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Abstract: Fluidization bed reactor is an attractive method to synthesize and process quantities
of functional nanoparticles, due to the large gas–solid contact area and its potential scalability.
Nanoparticles fluidize not individually but as a form of porous agglomerates with a typical porosity
above 90%. The porous structure has a significant effect on the hydrodynamic behavior of a single
nanoparticle agglomerate, but its influence on the flow behavior of nanoparticle agglomerates in a
fluidized bed is currently unclear. In the present study, a drag model was developed to consider
the porous structure effects of nanoparticle agglomerates by incorporating porous-structure-based
drag laws in the Eulerian–Eulerian two-fluid model. Numerical simulations were performed from
particulate to bubbling fluidization state to evaluate the applicability of porous-structure-based drag
laws. Results obtained for the minimum fluidization and bubbling velocities, bed expansion ratio,
and agglomerate dispersion coefficient show that, compared with the drag law of solid sphere, the
porous-structure-based drag laws, especially the drag law of fractal porous spheres, provide a closer
fit to the experimental data. This indicates that the pore structures have a great impact on gas–solid
flow behavior of nanoparticle agglomerates, and the porous-structure-based drag laws are more
suitable for describing flows in nanoparticle agglomerate fluidized beds.

Keywords: nanoparticle agglomerate; fluidization; flow behavior; drag laws; simulation

1. Introduction

Due to their unique physical and chemical properties, nanoparticles have aroused
great interests with the rise of nanotechnology over the past few decades [1]. They have
great potential in the applications of energy storage [2], medical [3], catalytic [4,5], photo
luminescent [6] and sensing fields [7]. Fluidization is an attractive method to process
quantities of nanoparticles because of the large gas–solid contact area and its potential scal-
ability [8,9]. Peculiarly, nanoparticles do not fluidize individually but form agglomerates
as a result of strong inter-particle forces [10]. The design and scale-up of fluidized beds
require understanding of the group flow behavior of the nanoparticle agglomerates.

Computational fluid dynamics is an effective tool for understanding the hydrodynamic
characteristics of gas–solid flows in fluidized beds [11,12]. The Eulerian–Eulerian model
has been widely used to study the effects of particle–particle and gas–particle interactions
on the hydrodynamics of fluidized beds containing particles from Geldart group A to D [13].
The drag force between the gas and particles is one of the dominant hydrodynamic forces
in a fluidized bed. Due to the very fragile nature of the fluidized nanoparticle agglomerates,
there is no drag law yet suitable for them proposed experimentally in the literature. Some
previous studies have assumed fluidized nanoparticle agglomerates as solid spheres and
used the drag law of solid sphere particles for hydrodynamic analysis instead [14]. It has
been reported that the Eulerian—Eulerian approach with the drag law of solid sphere
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particles is inaccurate for predicting the hydrodynamics of Geldart A particles in certain
cases [15]. The fluidized nanoparticle agglomerates have similar porous structures to
clusters formed by Geldart A particles in a fluidized bed but with much higher porosity.
The method of treating fluidized nanoparticle agglomerates as solid spheres ignores the
extremely porous nature of fluidized nanoparticle agglomerates, which is not consistent
with the actual situation and may bring some simulation error. Therefore, the sensibility
for modeling the fluidization of nanoparticle agglomerates with drag laws of solid sphere
particles under different flow regimes needs to be further assessed.

