
Citation: Bărar, A.; Maclean, S.A.;
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Abstract: Left-handed materials are known to exhibit exotic properties in controlling electromagnetic
fields, with direct applications in negative reflection and refraction, conformal optical mapping,
and electromagnetic cloaking. While typical left-handed materials are constructed periodic metal-
dielectric structures, the same effect can be obtained in composite guest–host systems with no
periodicity or structural order. Such systems are typically described by the effective-medium ap-
proach, in which the components of the electric permittivity tensor are determined as a function of
individual material properties and doping concentration. In this paper, we extend the discussion
on the mixing rules to include left-handed composite systems and highlight the exotic properties
arising from the effective-medium approach in this framework in terms of effective values and
dispersion properties.

Keywords: mixing rules; dielectrics; composites; left-handed materials; electric permittivity; metamaterials;
dispersion

1. Introduction

The effective-medium approach for the description of the electromagnetic response
of various material composites has been used for more than a century, starting with the
Maxwell–Garnett mixing rules [1,2]. The model derives an effective single value of the
dielectric constant by assuming a homogeneous, isotropic dielectric host and a metallic
guest comprising spherical metallic fragments having a concentration below a specific
threshold. The model has since been extended to include a higher filling factor [3,4],
as well as all-dielectric composites [5], metallic nanoparticles/liquid crystal two-phase
systems [6,7], transient responses [8], a larger number of guest particles [9], and elliptical
particles [10].

Recently, left-handed materials have gained extraordinary traction as the leading candi-
date for large-scale, fully integrable electromagnetic field controllers because of their ‘exotic’
properties. Such properties include hyperbolic wavefront controllers [11,12], negative re-
flection and refraction [13], conformal optical mapping [14], electromagnetic cloaking [15],
epsilon-near-zero wave propagation [16], electromagnetically induced transparency [17]
and a negative-index Kerr effect [18]. Initially, all left-handed materials were artificially
created, periodically structured composites arranged in a solid structure, as this was the
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requirement for propagating the unit cell interaction with the electromagnetic field across
the entire structure. The electromagnetic response of such structures is strongly dependent
on the types of materials used (metal-dielectric or all-dielectric) and the geometry and sizes
of the unit cell elements, and their relative displacement on the unit cell map. As a result,
the so-called frequency-selective surfaces [19] have exhibited an on-demand control on the
Fresnel coefficients (reflection, transmission, and absorption), accumulated phase [20,21],
and output polarization [22]. The strong non-locality of frequency-selective surfaces [23]
have also induced effects of dichroism [24] and chirality [25,26], in which two electromag-
netic fields, each having certain specific properties, experience a different net effect after
interacting with the frequency-selective surface. Relevant examples of the non-locality
property are selective focusing [27] and chiral imaging [28].

More recently, however, the same net effect on the electromagnetic field was observed
in partially ordered [29] and fully disordered structures [30–32], when the net effect on
the electromagnetic field was resolved in terms of effective scattering properties rather
than periodic unit cell effect replication. Such materials can be obtained by immersing
Janus nanoparticles [33], which can exhibit a negative electric permittivity, in a positively
valued permittivity host medium, such as nematic liquid crystals [34–36], coatings [37], and
thin film structures [38]. The advantage of such structures is that they can be configured
to exhibit the property of locality, as opposed to periodically ordered metasurfaces and
metastructures, which are highly non-local. Moreover, obtaining disordered guest–host
media with left-handed materials can be significantly more cost-effective by comparison
to previously reported metamaterials. In the case of metamaterials, obtaining periodic
structures with very specific conditions in terms of size and relative positioning (with near-
zero error tolerance) requires a very complex technological fabrication process. Conversely,
disordered media are relatively easier to fabricate, as the requirements on the size and
relative positioning of metaparticles within the host media are practically nonexistent.
Owing to all these properties, effective-medium approaches can be applied to left-handed
materials, opening a new set of possible outcomes in terms of net effects imparted on the
output field.

