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Abstract: Aiming at the limitations of single-functionality, limited-applicability, and complex designs
prevalent in current metasurfaces, we propose a terahertz multifunctional and multiband tunable
metasurface utilizing a VO2-metal hybrid structure. This metasurface structure comprises a top
VO2-metal resonance layer, a middle polyimide dielectric layer, and a gold film reflective layer at the
bottom. This metasurface exhibits multifunctionality, operating independently of polarization and
incident angle. The varying conductivity states of the VO2 layers, enabling the metasurface to achieve
various terahertz functionalities, including single-band absorption, broadband THz absorption, and
multiband perfect polarization conversion for linear (LP) and circularly polarized (CP) incident
waves. Finally, we believe that the functional adaptability of the proposed metasurface expands the
repertoire of options available for future terahertz device designs.

Keywords: metasurface; terahertz (THz); polarization conversion; absorption; polarization angle;
vanadium dioxide (VO2)

1. Introduction

Terahertz (THz) technology and its devices have sparked curiosity in researchers’
minds due to the rapid advancement in THz science and technology. Their broad spectrum
of applications in non-intrusive testing, spectroscopic detection, security screening, sensing,
optical imaging, communications, etc. has intensified the allure and importance of their
cutting-edge technology [1]. Traditional THz wave transmission regulation techniques rely
mostly on phase accumulation. The immediate interaction of THz radiation with natural
materials poses a significant challenge due to the characteristics of THz radiation [2].
Metasurfaces (MSs) have developed as an extremely effective solution to overcome this
fundamental constraint. Such metasurfaces are characterized by their exceptionally thin
metamaterial structures, comprised of planar electromagnetic (EM) microstructures capable
of changing the polarization, amplitude, and phase of electromagnetic waves [3]. Research
has explored diverse, linearly polarized (LP) converters [4–8] and circularly polarized
(CP) converters [9–12]. There have also been extensively investigated dual-band [13–15],
multiband [16–19], and broadband [20–22] absorbers. Therefore, there is a strong emphasis
on tunable multifunctional devices exploiting metasurfaces consisting of active functional
materials.

Polarization refers to light oscillation, commonly explained through the electric field
vector [23,24]. This fundamental property of light finds widespread utility across diverse
domains, including quantum optics, imaging, optical displays, light-matter interaction, and
sensing [25–28]. Notably, polarization converters demonstrate the ability to manipulate the
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polarization of THz waves [29]. Such converters facilitate polarization conversion through
several modes, encompassing LP-to-LP [30,31], LP-to-CP [9,32–34], and CP-to-LP [35,36]
conversions.

Another prominent area of research within the domain of metasurfaces is absorbers,
which have emerged as significant contributors in the burgeoning field of energy-manipulating
devices, primarily owing to their remarkable light-harvesting capabilities. Capitalizing
on their intrinsic high-loss properties, these tailored surfaces offer promising prospects
for revolutionizing diverse sectors, including solar energy collection [15], thermal imag-
ing technology [16], and the design of ultra-sensitive photodetectors [17]. Landy et al.
pioneered the ideal absorber in 2008, ingeniously merging a split-ring resonator with
a metal-wire design to achieve outstanding single-band absorption [18]. Nevertheless,
the ability to dynamically modulate the properties of metamaterial is essential for their
practical applications. Recognizing this, researchers have begun a material exploration,
investigating unconventional platforms such as graphene [20–22,37], indium tin oxide
(ITO) [23], vanadium dioxide (VO2) [24,25], and photosensitive silicon [26,38]. These ef-
forts have resulted in adaptable metasurface absorbers that are not only dual-band but
also multiband. Among these, VO2 exhibited unique properties of ultrafast stability and
conversion rate [39,40]. VO2 is a correlated-electron material with an insulator-to-metal
phase transition that can be triggered by thermal, electrical, or optical stimuli [41,42]. The
transformation of VO2 between different states leads to significant differences in their
optical and electrical properties.

