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Abstract: Crystalline calcium fluoride (CaF2) is drawing significant attention due to its great potential
of being the gate dielectric of two-dimensional (2D) material MOSFETs. It is deemed to be superior to
boron nitride and traditional silicon dioxide (SiO2) because of its larger dielectric constant, wider
band gap, and lower defect density. Nevertheless, the CaF2-based MOSFETs fabricated in the
experiment still present notable reliability issues, and the underlying reason remains unclear. Here,
we studied the various intrinsic defects and adsorbates in CaF2/molybdenum disulfide (MoS2)
and CaF2/molybdenum disilicon tetranitride (MoSi2N4) interface systems to reveal the most active
charge-trapping centers in CaF2-based 2D material MOSFETs. An elaborate Table comparing the
importance of different defects in both n-type and p-type devices is provided. Most impressively,
the oxygen molecules (O2) adsorbed at the interface or surface, which are inevitable in experiments,
are as active as the intrinsic defects in channel materials, and they can even change the MoSi2N4 to
p-type spontaneously. These results mean that it is necessary to develop a high-vacuum packaging
process, as well as prepare high-quality 2D materials for better device performance.

Keywords: CaF2; 2D material MOSFETs; reliability; charge trapping

1. Introduction

Two-dimensional (2D) materials offer new possibilities for advancing Moore’s Law
due to their ultra-thin thickness and smooth surface with no dangling bonds [1–9]. The
ultra-scaled channel places higher demands on the quality and reliability of gate dielectric
materials. However, common oxides (such as SiO2 [10], hafnium dioxide (HfO2) [11],
and aluminum trioxide (Al2O3) [12]) that are used in silicon technologies are non-layered,
which makes it difficult for them to form a good interface with 2D channels. To deal with
the problem, 2D dielectrics such as hexagonal boron nitride (h-BN) have been studied [13].
However, the band gap (~6 eV) and dielectric constant (5.06 ε) of h-BN are not satisfying
for dielectric materials [14]. Its band offset with 2D materials is not large enough, which
will lead to many reliability problems [15].

Recent experimental preparation of crystalline CaF2 provides a promising solution
to the dilemma [16,17]. By using molecular beam epitaxy (MBE), crystalline CaF2 can be
grown on a silicon or germanium substrate [18]. It has a larger bandgap (12.1 eV) and
dielectric constant (8.43 ε) than h-BN [19]. The grown CaF2 is terminated by F atoms, which
means that there are no dangling bond on its surface [20]. At the same time, wafer-scale
CaF2 was prepared by the magnetron sputtering method as a substrate for optoelectronic
devices, resulting in the formation of good van der Waals devices with Tin disulfide (SnS2)
and Tungsten disulfide (WS2). The electronic mobility and photoresponsivity of the devices
were improved by an order of magnitude higher compared to SiO2-based devices [21].
Another important point is that CaF2 itself is stable in air, and is not easily dissolved in
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water [22]. CaF2 can form good I-band alignment with many 2D materials, such as silicon
carbide (SiC). The valence band offset of 2D SiC/CaF2 is as high as 3.5 eV, and even if there
are carbon antisite and interstitial defects on the 2D SiC surface, it will not affect CaF2 [23].
This means that it will be very advantageous as a gate dielectric for semiconductor devices.

Nevertheless, notable device reliability issues were still observed in CaF2-based MOS-
FETs [19,22,24,25], which contradicts the perfect electrical properties of CaF2. For example,
the ID-VG hysteresis is significant (although, lower than that in MoS2/SiO2 FET), and it
shows obvious variability when the same device is operated at different scanning times.
On the other hand, when different devices are operated under the same VD, the ID-VG
characteristics such as on/off current ratio and subthreshold swing (SS) (150–90 mV dec−1)
differ greatly [19]. In addition, some devices with large negative threshold voltage (Vth)
are prone to fail due to the bias overload of the CaF2 layer. The physical origin of hysteresis
and threshold voltage shift is widely attributed to the charge trapping and de-trapping of
microscopic defects [26–32], and the strength of the charge trapping effect is closely related
to the type of defects [33–36]. In graphene/CaF2 FETs, the hysteresis and bias–temperature
instabilities (BTI) phenomenon are both observed due to the presence of defects. They
are not detrimental to device performance due to the intrinsic advantage of CaF2, but
the problem cannot be avoided [37]. The hysteresis is also observed in ReS2 FETs, and
it is subjected to variations in temperature, sweeping gate voltage, and pressure during
experiments, demonstrating the existence of a charge-trapping and de-trapping effect [38].