In this paper, we focus on the mixing rules for various effective-medium approaches
to include fully disordered left-handed metamaterials as a function of the volume-filling
fraction of the inclusion material and as a function of the anisotropic properties of the
inclusion material. For such systems, we determine the effective dielectric permittivity
and electric conductivity of the medium as functions of various conditions imposed on the
constituting materials in isotropic and anisotropic cases. We also investigate the dispersion
properties of such materials, highlighting the resonance properties of the symmetric and
asymmetric modes. A key motivation for performing the study is the fact that, while
frequency-selective surfaces require a complex, highly accurate technological fabrication
process, the inclusion of left-handed materials, such as Janus metaparticles, in a liquid or
liquid crystal host system is a relatively non-imposing technological process in terms of
both accuracy and costs. Furthermore, the construction of a non-periodic composite also
eliminates possible diffraction effects that most frequency-selective surfaces exhibit. Also,
depending on the guest and/or host system, the composite structure may be addressable by
external electric or magnetic fields, offering a new degree of control in all applications. For
all reasons presented above, we believe this study serves to pave the way for the creation
of new composite devices involving Janus metaparticles inserted into liquid crystal hosts,
arranged in thin film structures, or included in metallic coatings. The generality of the study
does not impose the selection of a particular frequency window. Therefore, the applications
can cover all the operational electromagnetic spectrum from GHz to the visible regime.

2. Mixing Rules for the Electric Permittivity

To account for the most general material, the material law involving the two electric
field vectors is written in tensor form:
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D = ϵ̌E (1)

where ϵ̌ represents the absolute electric permittivity dyadic. For linear anisotropic materials,
there exists a set of axes for which the matrix describing the dyadic is diagonalizable and
has the following form:

ϵ̌ =

 ϵx 0 0
0 ϵy 0
0 0 ϵz

 (2)

which for long-axis ellipsoidal systems, such as nematic liquid crystals, becomes

ϵ̌ =

 ϵ⊥ 0 0
0 ϵ∥ 0
0 0 ϵ⊥

 (3)

for liquid crystals below their Freedericksz transition and

ϵ̌ =

 ϵ⊥ 0 0
0 ϵ⊥ 0
0 0 ϵ∥

 (4)

for liquid crystals above their Freedericksz transition [39]. The notations ‘⊥’ and ‘∥’ cor-
respond to the directions perpendicular and parallel to the long axis of the liquid crystal
molecule, respectively. For guest–host systems, the mixing rules have to account for a series
of factors ranging from the independent electric permittivity values to the anisotropy of
the components resulting from the molecular geometry or crystalline asymmetry. Here, we
have considered the most utilized mixing rules, namely the Maxwell–Garnett and Brugge-
man rules, because of their ability to complement each other in accurately describing the
whole spectrum of volume-filling fractions. The Maxwell–Garnett mixing rule accurately
describes the effective permittivity for low-valued volume-filling fraction (0 < f < 0.25),
while the Bruggeman rule more accurately describes the rest of the filling fraction interval
(0.25 < f < 1).

2.1. The Maxwell Garnett Mixing Rule

As stated before, the most widespread mixing rule for host-guest systems is the
Maxwell–Garnett rule, which typically holds for low-concentration inclusions in the host
medium. Specifically, the mixing rule correctly approximates the effective value of the
electric permittivity for volume-filling fractions f < 0.25. In anisotropic guest–host systems,
each of the permittivity components along x, y, and z has to be adjusted by the depolar-
ization factors Nx,y,z. These scalar coefficients range from zero to one and are exclusively
dependent on the geometry of the guest particle and degree of anisotropy of the environ-
ment [40]. For spherical inclusions, Nx,y,z = 1/3; whereas for elliptic-shaped inclusions, the
depolarization factor is determined via the associated elliptic integral across the geometry.
Considering a host system having ϵe and an inclusion having ϵi, the effective permittivity
of a system in the Maxwell–Garnett model is given by

ϵe f f ,x,y,z = ϵe + f
(ϵi − ϵe)ϵe

ϵe + (1 − f )Nx,y,z(ϵi − ϵe)
(5)