Previous studies predominantly concentrated on the tunability of a singular function-
ality, such as single-band absorption [43–45]. It also focused on the tunability of broadband
polarization conversion for singular functionality in the THz range [46–48]. Currently, there
is a concerted effort within the scientific community to investigate methodologies for inte-
grating multiple electromagnetic functionalities into a singular device. This pursuit aims to
mitigate the manufacturing expenses associated with metasurfaces while broadening their
application domains.

So far, limited research endeavors have explored the utilization of metasurfaces to
achieve multiband absorption and polarization conversion under linear and circular po-
larized incident waves while remaining independent of both incident and polarization
angles. Moreover, metasurface functional devices face challenges, including low effi-
ciency, restricted bandwidth, lack of tunability, and intricate control methodologies. Hence,
our work focuses on designing a multifunctional and multiband metasurface character-
ized by a simple structure and outstanding performance to facilitate the design of THz
photonic devices.

In this paper, we propose a THz multifunctional and multiband tunable metasurface
based on a VO2-metal hybrid structure. This configuration enables functional switching
between single-band and multiband absorption and polarization conversion. Specifically,
when the conductivity of VO2 is 10 S/m, it behaves as a dielectric, facilitating multiband
polarization conversion with a polarization conversion ratio (PCR) exceeding 100% for
both LP and CP incident waves at frequencies of 0.11 THz and 0.21 THz, respectively.
Upon increasing the conductivity of VO2 to 4 × 103 S/m, the metasurface transitions to
an absorber, achieving an absorption rate of 86% at 0.11 THz. Additionally, when the
conductivity of VO2 reaches 2 × 105 S/m, the proposed design attains absorption across an
ultra-broadband range spanning from 0.27 THz to 0.36 THz, achieving a rate of 61%.

Moreover, the proposed design exhibits a stable response to incident and polariza-
tion angles up to 90◦. The distributions of surface-induced currents on the unit cell and
the relative impedance are investigated to elucidate the underlying physical mechanisms.
This work represents a significant advancement in THz metasurface technology, show-
casing potential applications in light manipulation and laying the groundwork for future
developments in photonic device integration.



Nanomaterials 2024, 14, 1048 3 of 13

2. Structure Design and Simulation

To achieve multiple functionalities from a single device, it is essential to meticulously
design the proposed metasurface structure to elicit distinct responses. The proposed meta-
surface is meticulously crafted from various layers of materials to exhibit multifunctional
capabilities. By adjusting the conductivities of VO2 material, the topology can be config-
ured to operate as either a multiband polarization converter or multiband absorber for LP
and CP incident waves. The schematic representation of the proposed snowflake-shaped
metasurface is depicted in Figure 1a; Figure 1b,c show the unit segment’s top view and
three-dimensional view.
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Figure 1. Schematic representation of the multifunctional tunable metasurface (a) A two-dimensional
arrangement of the constituent unit cells, (b) A three-dimensional depiction of the envisaged meta-
surface, (c) Top-down representation of the unit cell.

The optimized geometric measurements of unit cells are as follows: P = 300 µm,
G = 10 µm, L = 15 µm, R = 145 µm, D = 195.06 µm, and h = 100 µm, as depicted in
Figure 1c. The lossless polyimide, placed between the upper and bottom layers, has a
relative permittivity of 3.5 and a tangent loss of 0.02 [49]. Furthermore, the metal surface
is comprised of gold (Au) with a conductivity of 4.561 × 107 S/m [50]. The thickness
of the VO2, gold, and polyimide dielectric layer is reported to be 0.2 µm, 0.2 µm, and
100 µm, respectively. Employing the Drude model, the permittivity of VO2 is obtained
using Equation (1) [51].