It is widely accepted that the fluidized nanoparticle agglomerates are highly porous
structures with a typical porosity of 90% or higher [16]. This structure is formed by primary
nanoparticles in a hierarchical form and possesses fractal properties [17]. Previous numeri-
cal studies of the hydrodynamics of a single fluidized nanoparticle agglomerate show that,
because of the internal flow through these highly porous structures, the hydrodynamics of a
single fluidized nanoparticle agglomerate are different from the impermeable mediums [18].
A single nanoparticle agglomerate experiences much lower drag force compared with the
equivalent solid sphere particle with the same size and density under the fluid flow at
the same Reynolds number. By considering its structural characteristics, some drag laws
of a single nanoparticle agglomerate have been proposed by treating it as a homogenous
porous sphere particle or a fractal porous sphere particle. It is also inferred that the porous
structure of nanoparticle agglomerates may strongly affect their group behaviors during
fluidization, but no study has been reported to assess the applicability of these drag laws in
the fluidized bed. Therefore, the applicability for modeling the fluidization of nanoparticle
agglomerates under different flow regimes with porous-structure-based drag laws needs to
be evaluated.

In this regard, the fluidization behavior of nanoparticle SiO2 agglomerates is simulated
in this work in the framework of the Eulerian–Eulerian gas–solid two-fluid model with
the solid sphere drag law and the porous-structure-based drag laws. The hydrodynamic
behaviors, including the pressure drop, the bed expansion ratio, and the solid mixing
behavior in a fluidized bed for different fluidization velocities, are studied. The validity
of different drag laws is assessed through comparisons of simulation results with the
experimental data.

2. Materials and Methods
2.1. Basic Equations

The Eulerian–Eulerian two-fluid model was employed to compute gas–solid flow
for nanoparticle agglomerate fluidization in this work. This method is one of the current
development trends of the numerical research of gas–solid fluidization, and it has been
validated as a successful method to reflect the actual gas–solid fluidization behavior in
many previous research studies [19,20]. Detailed description of this model can be found
in [20]. Detailed equations can be found in the Supporting Information (Sections S1 and S2).
A second-order upwind method was used in the calculations. Moreover, the SIMPLE
algorithm was adopted to couple pressure and velocity terms. The established model was
simulated by the ANSYS Fluent 2020 R2 software. The time step is set to 0.001 s, and its
convergence criterion is 1 × 10−5.

2.2. Drag Model and Drag Laws

The Huilin–Gidaspow drag model [21] was employed to couple the momentum
transfer between gas and particle phases. It is a combination of the previous drag mod-
els proposed by Ergun [22] and Wen and Yu [23] by introducing a transition function
to smoothly switch the drag coefficients. This model has been well used in the simu-
lation of nanoparticle agglomerate fluidization [19,24]. As shown in Section S3 in the
Supplementary Materials, the pressure drop due to friction between gas and particles is
described by the Ergun equation as the bed porosity being less than 0.8 and the Wen and
Yu equation as the bed porosity being larger than 0.8. It should be noted that the drag
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law of solid sphere particles is applied in the Huilin–Gidaspow drag model. Not only
that, the drag law of the solid sphere particles is applied in all the commonly used drag
models in the two-fluid framework. The adoption of these drag models means that the
fluidization of nanoparticle agglomerates is simulated with a hypothesis by treating them
as solid particles. However, it is widely reported that the nanoparticles are fluidized in the
form of highly porous agglomerates. That porous structure may result in a reduction in
the drag force. By now, only Liu et al. [25] consider the reduction in the drag force in the
simulation of nanoparticle agglomerate fluidization with a drag force scale factor. This is
an approach learned from simulation studies of Geldart A particles to take into account of
the cluster effects [26,27]. The method has been proved to be effective in the simulation of
nanoparticle agglomerate fluidization, which also shows that the effect of pore structure
of nanoparticle agglomerates should be considered. However, the scale factor is of fixed
value for different fluidization conditions, and it is estimated by computational experience.
A new drag law considering the effects on the drag force of the agglomerate structure and
the fluidization condition is necessary.