The presence of trapping centers at the interface not only affects the reliability of
transistors, but also has an impact on other kinds of semiconductor devices, such as ther-
moelectric devices composed of tin dioxide (SnO2) [39] and solar cell devices composed of
perovskite materials such as perovskite solar cells (PSCs) [40]. Therefore, distinguishing
active trapping centers, and then finding ways to eliminate them, is crucial for the im-
provement of semiconductor devices. Unfortunately, it is difficult to determine the specific
contribution of each kind of defect to the charge-trapping process through experiments.
Under such circumstances, we decides to use principles calculations to distinguish the
active charge-trapping centers in CaF2-based 2D MOSFETs first, and then provide guidance
to experimental researchers to analyze and improve the performance and reliability of their
devices.

In this work, realistic MoS2/CaF2 and MoSi2N4/CaF2 interface models have been
constructed to study the charge-trapping centers in various positions. CaF2 is designed as
a 5-layer structure, which is consistent with the experimental report [19,41]. The fabricated
device in the experiment contains a 2-layer MoS2 and a 2 nm thick CaF2, which is 5 layers.
At the same time, 13 types of defects were systematically investigated, and several positions
for each type of defect were studied to avoid randomness. When analyzing defects, we not
only considered the defect energy levels, but also the defect formation energy and their
importance in n-type and p-type transistors, respectively. To ensure the accuracy of the
data, Heyd–Scuseria–Ernzerhof (HSE) hybrid functionals were used, even though they
require a large amount of computing resources.

2. Materials and Methods

Among the 2D materials, MoS2 is one of the most widely used semiconductors [42–45]. It
has a direct band gap of 1.8 eV, and has been used to design high-performance electronic
and optoelectronic devices [5]. On the other hand, there are also some new materials
being synthetized, such as the MoSi2N4 [46]. MoSi2N4 is very promising because of
the excellent photocatalytic performance [47], mechanical strength [48], and electrical
transportability [49]. Therefore, we construct both MoS2/CaF2 and MoSi2N4/CaF2 interface
models to make the simulation results representative. The lattice parameter of CaF2, MoS2,
and MoSi2N4 is 3.90 Å, 3.16 Å, and 2.91 Å, respectively. To achieve good lattice matching,
the primary cell of MoS2 is repeated five times to contact the CaF2 cell, which is repeated
four times. The final CaF2 deformation is only 1.28%. Similarly, the primary cell of MoSi2N4
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is repeated four times to contact the CaF2, while the CaF2 deformation is repeated three
times and is only 0.52%.

To make the results reliable, different types of defects/impurities, not only within
the material, but also at the interfaces and surfaces, were studied. For CaF2, even though
previous studies have shown that it only contains a very small number of F defects (VF),
for the sake of data reliability, research was still conducted on VF defects. Meanwhile, our
research found that VF contributes two electrons to CBM, which had not been discovered
by previous researchers. For MoS2, we considered S vacancy defect (VS), Mo vacancy
defects (VMo), MoS3 vacancy defect (VMoS3) and MoS6 vacancy defect (VMoS6) at different
spatial locations. MoS2 is composed of one Mo atom in the middle and three S atoms on
the upper and lower surfaces. A MoS3 defect is defined as the loss of a Mo atom and three
S atoms connected to it, either in the upper or lower layers. The MoS6 defect is formed
by the loss of both the Mo atom in the middle and the six S atoms connected to it. On the
other hand, considering that gas adsorption is occurs very easily in the process of device
manufacturing, we also studied the water and oxygen molecules that adsorbed at different
positions. For a more intuitive display of defects and adsorption, the related structural
diagrams are shown in following figures. For MoSi2N4, both its N vacancies (VN) and Si
vacancies (VN) were studied simultaneously. Same as MoS2, gas adsorption in MoSi2N4
during preparation is also a factor that may affect device stability. The adsorption of O2
and water molecules (H2O) was studied in CaF2-MoSi2N4.