ε(ω) = ε∞ −
ω2

p(σ)

(ω2 + iγω)
(1)

where ε∞ = 12, γ = 5.75 × 1013 rad/s, the plasma frequency is obtained at the conductive
state (σ) using ω2

p(σ) = σ/σ0ω2
p(σ0) in which σ0 = 3 × 105 s/m and ωp(σ0) = 1.4 ×

1015 rad/s. At TC = 340 K, convert the status from insulating to conducting, and the
conductivity and permittivity fluctuate dramatically across the insulating to conducting
state [52]. In this work, we solely investigate the conductive state of VO2 for the polarization
conversion and absorption at σ = 10 s/m and σ = 2 × 105 s/m, respectively.
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3. Metasurface Performance
3.1. Performance of the Multifunctional (SFL) Metasurface as a Polarization Conversion

The efficacy of the proposed snowflake (SFL)-shaped metasurfaces can be evaluated
through the utilization of a comprehensive full-wave simulation tool, such as CST MW
Studio. The unit cell exhibits periodic boundary conditions along the x and y axes, with an
open boundary introduced along the z direction to facilitate wave propagation along the z
axis. This arrangement allows for incident terahertz waves with different polarizations in
the frequency range of 0.01 THz to 0.4 THz.

In accordance with the principles of polarization, the Jones matrix can be used to
correlate incident polarized waves with their reflected counterparts [34]. The relationship
is expressed as in Equation (2).(

Ex
r

Ey
r

)
=

(
Rxx Rxy
Ryx Ryy

)(
Ex

i
Ey

i

)
= R

(
Ex

i
EY

i

)
(2)

Herein, R signifies the Cartesian Jones reflection matrix. It operates in collaboration
with the incident electric field Ex(y)

i and reflected electric field Ex(y)
r , aligned in x(y) direc-

tions. The reflection matrix for circularly polarizations is attained by employing the linear
polarized reflection coefficient subsequent to the conversion from Cartesian to circular base.

RCP =

(
R++ R±
R∓ R−−

)
= ∧−1R∧ =

1
2

(
Rxx − Ryy − i

(
Rxy + Ryx

)
Rxx + Ryy + i

(
Rxy − Ryx

)
Rxx + Ryy − i

(
Rxy − Ryx

)
Rxx − Ryy + i

(
Rxy + Ryx

)) (3)

Herein, ∧ denotes the coordinate transformation matrix is utilized for conversion

from Cartesian to circular base, defined as ∧= 1√
2

(
1 1
i −i

)
. Here, in Equation (3), the

signs ‘+’ and ‘−’ indicate the right-handed and left-handed circularly polarized waves,
respectively. The unit cell reflection coefficients for normal x and y incidences or RCP
and LCP polarized waves are depicted in Figure 2, where ( Rxx

Ryy
), ( R++

R−−
) and (

Ryx
Rxy

), ( R−+
R+−

)

represent the reflection coefficients for co and cross-polarized waves, respectively.
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When the conductivity of VO2 is 10 S/m, the proposed structure acts as a multiband
polarization conversion for both LP and CP incident waves. In Figure 2a,b, when the
incident wave is LP and CP, the cross-polarized reflection coefficient (Ryx, Rxy, R−+, R+−)
is notably observed to attain a value of 100% at 0.11 THz and 0.26 THz, also achieved more
than 50% values in bandwidth (0.10 THz–0.15 THz) and (0.22 THz–0.30 THz), while co-
polarization reflection coefficient reaches (Rxx, Ryy, R++, R−−) to 0.1 at frequency 0.11 THz
and 0 at 0.26 THz. Hence, the envisioned metasurface configuration adeptly transforms
linear and circular polarizations into their corresponding cross-polarizations across multiple
bands. Despite the absence of C4 symmetry within the structure configuration, a salient
feature lies in its inherent and displays mirror symmetry along the u-axis, resulting in the
equivalence of Rxx = Ryy, Ryx = Rxy, R−+ = R+− and R++ = R−−.

The analysis of the proposed metasurface, cross-polarized conversion (CPC), is further
elucidated through the calculation of the polarization conversion ratio (PCR), as defined by
Equation (4).

PCR =
|Rcross|2

|Rcross|2 + |Rco|2
(4)

Figure 2c,d illustrate the PCR associated with LP and CP, respectively. Notably, within
the frequency range of (0.1 THz–0.4 THz), the PCR attains 100% efficiency within specific
frequencies, namely 0.11 THz and 0.26 THz, and more than 90% at frequency intervals
(0.1 THz–0.12 THz) and (0.261 THz–0.276 THz). The polarization conversion ratio is the
same for both LP and CP incident waves due to the unique structure design of the unit cell.

