTO-3nZVI and PTO-nZVI. The adsorption efficiency of PTO-3nZVI is
Cu(II) > Pb(II) > Cd(II). The adsorption efficiency of PTO-nZVI was Pb(II) > Cu(II) > Cd(II).
Wang et al. [93] compared nano-scale zero-valent iron (nZVI) to lime, the most widely used
heavy metal precipitator in laboratory and field experiments to remove Pb(II) and Zn(II).
The water chemistry, treatment efficiency and reaction products of the two reagents were
compared. The study showed that a moderate solution pH and its seed effect played a
crucial role in the production of a high-quality effluent. Stable and lower levels of Pb(II) and



Nanomaterials 2024, 14, 1037 20 of 33

Zn(II) can easily be obtained with nZVI due to its versatile properties and good tolerance to
influent fluctuations due to its inherent pH stabilization properties. SEM characterization,
particle size analysis and static sedimentation experiments show that nZVI can generate
large, consolidated solids suitable for gravity separation (Figure 10b). Tang et al. loaded
iron nanoparticles on graphitic carbon nitride. Tang et al. [54] used g-C3N4 as a carrier
to distribute, stabilize and change the microstructure of nZVI (Figure 10c). It was found
that functional groups containing N effectively trapped the metal cations in water and
accelerated the mass and electron transfer from the iron core to the surface metal ions. The
adsorption effect of g-C3N4-nZVI in wastewater treatment was more than twice that of
naked nZVI. Li et al. [96] prepared zeolite-supported nano zero-valent iron (zeolite-nZVI)
by a simplified liquid-phase reduction method (Figure 10d) to adsorb As(III), Cd(II) and
Pb(II) in an aqueous solution and soil. At pH 6, the maximum adsorption capacity of
zeolite-nZVI was 11.52 mg for As(III)/g, 48.63 mg for Cd(II)/g and 85.37 mg for Pb(II)/g,
which was much higher than that of zeolite. Batch experiments show that the adsorption
mechanisms of the selected heavy metals are varied, including electrostatic adsorption,
ion exchange, oxidation, reduction, co-precipitation, complexation and so on. Due to the
formation of polyphase compounds on zeolite-nZVI, synergy and competition between
heavy metals occur simultaneously. After mixing with 30 g/kg zeolite-nZVI, most of the
arsenic, cadmium and lead in the soil sample was immobilized.
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Figure 10. SEM images of (a) phosphoric titanium dioxide-3nZVI (reproduced with permission from
Ref. [95] from Elsevier), (b) nZVI-Pb (reproduced with permission from Ref. [93] from Elsevier),
(c) g-C3N4-nZVI (reproduced with permission from Ref. [54] from Elsevier) and (d) zeolite-nZVI
(reproduced with permission from Ref. [96] from Elsevier).

4.6. Nanocomposite

Nanocomposite materials are based on a matrix of polymers with plenty of functional
groups (resin, rubber, etc.), which are normally loaded by metal, oxides and other inorganic
particles in nano-sizes (Figures 11 and 12). The nanometer size effect of the dispersed
phase, large specific surface area, strong interface interaction and unique physical and
chemical properties of nanocomposite materials promises the nanocomposite materials
better physical and chemical properties than conventional composite materials. Because of
their special composite properties, nanocomposites usually have a variety of adsorption
mechanisms, such as ion exchange, surface coupling, physical adsorption, electrostatic
attraction and so on [100,103,157].
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Figure 11. (a) Inter- and intramolecular forces between Chitosan and PVA (reproduced with
permission from Ref. [158] from Elsevier). (b) Preparation of 2-aminoterephtalic acid-modified
Fe3O4@triamine-triethoxysilane nanocomposites (reproduced with permission from Ref. [103]
from Elsevier).