where f is the volume fraction of inclusions are in the host medium. For guest–host
systems involving liquid crystal hosts, the conversion from the xyz system to the parallel
and perpendicular directions is given elsewhere [39]. For our study, given that Janus
metamaterials have a strong deviation from simple, symmetric geometries, we prefer a
numerical appreciation to a geometry-driven value for Nx,y,z. Furthermore, we make
no initial assumption on the properties of the inclusion material; rather, we perform
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a scan on possible values for the permittivity value of inclusions at different volume
fractions. This non-assumption procedure is chosen based on two reasons: Firstly, the
highly irregular geometry of the Janus metamaterial produces strong anisotropy, and given
the relative rotation of individual particles with respect to each other, no apriori assumption
can be made. Secondly, metamaterials are notorious for undergoing drastic changes to
dielectric properties in response to any slight variations in the geometries and sizes of their
component particles, and therefore, any prior assumption would not provide an accurate
picture. For our investigation, we chose an isotropic host material having ϵe = 3. This
simplification does not lead to a loss of generality in the anisotropic behavior of the system,
as the directions x, y, and z are interchangeable because of the scanning of Nx,y,z. To serve as
a benchmark, we first performed a scan of positively valued ϵi for various volume fractions
and depolarizing factors. The results are presented in Figure 1.
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Figure 1. Effective permittivity of a two-component host–guest system in the Maxwell–Garnett model
as a function of a positively valued permittivity inclusion particle, (a) inclusion filling fraction f , and
(b) depolarization factor Nx,y,z.

The results presented in Figure 1a show a variation of the effective permittivity be-
tween a dielectric with a unit-value of ϵe f f and a dielectric with double the value of ϵe. For
large f -values and low-valued ϵi, ϵe f f tends to a unit value, whereas for large f -values
and high-valued ϵi, the effective permittivity is more than double the value of ϵe. For low
f -values, we have ϵe f f → ϵe. In terms of the depolarizing factor, the effective permittivity
of the system varies from an epsilon-near-zero (ENZ) material to a system with ϵe f f > ϵe.
The ENZ material case is supported by the fact that, for a positive ϵi, the numerator of
the mixing law expression tends to zero for ϵi = ϵe, while the denominator remains finite
and constant for finite values of ϵi. A special case is the spherical geometry nanoparticle
inclusion, for which Nx,y,z = 1/3. For this case, ϵe f f ranges from 1.8 to 4.2 as a function of
the inclusion permittivity ϵi.

When considering negatively valued ϵi materials with the appropriately chosen values
of f and Nx,y,z, the denominator of the mixing rule equation tends to zero. The relation
between the component properties in order to obtain this regime is

|ϵi| = ϵe
1 − (1 − f )N
(1 − f )N

(6)

while the numerator remains finite for all finite values of ϵi. It is, therefore, possible to
achieve extremely large values for ϵe f f by providing an appropriate filling fraction to
accommodate the preset parameters ϵi and Nx,y,z. Regardless of the type of material used
for the inclusion, a method of accurately measuring the depolarization factor Nx,y,z of
arbitrary-shaped metaparticles can be devised in the regions of ϵe f f offering low sensitivity
to both f and Nx,y,z. Thus, the depolarization factor is achieved from the mixing rule as:

Nx,y,z

(
f , ϵe f f ,x,y,z

)
=

f ϵe

(1 − f )
(

ϵe f f ,x,y,z − ϵe

) − ϵe

(1 − f )(ϵi − ϵe)
(7)
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The condition of low sensitivity dictates that both ϵe f f ,x,y,z and Nx,y,z are functions of f ,
which can be evaluated with a certain standard deviation. The low-sensitivity condition
ensures that the standard deviation of the volume fraction and, indirectly, of the measured
effective-medium value introduces minimum error in the determination of the value of
Nx,y,z. The low-sensitivity region can be evaluated by setting extremum conditions on the
derivatives, giving the derivative of ϵe f f ,x,y,z expression as:

∂N
∂ϵe f f ,x,y,z

= − f
1 − f

ϵe(
ϵe f f ,x,y,z − ϵe

)2 (8)

and the low-sensitivity region is located around

ϵe f f ,x,y,z = 2 f
(

ϵe ±
√
(1 − f )(ϵe + 1)ϵe

)
(9)

Similarly, the derivative in f is

∂N
∂ f

=
ϵe

(1 − f )2

(
1

ϵe f f ,x,y,z − ϵe
− 1

ϵi − ϵe

)
(10)

having a corresponding low-sensitivity region for ϵe f f ,x,y,z ≃ ϵi. The low-sensitivity re-
gions conditions can, however, be bypassed when a high-accuracy measurement can be
performed on both ϵe f f ,x,y,z and the volume fraction f of the metaparticle inclusion. Based
on all the above considerations, Figure 2 depicts the values of the effective permittivity
as a function of the negatively valued ϵi of the metaparticle inclusion and of either the
volume-filling fraction f or the depolarization factor Nx,y,z, both taken in a region where
the mixing rule exhibits low sensitivity.