In practical applications, the assessment of metasurface performance often necessitates
consideration of wide-angle incidence scenarios. Figure 3 depicts the influence of incident
LP and CP light at various angles of incidence and azimuth on the polarization conversion
effect within metasurface structures. Figure 3a illustrates the consistent polarization con-
version ratio (PCR) within an incidence angle range of 0◦ to 85◦. Additionally, Figure 3b
provides an examination of diverse azimuthal incidences on PCR, indicating a stable PCR
bandwidth within an azimuthal angle range of 0◦ to 85◦. This observed angular stability is
ascribed to the diminutive dielectric thickness and unit cell size. Considering the potential
for incoming waves to exhibit arbitrary incidence angles in practical scenarios, the metasur-
face’s insensitivity to azimuth and incidence angles renders it a promising candidate for a
variety of applications [53].
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Furthermore, the physical mechanism is essential to analyzing the performance of the
polarization conversion of the proposed metasurface. Therefore, considering the surface
distribution at the different frequencies, namely 0.106 THz, 0.118 THz, 0.14 THz, 0.244 THz,
0.268 THz, and 0.29 THz, we have the top gold surface of the proposed SFLM structure and
the bottom layer (ground plan) of the unit cell for y-polarized incident waves. According to
Faraday’s law, a changing magnetic field between the two metals causes surface current to
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flow in opposite directions on the top and bottom of the metallic layers. The black-colored
arrow indicates the net current shown in Figure 4. Equation (5) can be used to determine the
relationship between electric and magnetic dipole moments and average electromagnetic
fields. [

p
m

]
=

[
αee αem
αme αmm

][
E
H

]
(5)

Here, P =
[
px py

]T , m =
[
mx my

]T is the electric dipole moment and magnetic
dipole moment, respectively, and the matrix (α) contains the materials coefficients in terms
of electric and magnetic field, while the E =

[
Ex Ey

]T and H =
[
Hx Hy

]T is the average
tangential electric and magnetic fields, respectively, at the metasurface. The time-changing
electric and magnetic surface current polarization will cause electric and magnetic surface
currents on the metasurface, which is expressed in Equation (6):[

J
M

]
= iω

[
αee αem
αme αmm

][
E
H

]
(6)

where J =
[

Jx Jy
]T and M =

[
Mx My

]T electric and magnetic current densities, re-
spectively, and ω is the angular frequency of the incident electromagnetic wave. The
relationships between the surface current density J and radiated for fields are given by

E = −i
ωµ

4π

∫
J(x, y)

e−ikR

R
dxdy (7)

According to Equation (7), for CPC, an electric field that is polarized along the x
direction will result in current flow on the metasurfaces in the y direction, while an
electric field polarized along the y direction will induce current flow in the x direction.
Figure 4a–c,g–i demonstrates the cross-polarization characteristics at various operating
frequencies. At 0.10 THz, 0.11 THz, and 0.14 THz, the surface current on the top meta-
surface and the ground plate is inversely parallel, leading to the excitation of magnetic
resonance and the generation of an induced magnetic field. This induced magnetic field
results in the cross-polarization effect where the reflected THz wave becomes x-polarized,
as indicated by Equation (6). Similarly, Figure 4d,j illustrate that, at a frequency of
0.24 THz, the surface current on the top layer becomes corresponding to the ground
layer, leading to the generation of electric resonance and the formation of an induced
electric field. By decomposing the electric field into its orthogonal components x and
y, it is evident that the electric field along the x axis can cross-couple with the incident
electric field to form CPC and result in the reflected THz wave being x-polarized according
to Equation (5). Figure 4e,f,k,l illustrate that, at frequencies 0.26 THz and 0.29 THz, the
primarily distributed surface current on the top layer results in the creation of electrical
resonance, forming an electric dipole, where the x component of the induced electric field
plays a significant role in generating cross-polarization effect. These observations further
validate the cross-polarization characteristics and support the electromagnetic behavior
described by the equation, showcasing the potential applications of these findings in THz
wave manipulation and control.