One approach considering the high porosity characteristics of nanoparticle agglom-
erates is treating them as homogeneous porous spheres and simulating the two-phase
interactions of them through equations of porous media. This is a method often used to sim-
ulate the flow past porous particles of several hundred micrometers or larger size formed
by a large number of primary particles. For example, Wu et al. [28] assumed the floc of
about a few hundred micrometers as a homogeneous porous sphere and evaluated the drag
force as Re ≤ 40. Chung et al. [29] studied the drag force of homogeneous porous sphere
groups in Newtonian fluids under Re = 0.1 and 40 conditions. Jain and Basu [30] studied the
hydrodynamic behavior of a homogeneous porous sphere with porosity between 0.70~0.99
and in the Reynolds number range of 0.01~1000. Both the porosity and Reynolds number
range are suitable for nanoparticle agglomerates and the flow condition in a fluidized bed.
The correlation in Equation (1) was proposed based on their results. It can be seen that
the drag coefficient is a function of both the Reynolds number and the permeability. The
permeability can be obtained by the Carmon-Kozeny equation in Equation (2) [30].

Cda =

[
34 − 134

(
k

da
2

)
+ 208

(
k

da
2

)2
− 104

(
k

da
2

)3
]

Re−0.8, (1)

K =
ε3d2

p

180(1 − ε)2 , (2)

where Cda is drag coefficient, and ε and k is the porosity and permeability of the porous sphere,
respectively. dp and da is the diameter of the primary particle and porous sphere, respectively.

According to Equation (1), the drag coefficient of the nanoparticle agglomerates with
a size of 416 µm and a density of 36.6 kg/m3 formed from SiO2 nanoparticles with the
primary particle size of 16 nm is expressed as follows:

Cd = 20.74Re−0.8
s . (3)

Moreover, it is also widely reported that the fluidized nanoparticle agglomerate
possesses fractal property [31]. Many experimental observations also reveal that the distri-
bution of pore structure inside the fluidized nanoparticle agglomerate is not uniform [32]. A
physical model of a fractal porous sphere with continuously radially varying permeability
was established for fractal nanoparticle agglomerates based on rigid deduction from fractal
theory. Detailed description of this model can be found in our previous studies [18,33].
Based on the assumption of fractal porous sphere, the hydrodynamic behaviors of a single
fluidized nanoparticle agglomerate with the fractal dimension between 2.2 and 2.8 and the
Reynolds number between 0.1 and 400 have been investigated. Results showed that the
drag coefficient is function of both the Reynolds number and the fractal dimension. The
fractal dimension for fluidized agglomerates of SiO2 nanoparticles has been reported to
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be around 2.5 [34]. Based on the results, for a fluidized nanoparticle agglomerate with a
particle size of 416 µm and a fractal dimension of 2.5 formed from the SiO2 nanoparticles
with the primary particle size of 16 nm, the drag coefficient is expressed as follows:

Cd =
13.6
Res

(
1 + 0.1Res

0.874
)

. (4)

In comparison with the drag force scale method based on the drag law of the solid
sphere, the porous-structure-based drag laws mentioned above consider both the effects on
the drag force of the pore structure of nanoparticle agglomerates and the hydrodynamic
condition of gas flow. As shown in Figure 1, the drag coefficients calculated by the porous-
structure-based drag laws are much lower than that by the drag law of the solid sphere.
This will lead to a great reduction in the drag force on each single nanoparticle agglomerate.
To access their applicability for modeling the fluidization of nanoparticle agglomerates
under different flow regimes, drag laws of the homogeneous and fractal porous sphere are
inserted into the framework of the Huilin–Gidaspow drag model in ANSYS Fluent 2020 R2
by user-defined functions in this work.
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2.3. Model Set-Up and Parameters

Huang et al. [35] used nanoparticles as fluidization materials and studied the solids
mixing behavior in a fluidized bed experimentally. To compare the simulation results
with their experimental results, the structure of the simulation is shown in Figure 2. To
simplify the calculation, the model is set as a two-dimensional structure, and auxiliary
structures in the experimental equipment are ignored. In this model, boundary conditions
for velocity inlet, pressure outlet, and fixed walls are used. The gas phase is the air at
normal temperature, and the gas velocity is in the range of 0.003~0.1 m/s. The gas flow
outlet is set at the atmospheric pressure. The parameters selected from experimental data
are listed in Table 1. Taking agglomerates of nano-sized SiO2 as bed material particles, the
agglomerate size is 416 µm, the particle density is 2560 kg/m3, and the agglomerate density
is set as 36.6 kg/m3, which is 1.15 times of the bulk density of 31.85 kg/m3 according
to [35,36]. The initial packing height is 0.20 m.