Nx,y,z = 1/3

εi

f

εeff f = 0.2

εi

Nx,y,z

εeff

(a) (b)

Figure 2. Effective permittivity of a two-component host–guest system in the Maxwell–Garnett model
as a function of a negatively valued inclusion metaparticle, (a) the inclusion volume-filling fraction f ,
and (b) depolarization factor Nx,y,z.

2.2. The Bruggeman Mixing Rule

One of the most widely accepted extensions of the Maxwell–Garnett mixing rule is the
Bruggeman rule, which offers a very good approximation of the Maxwell–Garnett mixing
rule at high f -values. Since it considers large values of the volume fraction, the guest–host
system can be viewed symmetrically if the two media are isotropic. The rule is a direct
result of Gauss’s Law for electric fields. Considering the guest–host system lacking in net
charges, the net electric flux through an arbitrary closed surface ϕe in the volume of the
system is zero. When averaging across all scattering particles inside the closed surface,
we obtain ∮

ϵn(r)En(r)dA = ϵe f f

∮
E⊥dA (11)
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where ϵn(r) is the component permittivity, En(r) is the normal component of the scattered
field of each microscopic component, E⊥ is the normal component of the macroscopic
field, and dA is the closed surface element taken in the volume of the guest–host system.
Since the surface is chosen arbitrarily, it can be made sufficiently small to enclose a single
inclusion ϵi in the host medium ϵe. Following this assumption, the Clausius–Mossoti
relation can be extended to the Bruggeman mixing rule as

1 − ∑
j

f j
ϵj − ϵe f f

ϵj + 2ϵe f f
= 0 (12)

where j takes into account all the participants in the mixture (host and j− 1 guests if viewed
asymmetrically). For a two-component system, the effective permittivity is

ϵe f f =
1
4

(
Q +

√
Q2 + 8ϵeϵi

)
(13)

where
Q = (3 f − 1)ϵi + (3(1 − f )− 1)ϵe (14)

In its current form, the mixing rule only only accounts for isotropic media, leaving out
anisotropy and element-shape-induced effects, such as the depolarization factor. Here, we
propose the extension of the mixing rule to encompass anisotropic inclusions with arbitrary
shapes by rewriting Q as

Q′ = (3 f − 1)Nx,y,zϵi + (3(1 − f )− 1)ϵe (15)

while the rest of the law remains unchanged. For validation, we consider an ϵe = 3 host
medium that contains an inclusion ϵi with variable volume fraction f and depolarization
factor Nx,y,z to account for an arbitrary shape. The results for a positively valued inclusion
permittivity ϵi are presented in Figure 3.

ε
i

f

N     =1/3x,y,z ε
eff f = 0.5 ε

eff

ε
i

Nx,y,z

(a) (b)

Figure 3. The adapted Bruggeman mixing rule for positively valued permittivities in the case of
(a) fixed depolarization factor and (b) a fixed-volume-filling fraction.

In the case of spherical inclusions (Nx,y,z = 1/3) with positive ϵi, the effective permit-
tivity values are solely positive. For f = 1, we have ϵe f f = ϵi, as expected. In the case of,
we have ϵe f f = ϵe. The limits are respected for a fixed-volume fraction f = 0.5 and variable
Nx,y,z. Also, for f = 1/3, it follows that Q′ = ϵe, and the effective permittivity is

ϵe f f =
1
4

(
ϵe +

√
ϵ2

e + 8ϵeϵi

)
(16)

Similarly, for f = 2/3, we obtain Q′ = ϵi, the effective permittivity ϵe f f = Nx,y,zϵi, and the
effective permittivity expression:

ϵe f f =
1
4

(
ϵi Nx,y,z +

√
ϵ2

i N2
x,y,z + 8ϵeϵi

)
(17)
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When considering a negatively valued ϵi, a real-valued ϵe f f is obtained only for the
following condition:

Γ = Q2 + 8ϵiϵe > 0 (18)

Inserting

α = 3 f − 1; β = 3(1 − f )− 1 = 2 − 3 f , (19)

and solving for ϵi, the zeroes for the equation are

Γ1
(

f , Nx,y,z
)
= −

√
αβNx,y,z + 4
α2N2

x,y,z

(
2 +

√
αβNx,y,z + 4

)
ϵe (20)

Γ2
(

f , Nx,y,z
)
= −

√
αβNx,y,z + 4
α2N2

x,y,z

(√
αβNx,y,z + 4 − 2

)
ϵe (21)