Alqadami et al. [103] has prepared a novel nanocomposite material (Fe3O4@TATS@ATA)
for the adsorption and removal of Pb(II) ions from aqueous environments. The BET spe-
cific surface area, mean pore diameter, pore volume and magnetization saturation of
Fe3O4@TATS@ATA are 114 m2/g, 6.4 nm, 0.054 cm3/g and 22 emu/g, respectively. The ad-
sorption isotherm data show that the adsorption of Pb(II) by Fe3O4@TATS@ATA conforms
to the Langmuir and Dubinin–Raduskevich isotherm models, and the R2 value is greater
than 0.9. The maximum adsorption capacity of Pb(II) was 205.2 mg/g. Mardhia et al. [8]
investigated the removal of Pb(II) from an aqueous solution by magnetic chitosan/cellulose
nanofiber-Fe (III) [M-Ch/CNF-Fe(III)] composites. The results show that M-Ch/CNF-Fe(III)
composites are porous materials and have potential as heavy metal adsorbents. The maxi-
mum adsorption capacity is 99.86mg/L. Mohammad et al. [102] used electrospinning to
prepare polyvinyl alcohol/chitosan (PVA/Chi) nanofiber films with selectivity and high
adsorption ability to Pb(II) depending on the acidity of the solution. The results show
that under the best conditions, different adsorption kinetic models are used to process the
adsorption data, and it is confirmed that only the pseudo-second-order model conforms
to the adsorption kinetics of Pb(II) and Cd(II) ions. Similarly, the equilibrium data were
consistent with the Langmuir adsorption isotherm model, and the maximum adsorption
amounts of Pb(II) and Cd(II) ions were 266.12 and 148.79 mg/g, respectively. Figure 12
shows SEM images of some composites.

There is also much research on Cu(II) adsorption nanocomposites. Aziam [6] prepared
alginate–Moroccan clay bio composites. The results show that the adsorption processes of
Cu2+ and Ni2+ metal ions conform to the quasi-second-order kinetic model, and the corre-
sponding rate constants are determined. The maximum adsorption capacity of Ni2+ was
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370.37 mg/g and the maximum adsorption capacity of Cu2+ was 454.54 mg/g. In the binary
system, the maximum adsorption capacity of Ni2+ was 357.14 mg/g, and the maximum
adsorption capacity of Cu2+ was 370.37 mg/g. Xu et al. [128] studied chitosan/polyvinyl
alcohol/ZnO microspheres (CS/PVA/ZnO) by the batch method. CS/PVA/ZnO has good
antibacterial properties and biocompatibility. The effects of solution pH, adsorbent dose,
contact time, initial metal ion concentration and temperature on the adsorption were investi-
gated. The results show that the adsorption of Cu(II) by CS/PVA/ZnO is spontaneous and
endothermic. At pH 4.5, the maximum adsorption capacity of CS/PVA/ZnO is 90.90 mg/g.
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Figure 12. SEM images of (a) alginate–Moroccan clay bio-nanocomposite microparticles (reproduced
with permission from Ref. [6] from MDPI), (b) chitosan/poly(vinylalcohol)/ZnO beads (repro-
duced with permission from Ref. [128] from Elsevier), (c) magnetic chitosan/cellulose nanofiber-
Fe(III) composite (reproduced with permission from Ref. [8] from MDPI) and (d) FE-SEM images
of poly(vinylalcohol)–chitosan nanofibers membranes (reproduced with permission from Ref. [102]
from Elsevier).

There are also many related studies on the adsorption of Pb(II) and Cu(II) by nano-
composites with SiO2. Mesoporous SiO2 has been the focus of adsorption research in
recent years because of its controllable morphology, excellent loading capacity and large
specific surface area. Putz [159] studied the synthesis of MCM-41 ordered mesoporous
silica, and the adsorption determination of Cu(II) and Pb(II) solutions showed that the
material exhibited monolayer surface adsorption properties. Under the condition of pH 5,
the adsorption capacity of Cu(II) and Pb(II) was 9.7 mg/g and 18.8 mg/g, respectively.

Silica gel is a hydrated amorphous product of SiO2, with a large specific surface
area, multi-channel structure and other excellent characteristics. It has good adsorption
properties and is also an excellent carrier for organic functional groups and nanoparticles.
Li et al. [160] prepared a nitrotriacetic acid-modified silica gel material (NTA-silica gel)
as the adsorption material for Pb2+ and Cu2+. The adsorption capacity was 76.22 mg/g
and 63.5mg/g, respectively. It also has good selectivity and reproducibility. Ali et al. [161]
prepared modified porous silica gel by the sol–gel method, and investigated its adsorption
properties for Pb(II). It was found that the adsorption rate of Pb(II) was 98%, the maximum
adsorption capacity was 792 mg/g and it had excellent regeneration performance.
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4.7. MOFs

MOFs, short for metal–organic frameworks, are a class of crystalline porous materials
with a periodic network structure formed by the self-assembly of inorganic metal centers
(metal ions or metal clusters) and bridged organic ligands (Figure 13). Compared with
other traditional porous materials, MOF materials have great advantages in specific surface
area, porosity, designability and variety, which determines the diversity of their functions
and their wide range of applications. Due to their high specific surface area and good pore
structure, MOF materials can accommodate a large capacity and good selectivity of guest
molecules.
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from Elsevier).

