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Section S1. Adsorbate Force Field Parameters  

Table S1. Lennard–Jones parameters of MOF[47] 

Atom 

ε/kB  

[K] 

σ  

[Å] 

Atom 

ε/kB  

[K] 

σ  

[Å] 

Atom 

ε/kB  

[K] 

σ  

[Å] 

Ac 16. 60 3. 10 Ge 190. 69 3. 81 Po 163. 52 4. 20 

Ag 18. 11 2. 80 Gd 4. 53 3. 00 Pr 5. 03 3. 21 

Al 254. 09 4. 01 H 22. 14 2. 57 Pt 40. 25 2. 45 

Am 7. 04 3. 01 Hf 36. 23 2. 80 Pu 8. 05 3. 05 

Ar 93. 08 3. 45 Hg 193. 71 2. 41 Ra 203. 27 3. 28 

As 155. 47 3. 77 Ho 3. 52 3. 04 Rb 20. 13 3. 67 

At 142. 89 4. 23 I 170. 57 4. 01 Re 33. 21 2. 63 

Au 19. 62 2. 93 In 301. 39 3. 98 Rh 26. 67 2. 61 

B 90. 57 3. 64 Ir 36. 73 2. 53 Rn 124. 78 4. 25 

Ba 183. 15 3. 30 K 17. 61 3. 40 Ru 28. 18 2. 64 

Be 42. 77 2. 45 Kr 110. 69 3. 69 S 137. 86 3. 59 

Bi 260. 63 3. 89 La 8. 55 3. 14 Sb 225. 91 3. 94 

Bk 6. 54 2. 97 Li 12. 58 2. 18 Sc 9. 56 2. 94 

Br 126. 29 3. 73 Lu 20. 63 3. 24 Se 146. 42 3. 75 

C 52. 83 3. 43 Lr 5. 53 2. 88 Si 202. 27 3. 83 

Ca 119. 75 3. 03 Md 5. 53 2. 92 Sm 4. 03 3. 14 

Cd 114. 72 2. 54 Mg 55. 85 2. 69 Sn 285. 28 3. 91 

Ce 6. 54 3. 17 Mn 6. 54 2. 64 Sr 118. 24 3. 24 

Cf 6. 54 2. 95 Mo 28. 18 2. 72 Ta 40. 75 2. 82 

Cl 114. 21 3. 52 N 34. 72 3. 26 Tb 3. 52 3. 07 

Cm 6. 54 2. 96 Na 15. 09 2. 66 Tc 24. 15 2. 67 

Co 7. 04 2. 56 Ne 21. 13 2. 66 Te 200. 25 3. 98 
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Cr 7. 55 2. 69 Nb 29. 69 2. 82 Th 13. 08 3. 03 

Cu 2. 52 3. 11 Nd 5. 03 3. 18 Ti 8. 55 2. 83 

Cs 22. 64 4. 02 No 5. 53 2. 89 TI 342. 14 3. 87 

Dy 3. 52 3. 05 Ni 7. 55 2. 52 Tm 3. 02 3. 01 

Eu 4. 03 3. 11 Np 9. 56 3. 05 U 11. 07 3. 02 

Er 3. 52 3. 02 O 30. 19 3. 12 V 8. 05 2. 80 

Es 6. 04 2. 94 Os 18. 62 2. 78 W 33. 71 2. 73 

F 25. 16 3. 00 P 153. 46 3. 69 Xe 167. 04 3. 92 

Fe 6. 54 2. 59 Pa 11. 07 3. 05 Y 36. 23 2. 98 

Fm 6. 04 2. 93 Pb 333. 59 3. 83 Yb 114. 72 2. 99 

Fr 25. 16 4. 37 Pd 24. 15 2. 58 Zn 62. 39 2. 46 

Ga 208. 81 3. 90 Pm 4. 53 3. 16 Zr 34. 72 2. 78 

 

 

 

Table S2. Lennard–Jones parameters and charges of adsorbates[48, 49] 

Atom 

ε/kB  

[K] 

σ  

[Å] 

Charge  

(e) 

Atom 

ε/kB  

[K] 

σ  

[Å] 

Charge  

(e) 

C_CO2 27.0 2.80 +0.700 S_H2S 122.0 3.60 0 

O_CO2 79.0 3.05 −0.350 M_H2S 0 0 −0.420 

CH4 148.0 3.73 0 H_H2 0 0 +0.468 

N_N2 36.0 3.31 −0.482 com_H2 36.7 2.96 −0.936 

com_N2 0 0 +0.964 He_He 10.9 2.64 0 

O_O2 49.0 3.02 −0.113 H_H2S 50.0 2.50 +0.210 

com _O2 0 0 +0.226 CH4 98.0 3.750 0 
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The molecular diffusion coefficients obtained through Molecular Dynamics (MD) simulations have been 

consistently validated against experimental data across numerous studies, demonstrating their precision.[50] As 

shown in Figure S1, the simulated values align closely with experimental findings, which substantiates the 

trustworthiness and effectiveness of the MD simulation technique for such applications. 