Table 1. Parameters used for simulations of experiments from Ref. [35].

Property Symbol (Unit) Value

Nanoparticle diameter dp (nm) 16
Agglomerate diameter da (µm) 416

Particle density ρp (kg/m3) 2560
Agglomerate density ρb (kg/m3) 36.6

Gas viscosity µf (Pa·s) 1.81 × 10−5

Gas density ρf (kg/m3) 1.205
Initial packing height H0 (m) 0.2

Maximum packing limit αp,max 0.67
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Figure 2. Simulated fluidized bed structure.

2.4. Grid-Independent Test

To ensure a grid-independent solution and accurate resolution, a study has been
performed with five sets of meshes for fluidization at 0.08 m/s. Three set of meshes from
coarse to dense with the grid quantity of 8750, 15,651 and 35,000 are shown in Figure 3. It
can be seen from Figure 4 that the difference in bed pressure drop and bed height between
mesh 4 and 5 is less than 1.0%, which indicates that the solution based on mesh 4 is grid-
independent. Considering the solution accuracy and time consumption, mesh 4 with a grid
quantity of 35,000 was chosen for the simulation.
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3. Results and Discussion
3.1. Bed Expansion Behaviors

Figure 5 shows the evolution of the bed pressure drop with time as obtained using
the solid sphere drag law and the porous-structure-based drag laws. Initially, the three
drag laws predict a sharp increase in bed pressure drop with time, and the bed pressure
drops reach a peak value at about 3 s. The amount of pressure drops above about 28.1 Pa,
which is the pressure drop that exceeds the weight of particles per unit area and has
been referred to as “overpressure” as reported in the literature [37]. This overpressure is
required at the initial fluidization stage to overcome the adhesion between the particles
and the friction between the particles and the wall [37]. Subsequently, the fluidization
steady state is reached after about 5 s, and a platform is then reached for the pressure drop,
which fluctuates around a value of about 28.1 Pa corresponding to the weight of the bed
divided by the cross-sectional area. Although the amplitude of the fluctuations decreases
with time, the bubbling fluidization regime still causes considerable fluctuations for long
simulation times. Therefore, the results are analyzed by averaging the simulated data from
20 to 30 s, which is sufficient to estimate flow behaviors of nanoparticle agglomerates in
the fluidized bed.
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The minimum fluidization velocity (Umf) refers to the critical velocity value at which a
bed transitions from a stationary state to a fluidized state. In this work, it is obtained from
the bed pressure drop curves and is defined as the superficial gas velocity from which the
bed pressure drop reaches a plateau. The nanoparticle agglomerates all fluidize smoothly
with no bubbles for three drag laws when the fluidization velocity is increased above the
minimum fluidization velocity, that is, agglomerate particulate fluidization (APF). As the
fluidization velocity is further increased, bubbling occurs in the bed, and agglomerate
bubbling fluidization (ABF) is achieved. The minimum bubbling velocity (Umb) refers
to the velocity value at which the first bubble in the fluidized bed appears, while visual
observations of the appearance of the first bubble make it subjective [15]. In this work, Umb
is determined by the sudden changes in granular temperature by two orders of magnitude.
These determination criteria were introduced by Wang et al. [38] and verified by Motlagh
et al. [15]. Table 2 shows the simulation and experimental data of the minimum fluidization
velocity and minimum bubbling velocity. It can be seen from Table 2 that the minimum
fluidization velocities obtained by the three drag laws are all close to the experimental data,
but there are some differences in the minimum bubbling velocity among the three drag laws.
Simulation with the fractal porous sphere drag law shows the largest minimum bubbling
velocity, which means that the ABF is reached at a greater fluidization velocity. This leads to
a wider APF range for fluidization simulated with the drag law of the fractal porous sphere.
Yao et al. [39] has found that the fluidization of SiO2 nanoparticles shows a wider APF
range than that of Geldart A particles. Our results indicate that this may be closely related
to the lower drag force experienced by the highly porous nanoparticle agglomerates.