Furthermore, the phenomena of cross-polarization conversion can be comprehended
through the inherent anisotropy in the designed structure. By rotating the standard x-y, the
coordinate system is rotated 45◦ to establish a unique u-v coordinate system. As shown
in Figure 5a, the anisotropic nature of the snowflake-like structure allows the incoming
y-polarized wave to be divided orthogonally into constituents along the u and v axes. In re-
sulting of this division enables the mathematical representation of the incident and reflected

waves as follows [46]:
→
Ei =

(→
u Eui +

→
v Evi

)
exp(iφ) and

→
Er =

(→
u RuuEui +

→
v EvvEvi

)
exp(iφ).

Here, Ruu = |Eur|/|Eui| and Rvv = |Evr|/|Evi| represent the reflection coefficients in the
u and v directions, respectively, with subscripts i and r indicating incident and reflected
waves.
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Moreover, the phase disparity (∆φ) arises from structural asymmetry, leading to
the relationship between reflection coefficients can be written as: Rvv = Ruu exp(j∆φ).
Figure 5b depicts the reflection coefficients of the reflected wave, while Figure 5c depicts
the phase and phase differences. In the frequency range of 0.15 to 0.4 THz, the reflection
coefficients Ruu and Rvv approaches to 1, with a phase difference of around ±180◦. These
results indicate that the synthesized waves of Ruu and Rvv deviate by 90◦ from the incident
wave, showcasing the metasurface’s capability to transform y-polarized incident waves
into x-polarized reflected waves.

3.2. Performance of the Multifunctional (SFL) Metasurface as an Absorption

As well as the performance of the proposed metasurface in polarization conversion,
the multifunctional (SFL) metasurface was designed to operate as an absorber owing to the
inherent conductivity of vanadium dioxide (VO2). As depicted in Figure 1, a strategically
placed VO2 film on the corner of the snowflake-like structure is instrumental in constituting
the multiband absorber.

The absorptivity of the multifunctional (SFL) metasurface is determined through the
application of Equation (6).

A(w) = 1 − R(w)− T(w) (8)

Herein, R = |S11|2 represent the reflectivity, T = |S21|2 signifies the transmissivity
of the metasurface. It is noteworthy that the gold is utilized as the reflector, resulting in
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the transmission being zero, T = 0. The absorptivity of the metasurface for LP waves is
computed as an equation

A(ω) = 1 − |Rxx|2 −
∣∣Ryx

∣∣2 (9)

For CP wave,

A(ω) = 1 −
∣∣∣R++

−−

∣∣∣2 − |R−+/+−|2 (10)

According to Equations (7) and (8), when the incident wave is composed of both LP
and CP components and given a conductivity of VO2 as 4 × 103 S/m, an absorption rate of
86% is attained at 0.11 THz. Moreover, an absorption exceeding 50% is achieved within the
frequency bandwidth ranging from 0.09 THz to 0.15 THz, as illustrated in Figure 6a,b.
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When the conductivity of VO2 is increased to 2 × 105 S/m, the absorption of 61% is ob-
tained at 0.34 THz and achieved more than 50% absorption in bandwidth (0.27 THz–0.36 THz)
for LP and CP incident wave, as shown in Figure 6c,d.

Impedance-matching theory is an essential principle for evaluating absorption. In this
study, the absorption and relative impedance is achieved [28].