All the first-principles calculations were performed by the software PWmat [50,51].
The SG15 pseudopotential [52] was adopted, and the plane wave cutoff energy was 50 Ry.
The Perdew–Burke–Ernzerhof (PBE) functional was used for structural relaxation with a
convergence criterion of 10−5 eV/Å. The HSE [53] functional was used in the calculation
of electronic structures to improve the accuracy of calculations. All calculations were
performed using gamma points (0,0,0) considering the largeness of the supercells, and this
is a common strategy to deal with large models [34,35]. VdW-D3 was used to correct the
interlayer interaction of the material. The DFT-D3 energy formula is as follows: EDFT−D3 =
EKS−DFT − Edisp, EKS−DFT is the usual self-consistent KS energy and Edisp is the dispersion
correction as a sum of two- and three-body energies [54]. The equilibrium distance between
the MoS2 and CaF2 and between the CaF2 and MoSi2N4 was 2.89 Å and 2.93 Å, respectively.
For MoS2, the impact of point defects on the equilibrium distance was not significant,
only 1.04%. For larger defects, there may have been some impacts, among which VMoS3
decreased the distance by 8.65% to 2.64 Å. O2 adsorption resulted in an equilibrium distance
of 3.03 Å, which represented an increase of 5.21%. For MoSi2N4, the VN defect showed a
change in the equilibrium distance between CaF2-MoSi2N4, with an equilibrium position of
2.72 Å, representing a 7.17% decrease. H2O adsorption resulted in an equilibrium position
of 3.10 Å, which represented an increase of 5.80%. The data above show that defects
and adsorption can slightly change the equilibrium distance between interfaces, but their
impact is not significant. All the calculation processes are shown in Figure 1.
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3. Results
3.1. The Charge-Trapping Centers in CaF2-MoS2

The CaF2-MoS2 interface models are shown in Figure 2a. Blue, gray, purple, yellow,
white, and red spheres are used in the figure to represent Ca, F, Mo, S, H, and O atoms.
Figure 2a shows the adsorption and defects (green spheres) present at different interfaces
and surfaces of CaF2-MoS2. A 5-layer CaF2 is adopted because the experimental MBE
grown CaF2 is about 2 nm thick. The band alignments that manifested by the projected
density of states (PDOS) are shown in Figure 2b. The red part in the figure represents
the data of DOS, and the depth of the color represents the size of PDOS values. It can
be seen that the VBM (valence band maximum) and CBM (conduction band minimum)
are provided by MoS2, and the band offsets are greater than 2 eV, which makes charge
tunneling difficult. All Fermi energy levels have been reset to zero, indicated by a green
dotted line in the graph. The defect energy level and band offset have a direct impact on
the charge-trapping activity. Although the vacuum levels were not adjusted, this does not
affect the conclusions reached. This confirms that using CaF2 as the gate of 2D material
MOSFETs is likely to obtain good device reliability [41]. Therefore, when considering
practical applications, we believe that the reliability issues should stem from some intrinsic
or external charge-trapping centers.
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Figure 2. Atomic structure and type-I band alignment of CaF2-MoS2 interface models. (a) Atomic
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3.1.1. The Charge-Trapping Centers in CaF2

Intuitively, we should first study the F vacancy defect in the CaF2 layer. However,
it has been demonstrated in experiments that generating defects in CaF2 is not easy [19].
Furthermore, it has been proven by a first-principle calculation that even though F vacancies
(VF) and Ca vacancies (VGa) exist, there is no defect state near the band edge of channel
material due to the large band offset between the two materials [55]. Nevertheless, to
make the conclusion more rigorous, we still conducted relevant calculations on the VF.
In Figure 3, the energy levels of CaF2, MoS2, and VF are represented by green, blue, and
red, respectively. In the calculation, both vdW and electron spin are considered, and the
randomness of VF positions is also taken into account. For ease of observation, the PDOS
value of VF in Figure 3 has been expanded 50 times. As the focus is on the defect energy
level of VF, it does not affect the results. The band alignment of CaF2 and MoS2 here is
consistent with Figure 2b, and MoS2 provides VBM and CBM. The offset between the VF
defect energy level and CBM is 4.43 eV, indicating that even with defects, it is not easy
to trap charges. Consequently, we turn our attention to the trapping centers inside the
channel material, in the semiconductor/dielectric interface, and at the dielectric surface.
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3.1.2. The Charge-Trapping Centers in the Channel