Table 2. The minimum fluidization and bubbling velocity.

Solid Sphere Homogenous
Porous Sphere

Fractal
Porous Sphere Experimental [35]

Um f (m/s) 0.007 0.007 0.007 0.007
Umb (m/s) 0.007 0.027 0.042 0.038

Figure 6 shows the bed expansion curves of nanoparticle agglomerates in a fluidized
bed under different fluidization velocities with three different drag laws. It can be seen
that when the fluidization velocity is between 0.023–0.038 m/s (APF), the differences in
bed height with these three drag laws are small, and the simulated results are all very close
to the experimental data. As the fluidization velocity is increased above 0.038 m/s (ABF),
bubbles occur, more nanoparticle agglomerates are lifted up to the upper section of the bed,
and the bed expansion ratio increases approximately linearly. At this time, the differences
between the bed heights of different drag laws gradually increase, which may be related
to the advanced appearance of bubbles of the fluidization simulated with the drag law
of the solid sphere. The bed expansion of the solid sphere drag law is the highest among
the three, and that of the drag law of the fractal porous sphere is the lowest and closest to
the experimental data. This shows that the porous-structure-based drag laws make better
predictions than those of the solid sphere in the ABF condition. This distinct comparison
indicates that the pore structure of fluidized nanoparticle agglomerates inevitably affects
their fluidization behavior. The drag force experienced by nanoparticle agglomerates is
reduced, and the bed expansion is not as high at higher fluidization velocities. Therefore,
pore structure effects on drag force need to be considered during simulation of fluidization
of nanoparticle agglomerates.
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Figure 6. Bed expansion ratio of simulated results and experimental data from Ref. [35]. 
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3.2. Axial Solid Mixing Behavior

Solid mixing behavior has an important effect on the heat and mass transfer in the
fluidized reactor. Figure 7 shows the contours of the solid velocity and the variation in
solid velocity with the bed height for three drag laws at a fluidization velocity of 0.08 m/s.
It can be seen that fluidization simulated with the porous-structure-based drag laws shows
weaker internal motion than the solid sphere drag law. At the same bed height, the solid
velocities of the porous-structure-based drag laws are much lower than the solid sphere
drag law. During the fluidization process, gas energy is converted into kinetic energy of
solid phases. Perhaps due to the effect of pore structures, the momentum exchange between
air and the nanoparticle agglomerates is much weaker than that of solid particles. Figure 8
shows the contours of the distribution of time-averaged pressure and the variation in axial
pressure with the bed height for three drag laws at a fluidization velocity of 0.08 m/s. The
axial time-averaged pressures of the three drag laws all decrease with the increase in the
bed height. A dilute phase zone seems to appear for fluidization simulated with the solid
sphere drag law.
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Figure 9a shows the contours of the solid volume fraction at a fluidization velocity
of 0.08 m/s (ABF). The solid volume fraction of fluidization with the solid sphere drag
law is the smallest, while that of the drag law of the fractal porous sphere is the largest.
Large clear bubbles can be observed from fluidization with the solid sphere drag law.
Figure 9b shows the variation in time-averaged solid volume fraction along the bed height
for the three drag laws at a fluidization velocity of 0.023 m/s (APF) and 0.08 m/s (ABF).
Overall, the agglomerate concentration decreases with increasing fluidization velocity. At
the fluidization velocity of 0.023 m/s, the concentration distribution of the three drag laws
is similar to each other. At the fluidization velocity of 0.08 m/s, nanoparticle agglomerates
at the bottom of the bed are carried up by bubbles to the upper part of the bed. As a
result, the agglomerate concentration at the bottom of bed decreases, while the agglomerate
concentration in the upper section of bed increases.
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3.3. Radial Solid Mixing Behavior