 

 

 

Figure S1. Comparison of simulated gas diffusivities and the experimental data for various MOF.[51] 

  



 5 

Section S2. Characteristics of gas molecules 

Table S3. Differences of kinetic diameter, polarizability, dipole moment, and quadruple moment between 

binary gas mixtures. 

In Molecular 

Simulation 

Gas mixture i/j 

ΔDia 

[Å] 

ΔPol ΔDip ΔQua 

[×1025/cm3] [×1018/esu cm] [×1026/esucm2] 

He/CH4 1.2 23.88044 0 0 

H2/CH4 0.91 17.888 0 -0.662 

CO2/CH4 0.5 -3.18 0 -4.3 

O2/CH4 0.34 10.118 0 -0.39 

H2S/CH4 0.18 -12.73 -0.97833 0 

N2/CH4 0.16 8.527 0 -1.52 

 

 

Table S4. Physical properties of gas molecules.[52] 

Gas 

Kinetic diameter 

[Å] 

Polarizability 

[×1025 /cm3] 

Dipole moment 

[×1018 /esu cm] 

Quadruple moment 

[×1026 /esu cm2] 

He 2.6 2.04956 0 0 

H2 2.89 8.042 0 0.662 

CO2 3.3 29.11 0 4.30 

O2 3.46 15.812 0 0.39 

H2S 3.62 37.82 0.97833 — 

N2 3.64 17.403 0 1.52 

CH4 3.758 25.93 0 0 
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Section S3. Details of Model Training 

Python 3.9.12 was used for all training tasks.  

 

Table S5. The version information of tool packages used for building ML model. 

Package Version 

scikit-learn 1.0.2 

numpy 1.21.5 

random 1.2.2 

pandas 1.3.5 

shap 0.40.0 

lightgbm 3.3.2 

xgboost 1.1.2 

joblib 1.1.0 

 

Overview of four machine learning algorithms 

In this study, we employ four distinct machine learning (ML) methods: Random Forest (RF), Gradient 

Boosting Regression Trees (GBRT), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting 

Machine (LightGBM). Each of these algorithms is an application of the ensemble learning paradigm, which 

combines multiple models to improve predictive performance. Below, we outline the principal distinctions, 

along with the strengths and limitations of the four algorithms. (A summary of the following algorithms, 

excluding classification algorithms, is based on the introduction of the regression models used in this work.) 
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Random Forest (RF) Algorithm 

Building upon the Bagging methodology and utilizing decision trees as its predictive engines, the Random 

Forest (RF) algorithm enhances the model by incorporating an element of randomness in the feature selection 

phase of each tree's training. The process can be succinctly divided into four key components, as depicted in 

Figure S2: The construction of a novel training sample set is achieved through the methodical extraction of 

repeated random samples of size k from the original training set, which comprises N samples. In the context of 

this study, features are selected in an arbitrary manner, and the model is trained on the entire spectrum of these 

features. Predictions from an individual decision tree are derived from the extracted samples, and these 

individual forecasts are subsequently amalgamated by averaging to yield the conclusive predictions. The 

random forest algorithm boasts several advantages, including its robust generalizability, its adeptness at 

managing datasets with missing values, and its utility without the need for data normalization. Nonetheless, it 

has a limitation: its predictive capacity is confined to the range encapsulated by the training set. This can lead to 

overfitting, especially when the algorithm is applied to noisy datasets that require more nuanced modeling. 

 

Figure S2. Random Forest model. 
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Gradient boosting regression tree Algorithm 

Gradient boosting serves as the core principle of the Gradient Boosting Regression Tree (GBRT) approach. 