The energy level distribution of different defects in MoS2 is shown in Figure 4. First,
in Figure 4a, there is an occupied defect state denoted by d1 for the vs. in MoS2, whose
energy is 0.38 eV below VBM, and there are two empty defect states with similar energy
denoted by d2, whose energy is 0.57 eV below CBM. According to charge transfer theories,
the charge-trapping rate will decrease exponentially with the increasing energy barrier
between the initial and final electronic states; thus, we can consider that only the defect
levels located less than 1 eV away from the MoS2 band edge are active trapping centers.
Therefore, it can be concluded that d1 is an important hole-trapping state in p-FETs, and d2
is an important electron-trapping state in n-FETs. Similarly, in Figure 4b, the Mo vacancy
is active in trapping holes and electrons, but not as active as the S vacancy in electron
trapping because the VMo defect levels are farther away from the CBM. In addition to the
common vs. and VMo, experiments have reported that complex vacancy defects (such as
VMoS3 and VMoS6, as shown in Figures 4c and 4d, respectively) are found in MoS2 [56].
These two complex vacancies contain many dangling bonds, and thus, can introduce a
series of defect states (up to 13) located either close to VBM or to CBM. Consequently, they
will be very active charge-trapping centers. However, the energy of the formation of these
complex defects is very high, resulting in a low density. More details of the defect levels
have been listed in Table 1.
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Table 1. Importance of different trapping centers in CaF2-MoS2.

Defect
Types

Defect
State

∆E-
VBM
(eV)

∆E-
CBM
(eV)

n-FET
Importance

p-FET
Importance

Fromation
Energy (eV)

Overall
Importance

VS
d1 −0.38 −1.91 ✓ ✗

2.91 ✓d2 0.95 −0.57 ✓ ✓

VMo

d1 −0.06 −1.63 ✓ ✗

8.52 ✓d2 0.40 −1.17 ✗ ✓
d3 0.71 −0.86 ✗ ✓

VMoS3

d1 −0.25 −1.78 ✓ ✗

11.81 ✓d2 0.89 −0.64 ✗ ✓
d3 0.99 −0.53 ✗ ✓

VMoS6

type1 <0.50 >1.50 ✓ ✗

21.41 ✗type2 <1.00 >1.00 ✗ ✗

type3 >1.75 <0.25 ✗ ✓

O2 at
interface

d1 −0.99 −2.45 ✓ ✗

0.68 ✓d2 −0.55 −2.00 ✓ ✗

d3 −0.85 −2.31 ✓ ✗

H2O at
interface −3.42 −4.91 ✗ ✗ 0.61 ✗

O2 in MoS2 −0.37 −2.01 ✓ ✗ 2.35 ✓
O2 at surface 1.11 −0.41 ✗ ✓ 2.25 ✓

3.1.3. The Charge-Trapping Centers in the Interface and Surface

It has been mentioned in previous reports that the hysteresis of CaF2-MoS2 devices
can be reduced after they are heated and dried [19]. This indicates that molecules had
been adsorbed during device preparation, so the activity of these adsorbates needs to be
discussed. Figure 5 shows the adsorption of O2 at the CaF2-MoS2 interface, and three defect
levels denoted by d1, d2 and d3 are observed. They are only 1 eV, 0.85 eV and 0.54 eV below
VBM, respectively. Therefore, they will be active hole traps in p-MOSFETs. In contrast, the
adsorption of water molecules at the interface is much less important because they do not
induce obvious defect states near the band edge of MoS2.
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In discussing the adsorption of O2, we first tested different placement methods, in-
cluding those parallel and perpendicular to the interface, as shown in Figure 6a. To ensure
the reliability of our conclusion, we tested O2 at three different positions, as shown in
Figure 6b. The CaF2 layer was removed from the atomic schematic for ease of observation.
Moreover, all of our defects and adsorption structures were tested in at least three different
locations to prevent randomness. All results demonstrate the reliability of the existing
data. To further check the importance of oxygen, we studied the oxygen that adsorbed in
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other positions. Figure 5 shows the situation where oxygen molecules are adsorbed in the
interlayer of MoS2. It can be seen that the defect state is only 0.37 eV below VBM, which
will trap holes easily, and thus, affects the device performance. Figure 5 shows the case
where oxygen is adsorbed on the surface of CaF2. An occupied defect state that is close to
CBM rather than CBM is seen. Considering that the negative gate voltage in a p-FET will
drag the defect level down toward the VBM, the oxygen on the CaF2 surface will form very
active hole-trapping centers with large gate voltage.
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To exhibit the importance of different defects more clearly, Table 1 summarizes the
information of all defects. The defect levels that are more than 1 eV away from the MoS2
band edge are regarded as electronically unimportant [57–59]. The ∆EVBM/CBM is calculated
as; moreover, the formation of energy/adsorption energy is considered to provide an
overall evaluation of their importance.