Wang et al. [105] modified UiO-66-NH2 with Ni0.6Fe2.4O4 and polyethylenimide, and
synthesized a new magnetic Zr-MOF Ni0.6Fe2.4O4-UIO-66-PEI for the adsorption of Pb(II)
and Cr(VI) in water. The maximum adsorption capacity of the material for Pb(II) at pH
4.0 was 273.2 mg/g. The adsorption rate was fast, and the adsorption equilibrium was
reached within 60 min. Huang et al. [107] synthesized two porous adsorbents, ZIF-8 and
ZIF-67, and studied their removal effects on Pb(II) in wastewater. The results showed
that the saturated adsorption capacity of ZIF-8 and ZIF-67 for Pb2+ reached 1119.80 and
1348.42 mg/g, respectively, which was much higher than that of almost all other porous
materials. When excessive adsorbents were used to treat wastewater, the removal rates of
Pb2+ by ZIF-8 and ZIF-67 adsorbents exceeded 99.4%. In addition, the two adsorbents also
showed rapid adsorption kinetics, and adsorption equilibrium was reached in just tens
of minutes. Alqadam [106] used the post-synthetic modification (PSM) method to anchor
limonic anhydride (CA) to NH2-MIL-53(Al) by a covalent bond between the NH2-MIL-
53(Al) amino (-NH2) group and CA carboxyl group. The metal–organic framework (MOF)
of mesoporous amide citric anhydride [AMCA-MIL-53(Al)] was obtained. The influence of
pH, contact time, Pb(II) concentration, temperature, and dose of adsorbent were studied.
The maximum adsorption of Pb(II) on AMCA-MIL-53(Al) was 390 mg/g and the adsorption
was governed by the amide and carboxylate groups via coordinate and electrostatic bonds.
However, the desorption experiments showed only a 79.5% maximum capacity after one-
time recovery by 0.1 M HCl. Similar to zeolite, the low regeneration ability of MOFs are
attributed to the residue of heavy metal ions in the intrinsic microstructures in MOFs, as
shown from the SEM images of MOFs (Figure 14).
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(c) Ni0.6Fe2.4O4-PEI (reproduced with permission from Ref. [105] from Elsevier) and (d) melamine–
MOFs (reproduced with permission from Ref. [111] from Elsevier).

There are few studies on the use of MOFs for Cu(II) adsorption. Jiang et al. [146]
synthesized an Fe3O4@ZIF-8 core–shell magnetic composite by the solvothermal method
and applied it to remove Cu2+ from wastewater. Fe3O4@ZIF-8 microspheres have a sta-
ble performance, high specific surface area (724.7 m2/g), and a Cu2+ absorption rate of
301.33 mg/g. In addition, Fe3O4@ZIF-8 also has a fast adsorption kinetics for Cu2+ in
wastewater, and the adsorption equilibrium can be reached in only 60 min. The mechanism
studies show that ion exchange and coordination reaction are the main mechanisms of
Fe3O4@ZIF-8 removal of Cu2+.

4.8. Adsorption Column

In the above adsorption studies, most researchers adopt the static adsorption scheme
in the laboratory. Although this method is convenient for researchers to explore various
characteristics of adsorbed materials, the ion concentration of the solution decreases in the
adsorption experiment, and will eventually reach a static adsorption equilibrium, which
will not change with time. This does not match the current industrial wastewater treatment
system. To adapt to the practical application in industry, adsorption column schemes have
been proposed.

Figure 15 shows some of the typical experimental setups for the dynamic adsorption
column. At present, the adsorption column technology in industry includes batch-type, con-
tinuous moving-bed, continuous fixed-bed, continuous fluidized-bed and pulsed fluidized-
bed [162]. In these facilities, one or more adsorption materials are loaded in the channel,
the polluted solution continues to go through the column, the concentration of the solution
ions entering the port is always consistent, a new adsorption equilibrium is constantly
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established in the adsorption column, and there is no static adsorption equilibrium, so the
adsorption column is also called dynamic equilibrium.