This method distinguishes itself from traditional boosting techniques by iteratively addressing the residuals of 

the previous model. Specifically, each new model is crafted to align with the gradient that minimizes these 

residuals, thereby refining the overall prediction with each iteration. The final iteration capitalizes on the 

gradient learning loss function to support the derivation of forecasts. As depicted in Figure S3, the "squared 

error" loss function utilized in this study ensures a smooth fitting of errors throughout the learning process. 

Successive regression trees are employed to refine the GBRT by assimilating the outcomes and residuals from 

preceding trees. GBRT's strengths are manifold. It exhibits flexibility in handling various data types and 

enhances predictive accuracy within a relatively short timeframe of parameter tuning. The performance of 

GBRT is further augmented when paired with RF, although this combination presents its own set of challenges. 

Training data in parallel becomes complex due to the inherent serial dependencies in the learner models, a 

consequence of the Boosting framework's architecture. 

 

Figure S3. GBRT model. 
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Extreme Gradient Boosting Algorithm 

Extreme Gradient Boosting, known as XGBoost, is an enhancement to the traditional Gradient Boosting 

Decision Tree (GBDT) algorithm, developed by Tianqi Chen from the University of Washington. XGBoost 

refines the approximation of residuals by employing the negative gradient of the model on the data, coupled 

with a Taylor series expansion of the loss function's residuals. Additionally, it incorporates a regularization term 

that accounts for model complexity. XGBoost outperforms GBDT by leveraging parallel processing capabilities 

of CPUs, which significantly speeds up the computation. The algorithm is designed to be scalable, with each 

iteration building upon the previous one efficiently (the cost of the t-th iteration function is priced with a factor 

of t-1 times the gradient of the predicted values).  

XGBoost's next-generation capabilities also include data preprocessing through sorting and storing data in 

a block structure, which facilitates parallelism during training. Before splitting nodes, the algorithm 

systematically evaluates the gain for each feature and selects the one that yields the highest gain. This process 

can be conducted in parallel, with multiple threads determining the gain of different features.However, as 

illustrated in Figure S4, XGBoost employs a level-wise tree growth method, which processes all leaf nodes in 

the current layer uniformly. This approach can lead to the splitting of leaf nodes that may not yield significant 

profit, thus incurring unnecessary computational costs. 
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Figure S4. XGBoost model. 

LightGBM Algorithm 

Developed by Microsoft Research Asia, LightGBM is an algorithm that leverages the Gradient Boosting 

Decision Tree (GBDT) framework to enhance computational efficiency, particularly for tackling the challenges 

of big data predictions. LightGBM incorporates two innovative methods: Gradient-based One-Side Sampling 

(GOSS) and Exclusive Feature Bundling (EFB), which are employed for efficient random sampling and feature 

extraction, respectively. EFB streamlines the feature selection process by not scanning all features to identify 

the optimal split point. Instead, it reduces dimensionality by intelligently grouping features, thereby minimizing 

the computational cost associated with finding the best split. Meanwhile, GOSS refines the gradient calculation 

by selectively sampling data points, which not only maintains accuracy but can also enhance it in certain 

scenarios while significantly reducing the time required for processing. 

LightGBM also employs a Histogram-based algorithm to effectively integrate exclusive features. The 

essence of this technique involves discretizing continuous feature values into k distinct intervals and 

constructing a histogram with a width of k, as illustrated in Figure S5(b). The histogram accumulates data 

statistics using these discretized values as indices, which are then used to identify the optimal split points. This 

approach substantially reduces both computational cost and memory usage. While XGBoost's default pre-sorted 

algorithm demands O(#data) computations, LightGBM's Histogram algorithm operates with O(#bins) 

computations, where #bins is typically much smaller than #data.Figure S5(a) illustrates that LightGBM adopts a 
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leaf-wise growth strategy, in contrast to XGBoost's level-wise strategy. By identifying and splitting the leaf 

with the highest potential gain, LightGBM can achieve greater accuracy with fewer mistakes, given the same 

number of splits. However, the leaf-wise approach may lead to overfitting with small sample sizes. To 

counteract this, LightGBM offers the option to set a maximum depth (Max depth) for the trees, which helps to 

prevent overfitting. 

Figure S5. LightGBM model. 
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Table S6. Hyperparameters set in machine learning methods. 

