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1. Introduction

The world is suffering from energy consumption and environmental pollution chal-
lenges for the next generation era. The developments in the construction of sustainable
resources to overcome the energy crises have been made in several ways to compete with
the depletion of fossil fuels. Among those, photocatalytic hydrogen production has proven
to be an alternative for sustainable and green energy production pathways in nanoscience
and technologies. Thus, hydrogen production technologies are renowned for renewable
feedstock and greenhouse gas-free technology [1–3]. Since the technology has been intro-
duced, several strategies have been adopted to develop efficient catalyst materials to be
employed for splitting water molecules for hydrogen production under solar light [4].

The fundamental engineering for tuning the nanocomposite materials in photocatalytic
applications requires special features of the catalyst materials to be addressed. Among
those, the selection of materials with cheap, earth-abundant, and environmentally friendly
characteristics may apply to large-scale industrial projects with state-of-the-art enhanced
performance [5,6]. For designing such nanocomposite materials, carbon and carbon-based
2D materials combined with metal oxides are considered significant achievements in
energy and environmental applications due to the enhanced surface area and possible intra-
junctions of the catalyst materials. These specific features of the nanocomposite materials
set footprints for developing more efficient photocatalyst materials for broader sustainable
energy applications, i.e., photo-(electro)catalytic green fuel production [7–10].

Towards environmental concerns, various strategies have been used to deal with
environmental pollution issues by converting pollutants by degrading them completely into
less hazardous species [11–14]. Similar to the above-mentioned photocatalytic applications,
the design of materials for photodegradation also works on the concept of band structures
combined in developing heterojunctions, which highly improves the charge separation
efficiency and redox behavior of the photodegradation materials due to the photo-induced
phenomenon [15,16].

2. An Overview of Published Articles

Cheng et al. (Contribution 1) introduced a mixed metal oxide W-TiO2 nanopowder
photocatalyst by using the sol–gel method, varying the compositions of each component in
the catalyst material. The synthesized catalyst was tested for the photocatalytic removal
capacity of a representative pollutant, methylene blue (MB), in aqueous solutions and
under UV-A and sunlight illuminations. They ascribed the enhanced performance of the
material to the combined action of adsorption and heterogeneous photocatalysis.

Bolaghi et al. (Contribution 2) synthesized and reported the graphitic carbon nitride
(g-C3N4), a metal-free photocatalyst for multi-photocatalytic applications such as visible-
driven hydrogen production, CO2 reduction, and organic pollutant degradation. They
mainly focused on and were convinced of the approaches of photochemical stability, cost-
effectiveness, and scalable synthesis of the photocatalysts. They also proposed that the
photocatalytic performance of catalysts following ultrasonication prevents the agglomera-
tion of g-C3N4 nanosheets and also tunes pore size distribution, which plays a crucial role
in the high performance of the catalyst material.
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Yousaf et al. (Contribution 3) introduced and reported a heteronanostuctured photo-
catalyst comprising g-C3N4 coupled with ZnCdS for photocatalytic hydrogen production
applications. The enhanced and durable performance of the catalyst for hydrogen produc-
tion in their work was ascribed to the heterojunction formation established among two
components and the resulting synergistic effect, which provided more channels for charge
carrier migration and reduced the recombination of photogenerated electrons and holes.

Mbuyazi and Ajibade (Contribution 4) published and discussed the role of different
capping agents influencing the structural, optical, and photocatalytic degradation efficiency
of the magnetite (Fe3O4) nanoparticles. In their work, octylamine (OTA), 1-dodecanethiol
(DDT), and tri-n-octylphosphine (TOP) different capping agents were used for the synthesis
of magnetite nanoparticles. Among these, tri-n-octylphosphine-capped iron oxide nanopar-
ticles proved to be the most efficient iron oxide nanophotocatalysts for the degradation of
the dyes.

Song et al. (Contribution 5) worked on semiconductor photocatalyst materials in the
field of environmental remediation. They reported that BiOCl-based ternary photocatalysts
can be used for the applications of photocatalytic degradation of highly toxic norfloxacin.
They convinced that the higher crystallinity of BiOCl closely aligned molecules with each
other, which was the major cause of their improved separation efficiency of photogenerated
charges and showed high degradation efficiency for norfloxacin antibiotics.

Zeng et al. (Contribution 6) report the synthesis of Ag/P25 nanocomposites through a
one-step gamma-ray radiation method and tested them for the applications of photocat-
alytic degradation of organic contaminations. In their findings, it is proposed that the particle
size of Ag could be effectively controlled by changing the dose rate, and the Ag/P25 nanocom-
posites doped with smaller Ag nanoparticles performed higher photocatalytic activities.

Zavahir et al. (Contribution 7) propose a titanium nanotube array (based on a non-
ferrous Fenton system) for the successful degradation of a model contaminant, the azo dye
methyl orange, under simulated solar illumination. Their contributions proposed that the
facile withdrawal and regeneration observed in the film-based titanium nanotube array
photocatalyst highlight its potential to treat real industrial wastewater streams.

Islam et al. (Contribution 8) worked on a track for the synthesis of spherical sil-
ver nanoparticles (AgNPs), carbon nanospheres (CNSs), and a bispherical AgNP–CNS
nanocomposite by the facile thermal procedure. The as-synthesized material was employed
for photo-degradation of organic dyes. In their detailed reported observations, it was
found that in the AgNP–CNS nanocomposite, the light absorption and UV utilization
capacity increased at more active sites. Moreover, the effective electron-hole separation at
the heterojunction between the AgNPs and CNSs was possible under favorable band-edge
conditions, resulting in the creation of reactive oxygen species.

Xu et al. (Contribution 9) developed the construction of direct Z-scheme heterojunctions-
based catalyst material for the applications of photoreduction of CO2 to 100% alcohol
products. They claimed that the combination of Bi2WO6 and SnS2 narrows the bandgap,
thereby broadening the absorption edge and increasing the absorption intensity of visible
light. These specified characteristics enhanced the performance of the reported catalyst.

3. Conclusions

In conclusion, the articles that contributed to this Special Issue focused on state-of-the-
art synthesis and modifications in photocatalytic materials. The combined photocatalytic
applications considered were mainly based on energy and environmental challenges. Re-
garding energy-related topics, photocatalytic hydrogen production and CO2 reduction
were enlisted and tested with developed materials. The advancements in the development
of catalyst materials for these energy applications may provide extensive advantages for
nanoscience and technology inputs in sustainable energy resources.

In addition, the focus on developing material for photodegradation of hazardous
pollutant molecules was also devoted to this issue. The efficient material with scalable syn-
thesis and enhanced photodegradation of organic pollutants may significantly contribute
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to the environmental applications with straightforward material synthesis approaches. The
possible solutions for both the energy and environmental challenges considered in this
Special Issue positively impact modern and next-generation society.
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