Figure 10 shows the radial distribution curves of agglomerate velocity at different
heights for different drag laws. When the fluidization velocity is 0.023 m/s, the fluidization
of nanoparticle agglomerates is uniformly distributed in the bed for the three drag laws,
and the agglomerate velocity is not sensitive to the bed height. These are consistent with
APF characteristics. When the fluidization velocity is increased to 0.08 m/s (ABF), it can
be seen that the radial distribution of agglomerate velocity for three drag laws has the
same characteristics. The agglomerate velocities are all parabolic-like distributed in the bed.
The agglomerate velocities reach their maxima at the bed center and decrease toward the
bed walls. The positive agglomerate velocity means the nanoparticle agglomerates move
upward, and the negative agglomerate velocity means that the nanoparticle agglomerates
move downward. Upward flows of nanoparticle agglomerates at the center and downward
flows near the bed walls indicate that the nanoparticle agglomerates are circulating in the
bed, and a core-annular flow structure is formed. The agglomerate velocity differences
between the center and annulus of the bed simulated with the porous-structure-based drag
laws, especially the drag law of fractal porous sphere, are smaller than that of the drag
law of solid sphere. This indicates that core-annular flow is weaker for fluidization with
the porous-structure-based drag laws. Comparison between the two figures in Figure 10
shows that the agglomerate velocity is increased in the center of the bed with increasing
fluidization velocity. The agglomerate velocity is also increased in the annulus to balance
the solid mass flux between the center and annulus. Hence, large fluidization velocity will
increase the agglomerate mixing in the bed.
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Figure 10. Radial distribution of time-averaged agglomerate velocity.

Figure 11 shows the radial distribution curves of the time-averaged agglomerate
concentration of the three drag laws at different heights. When the fluidization velocity is
0.023 m/s, the nanoparticle agglomerates are almost uniformly distributed in the bed for
all of the three drag laws with a slightly higher agglomerate concentration near bed walls.
The agglomerate concentration is not sensitive to the bed height. When the fluidization
velocity is increased to 0.08 m/s (ABF), a core-annular flow structure is observed as evident
for the time-averaged agglomerate concentration distributions. The solid volume fraction
is low in the center while being high in the annular zone as expected. The agglomerate
concentration decreases in both the center and in the annulus with increasing fluidization
velocity. The high fluidization velocity will dilute the agglomerate concentration in the bed.
It should be noted that the differences in agglomerate concentration predicted by the three
drag laws are obvious at this time. The agglomerate concentration is increased gradually
and significantly for fluidization simulated with the drag law of the solid sphere and the
homogeneous and fractal porous sphere.
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3.4. Agglomerate Dispersion Coefficient

To further quantitatively analyze the applicability of the porous-structure-based drag
laws for modeling the fluidization of nanoparticle agglomerates under different velocities,
the solid mixing behavior is analyzed. It was described by a two-dimensional model
which was validated as a successful model in previous research [40,41]. In this model, the
agglomerate dispersion is characterized by an axial dispersion coefficient Da and a radial
dispersion coefficient Dr. Based on the simulation results from the two-fluid model, tracing
particles were injected into the bed to track the solid phase movement of stable simulation
after 30 s, and the average solid dispersion coefficients were computed according to these
trajectories as follows:

Y = y(t)− y0, (5)

Y =
1
N ∑N

n=1 yn, (6)

Y2
=

1
N ∑N

n=1

(
Yi − Y

)2, (7)

Da =
1
2

dY2

dt
, (8)

where Y is the instantaneous axial displacement, Y is the averaged axial displacement of
tracing particles, and Y2 is the averaged square of axial displacement.