One advantage of the adsorption column is that it avoids the difficulty of recycling the
adsorption material, and indirectly improves the utilization rate of the adsorption material.
The factors affecting the adsorption efficiency of the adsorption column include adsorbent
type, water flow rate, adsorbent loading capacity, bed height, initial solution concentration
and so on [163].
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onto activated carbon and activated carbon–sodium dodecyl sulfate [166].

Many types of adsorption materials have been used in adsorption columns, such
as activated carbon [167], graphene [168], clay [169], MOFs [170], etc. Islam et al. [171]
synthesized carboxymethylated cellulose as a fixed-bed column adsorption material to
adsorb Pb(II) and Cu(II) in single-component and multi-component systems. Under the
conditions of pH 5.5, feed flow rate 15 mL/min and feed concentration 10 mg/L (single-
component system) and 2.5 mg/L (multi-component system), the removal rate of each
metal ion in water by the adsorbent is around 99%. In the single-component system, Pb(II)
and Cu(II) interception amounts were 101.0 mg/g and 31.7 mg/g. In the multi-component
system, the interception amounts were 20.3 mg/g and 7.8 mg/g, respectively. Olatunji [166]
studied the synthesis of adsorption materials by adding sodium dodecyl sulfate (SDS) into
coconut shell activated carbon, and investigated its removal rate of Pb(II) or Cu(II) in the
resulting wastewater in the adsorption column. It was found that the removal rate of
Pb(II) and Cu(II) in wastewater could be significantly increased by adding SDS surfactant
on the surface of activated carbon (AC). With the increase in flow rate or initial metal
concentration, the breakthrough and failure time is shortened, while with the increase in
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bed height, the breakthrough and failure time is increased. Zhang et al. [169] prepared a
porous silicate/Fe3O4 adsorbent MCSiMg49, with the adsorption capacity of Pb(II) reaching
499.3 mg/g. The adsorption columns filled with MCSiMg49 (1 g, upper layer) and clay (1 g,
lower layer) can completely remove Pb(II) (concentration 50 mg/L) from natural water
(such as Yangtze River water or Yellow River water).

5. Conclusions

The removal of lead and copper ions has always been a concern of researchers, and
the adsorption method is one of the most valuable methods. In recent years, a variety
of nanomaterials have been developed, and adsorbents such as MOFs, zero-valent iron,
carbonaceous materials, clay materials and nanocomposites have steadily increased for the
adsorption of lead and copper ions. Among the various adsorption materials summarized
in this review, although the maximum adsorption capacity of CNTs for Pb(II) is as high
as 8000 mg/g, and that of modified GO for Cu(II) is around 360 mg/g, their cost and
adsorption selectivity still need to be improved. In addition, pH value, temperature,
initial metal ion concentration, the amount of adsorbent added and other factors jointly
determine adsorption performances. Ion exchange, ion chelation, electrostatic adsorption,
precipitation, redox, complex formation, hydrogen bond and other forms of action and
forces are the basic mechanisms that relate to the efficient adsorption of lead ions and
copper ions in water systems. There are a few points worth noting.

(1) Although various adsorbents with excellent adsorption properties have been
reported, the production cost and the probability of the industrial scale-up of the synthesis
process need to be considered, as well as the stability and regeneration ability. Most
adsorbents were not applied to treat real water samples from industries. The adsorption
performance of the adsorbents for contaminated water from polluted water systems should
be tested.

(2) The secondary pollution of the used solid adsorbents with a large amount of
hazardous heavy metal has also become a critical environmental problem nowadays. Future
works should pay more attention to the selectivity and regeneration of the adsorbents,
which determines the cyclic performance and economic potential for the adsorbents for
industrial applications. The efficient extraction of the heavy metal content from the used
adsorbents would not only provide more secondary resources but also realize the reduction,
innocuity and stabilization of the solid hazardous wastes, which could help to finally
achieve the target of sludge reduction.

(3) Although the addition of magnetic components (nZVI or Fe3O4) makes some
of the nanomaterials recyclable, they still faces the drawbacks of chemical instability
and weakness in the application to huge water systems (rivers and lakes). Other novel
nanomaterials, which can be easily recycled in large systems, might bring more prosperity
to adsorption technology.
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