For ϵi ∈ (−∞, Γ1) ∪ (Γ2,−1), real values of ϵe f f are obtained. Conversely, ϵi ∈ (Γ1, Γ2),
gives a complex-valued ϵe f f , corresponding to an extinction of the radiation and an evanes-
cent radiating regime. The values of Γ1 and Γ2 as functions of f and Nx,y,z are presented
in Figure 4a,b, respectively. For all possible combinations of f and Nx,y,z, Γ1 is negative
and has a relatively large value with respect to the ϵi,thr = −1 threshold. This implies that
any ϵi < Γ1 can produce a composite that can sustain a propagating wave. However, for
f -values close to the unit value, Γ1 < −100, which makes the condition ϵi < Γ1 almost
impossible to satisfy experimentally. As such, the other region of interest is, therefore,
ϵi ∈ (Γ2,−1). However, Γ2 can have positive values for√

αβNx,y,z + 4 − 2 < 0 (22)

which corresponds to αβ < 0. Therefore, we need to determine the values of the volume
fraction f that lead to a negative Γ2, i.e., a value lower than the threshold: we rewrite the
condition Γ2 < ϵi,thr = −1, and after some calculation, we obtain the inequality

(
αβNx,y,z + 4

)2 − 2
(
αβNx,y,z + 4

)(α2N2
x,y,z

ϵe
− 1

)
+

α4N4
x,y,z

ϵ2
e

< 0 (23)

The above equation can be solved numerically by setting fixed values of f and Nx,y,z and
solving Γ2 = ϵi,thr. We, therefore, impose f ∈ (0.5, 1) and Nx,y,z ∈ (0.1, 1). Under these
conditions, the geometric locus corresponding to the solution of the above equation is the
dotted line depicted in Figure 4b.
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Figure 4. Root values (a) Γ1 and (b) Γ2 as a functions of f and Nx,y,z associated with left−handed
materials that support propagating waves. For Γ2, the dotted line corresponds to the threshold value
ϵthr = −1.
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3. Mixing Rules for the Electric Conductivity

The characterization of real composite media has to take into account the electric
conductivity σ, which describes the parasitic effect of energy leakage through electric
currents and, indirectly, its outward dissipation through the Joule effect. Regardless of
the type of material (left-handed or right-handed), the electric conductivity is a positively
valued scalar or dyadic that depends on the anisotropy of the components. Therefore, a
left-handed system behaves in the same manner as a right-handed system from an energy-
loss point of view. The mixing rule for the electric conductivity is expressed in its most
general form when viewed as a property of a symmetric guest–host system. Using the
Bruggeman interpretation on a two-phase system, characterized by a volume fraction f
and a depolarization factor Nx,y,z, the effective electric conductivity for randomly oriented
ellipsoids is [41]:

f
(

σi − σe f f

)
σi + σe f f

(
1 − Nx,y,z

)
/Nx,y,z

+
(1 − f )

(
σe − σe f f

)
σe + σe f f

(
1 − Nx,y,z

)
/Nx,y,z

= 0 (24)

where σi and σe represent the electrical conductivities of the two phases, asymmetrically
viewed as inclusion and host, respectively. Solving for ϵe f f , the above relation becomes

ασ2
e f f + ((ασe − σi)− f (α + 1)(σe − σi))σe f f + σiσe = 0 (25)

where α =
1 − Nx,y,z

Nx,y,z
. Figure 5 presents the effective conductivity of a host dielectric

system with σe = 10−5 S/m and metallic inclusions having σi ∈
(
107, 108) S/m for low-

and high-level inclusion fractions f .

σ
iσ

i
σ
i

Nx,y,zNx,y,z Nx,y,z

f = 0.1 f = 0.15 f = 0.2σ
eff

σ
eff

σ
eff

σ
iσ

i
σ
i

Nx,y,zNx,y,z Nx,y,z

f = 0.6 f = 0.7 f = 0.8σ
eff

σ
eff

σ
eff

Figure 5. The effective conductivity of a two-phase symmetric system as a function of the depolar-
ization factor Nx,y,z and the conductivity σi of a metallic inclusion for fixed values of volume-filling
fractions f . The conductivity of the host medium is σe = 10−5 S/m.