3.2. The Charge-Trapping Centers in CaF2-MoSi2N4

Now, we study the MoSi2N4-CaF2 system. MoSi2N4 is a 2D material with seven
atomic layers. One Mo atomic layer lies in the middle while two Si-N-Si tri-layers lie on
the top and bottom surfaces symmetrically. It can be seen that the VBM and CBM are
provided by MoSi2N4 (Figure 7b), and the band offsets are greater than 2 eV, which makes
charge tunneling difficult. Vacancy defects caused by the shedding of N atoms and Si
(Figure 7a) atoms on the surface layer are the primary problems to be considered. At
the same time, the influence of the adsorption of oxygen molecules and water molecules
(Figure 7a) during device manufacture is also considered. The atoms highlighted in green
in Figure 7a represent defects and adsorption sites.
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For the N vacancy (VN) (Figure 8a), two defect levels are induced into the band gap,
of which the half-occupied d1 state is 0.98 eV above VBM and the empty d2 state is 0.45 eV
below CBM. Such small energy barriers make them very active hole/electron-trapping
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centers. In contrast, the VSi defect induces no defect levels close to the CBM, as is shown
in Figure 8b, but it induces many defect levels below the VBM. Specifically, the electrons
in VBM have spontaneously transferred to the defect sites, shifting the Fermi level below
the VBM and making the CaF2-MoSi2N4 a whole p-type heterostructure. Interestingly, the
adsorption of oxygen in the CaF2-MoSi2N4 interface has a very similar effect, as is shown
in Figure 8c, the electrons in VBM are spontaneously captured by the oxygen, and the
MoSi2N4 becomes a p-type material. If the oxygen density is high, the performance and
reliability of the device will be greatly reduced. In comparison, the adsorption of water
molecules in the interface does not have such an effect, as is shown in Figure 8d. The water-
related defect energy level is far from the band edge of MoSi2N4. This further confirms that
water molecule adsorption is less important than oxygen adsorption in impacting device
performance and reliability. To present the importance of different defects more intuitively,
Table 2 summarizes and compares the information of all defects in the CaF2-MoSi2N4
system.
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Table 2. Importance of different capture centers in CaF2-MoSi2N4.

Defect
Types

Defect
State

∆E-
VBM
(eV)

∆E-
CBM
(eV)

n-FET
Importance

p-FET
Importance

Fromation
Energy (eV)

Overall
Importance

VN
d1 0.98 −1.83 ✓ ✗

5.97 ✓d2 2.36 −0.45 ✗ ✓

VSi
d1 −1.01 −3.23 ✗ ✗

11.15 ✓d2 0.00 −2.22 ✓ ✗

O2 at interface −0.32 −3.07 ✓ ✗ 0.19 ✓
H2O at interface −2.29 −5.17 ✗ ✗ 0.34 ✗

4. Conclusions

In conclusion, we have investigated the various defects and adsorbates in CaF2-
based 2D material MOSFET structures to distinguish their importance in degrading device
performance and reliability. First, the intrinsic defects in channel materials, including the Vs.
and VMo in MoS2, and VSi and VN in MoSi2N4, are very active charge-trapping centers. At
the same time, although the intrinsic defect VMoS6 causes many defect states in the band gap,
it is not a significant defect due to its large formation energy. Second, the adsorbed oxygen
molecules in the channel/CaF2 interface or CaF2 surface are very important trap centers,
and they can even spontaneously change the MoSi2N4 to p-type. Third, the adsorbed water
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molecules are inactive in capture charges, and thus, are much less important in affecting
device performance. An elaborate table comparing the detailed properties of different
defects is provided so that both experimental researchers and theorists can refer to it easily.
Moreover, the intrinsic defect VSi in CaF2-MoSi2N4 can also lead to conversion to p-type
transistors. Finally, we found that VF in CaF2 spontaneously contributes two electrons to
CBM.

The significance of defects or adsorption in CaF2-based 2D material MOSFETs is
not solely contingent upon the defect energy level; rather, it is also contingent upon
the formation energy and transport type of the device. The two tables presented in the
article provide a comprehensive demonstration of the impact of defects on performance.
Furthermore, this methodology can facilitate the development of a system tool in the
future, which will enable the determination of the impact of defects on device performance.
Especially worth mentioning is the adsorption of oxygen molecules, which is a more
problematic phenomenon than the adsorption of water molecules. To avoid this issue,
it is advisable to isolate oxygen as much as possible during device preparation or use
objects that do not introduce additional pollution sources to adsorb oxygen. These results
mean that the exclusion of adsorbates in device fabrication is as important as growing
high-quality channel material to obtain better device performance. The findings of our
research can be extrapolated to the significance of different capture centers in a variety of
2D material MOSFETs.
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