Figure 12 shows the evolution of Y2 with time after the injection of tracing particles. It
can be seen that Y2 increases linearly with time until it reaches almost a constant value and
oscillates around it, which shows that tracing particles are well dispersed in the bed. The
axial dispersion coefficient Da is obtained from regressing a line on the linear part of the
curve, and it is equal to half of the slope of the linear part of the curve. The values of Dr
can be obtained by the same method.

Figure 13 shows values of Da and Dr for fluidization simulated with the three drag
laws under different fluidization velocities. Da and Dr both increase monotonically with
the increase of fluidization velocity, indicating that increasing fluidization velocity is
beneficial for promoting the solid mixing behavior. This is consistent with the report
by Farahani et al. [42], in which they found that the solid diffusivities increase with the
superficial velocity. Bubbles are mainly responsible for solid mixing behavior in fluidized
beds. The axial mixing behavior of nanoparticle agglomerates is mainly influenced by
the rising velocity of bubbles and the solid circulation in the regions surrounding the
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rising bubbles. The radial mixing of nanoparticle agglomerates is closely related to the
lateral motion of bubbles and lateral dispersion of particles in the bubble’s wake [42].
As the fluidization velocity is increased, the diameter and rising velocity of bubbles are
both increased, and their ability to carry agglomerates up with them is then increased.
Meanwhile, the interaction of neighboring bubbles is intensified, and the coalescence of
neighboring bubbles and the eruption of the bubble occur more frequently. The above
behaviors lead to an increase in the Da and Dr with the superficial velocity.
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In addition, it can be seen that the Da values are within the range of 0.001~0.006 and
the Dr values are within the range of 0.0002~0.0004 for different drag laws. These values
are much smaller compared to those of other Geldart groups of particles, indicating that
the mixing behavior in the fluidized bed of nanoparticle agglomerates is much less intense
than other Geldart groups of particles. This should be mostly related to the low density
and small size of the nanoparticle agglomerates. The values of Da and Dr for fluidization
simulated with the solid sphere drag law are larger than the others, which means that the
solid mixing behaviors for fluidization simulated with the solid sphere drag law are much
stronger. This should be related to the phenomenon that more and larger bubbles occur
in the fluidized bed simulated with the drag law of the solid sphere shown in Figure 9. It
should also be noticed that the simulation results with porous-structure-based drag laws
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are in good agreement with the experimental data. This indicates that, without considering
the effect of pore structure on the two phases, the simulation results of flow behaviors
could deviate from the experimental data.

4. Conclusions

In the present study, numerical simulations were performed to evaluate the applicabil-
ity of porous-structure-based drag laws for a two-dimensional nanoparticle agglomerate
fluidized bed from particulate to bubbling fluidization state. A Eulerian–Eulerian two-fluid
model was used by incorporating different drag laws of the homogenous and fractal porous
spheres by considering the effect of the highly porous structure for the solid phase. Validity
of the present simulation was assessed through comparisons of simulation results and
experimental data of fluidized bed hydrodynamics. The simulation was also used to inves-
tigate axial and radial solid mixing behaviors under particulate and bubbling fluidization
conditions. The simulation results reveal that the choice of drag laws can significantly
affect the fluidized bed hydrodynamics. Simulated results of bed expansion ratio, the
minimum fluidization and bubbling velocities, and agglomerate dispersion coefficient pre-
dicted by the porous-structure-based drag laws are in good agreement with experimental
data. In comparison, the solid sphere drag law makes a good prediction in the particulate
fluidization condition and an unsatisfying prediction in the bubbling fluidization condition.
This indicates that the pore structure has a great impact on the gas–solid flow, and the
porous-structure-based drag laws are suitable for describing flows in nanoparticle agglom-
erate fluidized beds. The current simulation is assuming nanoparticle agglomerates are
average-sized and spherical. We plan to make a further study to consider the influence of
agglomerate size and shape.
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