4. Dispersion Properties
Zero-Order Dispersion

For an applied AC signal, the two-phase material under study exhibits dispersion, in
which both the electric permittivity and electric conductivity become frequency-dependent.
Most notably, the Drude–Lorentz model establishes a sign invariance of the ϵ(ω), because
the minus sign of permittivity only signifies an accumulated phase of π between the driving
force and the response of the material. In the zero-order dispersion approximation, in
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which a pure sinusoidal field is acting upon the system, the complex relative permittivity
of each material is given by the Drude–Lorentz oscillator model:

ϵ(ω) = 1 + ∑
j

ω2
p

ω2
0j − ω2 − iωγ

(26)

where ωp is the plasma frequency, ω0j is the j-th resonance frequency, and γ is the atten-
uation factor, which is related to the relaxation time τ as γ = 1/τ. In the non-interacting
picture, both host and inclusion materials have independent dispersion properties and,
therefore, behave as uncoupled oscillators. This case is usually obtained for dilute dielectric
mixtures, in which the interaction forces can be neglected. For materials exhibiting reso-
nances that are far apart, the overall behavior is dominated by the individual resonance
behavior of each material, as it is known. When resonances are sufficiently close, however,
the overall response becomes strongly dependent on the gap in the two resonances ∆ω,
with added deviations introduced by the filling factor Nx,y,z and filling fraction f . For our
study, we considered the more interesting case of small-gap resonance frequencies. We
used Equations (17) and (26), in which we only considered one resonance frequency per
material phase. To clearly exhibit the behavior, we normalized both plasma frequencies
ωp to reduce scaling factors in the mixing law. Also, the effective frequency response
was referenced to the resonance frequency of the host material ω0, and the normalized
frequency ω/omega0 was scanned from 0.01ω0 to 100ω0. The relaxation phenomena of
both dielectrics were modeled by individual attenuation factors (i.e., γe = 0.5ω0 for the
host medium and γi = 0.2 for the inclusion). Because of the symmetry of the Bruggeman
mixing law, the component values were interchangeable, with the notable distinction that
any asymmetry is induced by the inclusion, and modeled by the depolarization factor.
Figure 6 presents the simulated results of the effective response ϵe f f (ω) for a two-phase
dielectric mixture with various fixed-value resonance frequency gaps ∆ω0 = ω0i − ω0e.

Figure 6. Effective permittivity ϵe f f of a two−phase system as a function of normalized frequency
ω/ω0 and depolarization factor N for fixed values of volume-filling fractions f at resonance frequency
gaps ∆ω0 = 0,±0.3ω0.

The ∆ω0 = 0 case serves as a validation of the previously known frequency response.
The composite mixture response exhibits a resonance at ω0 as expected, and the attenuation
factor of the composite is modulated by both material properties. For ∆ω0 = 0.3ω0, the res-
onance of the effective response is shifted to ω

(+)
0 = 1.12ω0. In contrast, for ∆ω0 = −0.3ω0,

the resonance is shifted to ω
(−)
0 = 0.7ω0. The asymmetry between resonance shifts can be

attributed to the different relaxation times of the individual phases, leading to different
attenuation factors. The absorption spectra of the mixture, expressed by the imaginary
part of the effective permittivity, have a symmetric bell shape in the case of ∆ω0 = 0 and
become asymmetrically skewed as the resonance gap either increases or decreases.
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5. Conclusions

In this paper, we conducted a study of the effective-medium properties of two-phase
guest–host systems, by focusing on the changes induced by the inclusion of a left-handed
material in a typical host system. The systems were treated both asymmetrically, via the
Maxwell–Garnett mixing rule, and symmetrically, via the Bruggeman mixing rule. To
account for anisotropic effects, we included the depolarization factor along each axis Nx,y,z
and scanned for all possible values. As opposed to typical materials in which ϵi and ϵe
are positive, the mathematical form of the mixing laws enables a continuous spectrum for
ϵe f f , in which the values of ϵe f f are comparable with the guest and host permittivities. For
left-handed materials, however, the mixing laws change significantly, leading to enormous
permittivity values or to evanescent wave media because of complex-valued ϵe f f . A
similar effect was observed for conductivity, in which a real-valued σe f f was obtained
only for certain intervals determined by the depolarization factor. Finally, zero-order
dispersion in the Drude–Lorentz model was analyzed for a symmetric two-phase system
using the Bruggeman mixing law. While the left-handed material induced no variation
in the dispersion properties, the depolarization factor was directly responsible for the
frequency response of ϵe f f . These derived properties, thus highlighted, are a starting point
for many applications in the engineering of disordered materials that exhibit designer
electromagnetic properties, such as disordered metamaterials.
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