A = 1 − R = 1 −
∣∣∣∣Z − Zair
Z − Zair

∣∣∣∣2 = 1 −
∣∣∣∣Zr − 1
Zr + 1

∣∣∣∣2 (11)

Zr =

√√√√ (1 + S11)
2 − S2

21

(1 − S11)
2 − S2

21

(12)

where Zair is the impedance of the free space and Z is the impedance of the metasurface.
The absorption of the metasurface occurs when the effective impedance of the multiband
absorber aligns with that of the free space. As depicted in Figure 7a,b, the real part ap-
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proaches unity, and the imaginary part approaches zero, which is calculated by employing
Equations (8) and (9) for the conductivity of the VO2 is 4 × 103 S/m and 2 × 105 S/m,
respectively.
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The necessity for tunability and angular stability is paramount across numerous
prospective applications. To ascertain the tunability, an examination of absorption across
various conductivities of VO2 is conducted, with the findings consolidated in Figure 8. As
the conductivity of the VO2 increases from 10 S/m to 2 × 105 S/m, there is a corresponding
rise in plasmonic absorption within the VO2 layer, resulting in an enhancement in the ab-
sorption of incident light. However, at extremely high conductivities, plasmonic absorption
declines due to the heavy damping of plasmons, weakening their coupling with incident
light and decreasing the absorption rate. At 0.11 THz, absorption reaches to 86% with the
conductivity of VO2 is 4 × 103 S/m and 61% with the conductivity of VO2 is 2 × 105 S/m
(conductive state), dropping to 0% at 10 S/m (insulating state), demonstrating adjustable
multiband absorption from 0% to 86%, as shown in Figure 8a.

Furthermore, the impact of oblique incident angles is examined when the conductivity
of VO2 is 4 × 103 S/m and 2 × 105 S/m, respectively, with the result shown in Figure 8b,c.
The investigation reveals the proposed structure robustness resilience across a wide inci-
dence angle spectrum (0◦ to 85◦). Meanwhile, the absorption performance is investigated
for LP and CP incident waves at the conductivity of VO2 is 4 × 103 S/m and 2 × 105 S/m,
respectively, which demonstrates polarization independence when the incident terahertz
wave is normally incident in wide incidence angles spectrum (0◦ to 85◦), owing to the unit
cell’s unique rotational symmetry structure, as shown in Figure 8d,e. The stability of the
large incident angles and wide polarization angles stems from the unique configuration of
the unit cell [54]. As a result, the proposed SFL metasurface design for the absorber has
excellent characteristics of wide-angle incidences and wide polarization incidences, which
are significant for practical applications.
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4. Potential Fabrication Process of Designed Metasurface

In the fabrication of the designed metasurface, a combination of sputtering deposi-
tion technology [55] and lithography technology [56] is employed. (a) Initially, a layer of
polyimide dielectric is deposited onto a silicon wafer via a spin-coating process; (b) Subse-
quently, a thick layer of gold film is deposited onto the sufficiently thick polyimide substrate
utilizing electron beam evaporation; (c) The gold antenna pattern is then formed through
lithography and metallization techniques; (d) Following this, a pre-prepared VO2 colloid is
spin-coated into the gaps of the gold antenna pattern layer, resulting in the formation of a
VO2 film with the required thickness; (e) The VO2 patches structure is further generated
using lithography technology; (f) Finally, another deposition of a thick layer of gold film is
applied to the back side of the polyimide substrate via electron beam evaporation. This
multi-step process ensures the precise fabrication of the metasurface structure with the
desired properties.

5. Conclusions

In summary, this research article represents the multiple functionalities of a THz
metasurface based on vanadium dioxide (VO2), which has the functionalities of multiband
absorption and multiband polarization conversion. When VO2 is an insulating phase, the
designed SFLM acts as a multiband polarization converter within the frequencies range of
0.11 THz–0.12 THz and 0.26 THz–0.27 THz; the designed metasurface exhibits robust capa-
bility for converting linear and circular polarizations to their respective cross-polarizations
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When the VO2 transitions into a conducting state, the proposed metasurface operates
as a multiband absorber, demonstrating absorption peaks at three distinct frequencies.
Specifically, absorption rates exceeding 86% at 0.11 THz, over 60% at 0.288 THz, and 61% at
0.343 THz are attainable. Notably, the investigation emphasizes the stability of polarization
conversion and absorption spectrum across varying polarization angles while sustaining
remarkable multiband absorption capabilities even under high incidence angles. This mul-
tifunctional metasurface thus presents promising avenues for advancing future terahertz
(THz) devices.
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