Model Hyperparameter Value (On D) Value (On Sdiff） 

RF 

n_estimators 800 800 

max_depth 14 14 

random_state 42 42 

criterion 'squared_error' 'squared_error' 

GBRT 

learning_rate 0.1 0.1 

loss 'squared_error' 'squared_error' 

n_estimators 600 800 

subsample 1 1 

criterion 'friedman_mse' 'friedman_mse' 

max_depth 10 12 

alpha 0.8 0.5 

verbose 0 0 

max_leaf_nodes None None 

warm_start False  False 

XGBoost 

n_estimators 600 650 

max_depth 12 14 

min_child_weight 1 1 

subsample=0.8 0.8 0.8 

gamma=0.0 0 0 

colsample_bytree 0.8 0.8 

nthread None None 

reg_alpha 0.8 0.8 

reg_lambda 1 1 

seed 1314 1314 
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n_jobs -1 -1

LightGBM 

objective 'regression' 'regression' 

n_estimators 620 500 

learning_rate 0.1 0.05 

num_leaves 420 500 

force_col_wise True True 

colsample_bytree 0.8 0.8 

subsample_for_bin 50000 220000 

random_state 1314 100 

n_jobs -1 -1

min_child_samples 5 5 

reg_alpha 0.6 0 

reg_lambda 0.7 0 
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Algorithm Evaluation Index 

In this work, the performance of each ML algorithm was evaluated by calculating the R2 values and the 

root-mean-square error (RMSE). The R2 value was calculated using eq. S1, where n, yi, ui, and u̅ are the number 

of MOFs, the simulated diffusion coefficient of gas molecule (diffusion selectivity of ideal binary gas), the 

predicted diffusion coefficient of gas molecule (diffusion selectivity of ideal binary gas) and average diffusion 

coefficient of gas molecule (diffusion selectivity of ideal binary gas), respectively. The various error values for 

each algorithm were calculated using eq. S2. 

In this study, we assessed the performance of each machine learning (ML) algorithm by determining their 

R² values and root-mean-square errors (RMSE). The R²value, a measure of how well the model fits the data, 

was computed using equation S1. This equation takes into account the number of metal-organic frameworks 

(MOFs) (n), the simulated diffusion coefficient of the gas molecule (representing the diffusion selectivity of an 

ideal binary gas) (yi), the predicted diffusion coefficient of the gas molecule (ui), and the average diffusion 

coefficient of the gas molecule (u̅ ). The RMSE, which provides a measure of the average error between the 

predicted and actual values, was calculated for each algorithm using equation S2. This metric offers insight into 

the typical magnitude of the errors made by the model during predictions. By employing these quantitative 

metrics, we were able to rigorously evaluate and compare the predictive accuracy and reliability of the different 

ML algorithms utilized in this research. 

R2=1-
∑ (y

i
-ui)

2n
i=1

∑ (y
i
 - ui)

2n
i=1

    (S1)      

RMSE=√
∑ (y

i
-ui)

2n
i=1

n
     (S2)       



15

k-fold cross-validation

The need for a separate validation set becomes redundant when employing cross-validation, with the test 

set reserved for the model's ultimate evaluation. This study employs a method known as k-fold cross-validation 

(k-fold CV), which segments the training set into k smaller subsets. As depicted in Figure S6, the process 

involves designating one of the k "folds" for validation, utilizing a subset of k-1 for training the model, and then 

applying the remaining data to verify the model's performance from the prior phase—akin to employing a test 

set to gauge the model's accuracy. The aggregated results from the k-fold cross-validation, calculated as the 

mean of the outcomes across all stages, provide an estimate of the model's overall performance.0 For the 

purposes of this research, a 10-fold cross-validation approach has been implemented. 

Figure S6. 10-fold cross-validation. 
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Section S4. Univariate analysis 

Figure S7. Gas diffusivity changes with PLD. 
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Figure S8. Gas diffusion selectivity varies with PLD. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure S9. Gas diffusion selectivity varies with LCD. 

(e) 

(a) (b) 

(c) (d) 

(f)
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Section S5. Evaluation of machine learning 

Table S7. Evaluation of four algorithms for D and Sdiff. 

Algorithm Performance Indicators 

Training set Test set 

R2 MAE RMSE R2 MAE RMSE 

RF 

D 

𝐷𝐶𝐻4 0.987 0.078 0.115 0.918 0.200 0.289 

𝐷𝑂2 0.983 0.062 0.090 0.875 0.167 0.244 

𝐷𝑁2
0.984 0.071 0.105 0.890 0.186 0.276 

𝐷𝐻2 0.983 0.055 0.086 0.872 0.145 0.230 

𝐷𝐻2𝑆 0.977 0.092 0.132 0.832 0.248 0.357 

𝐷𝐻𝑒 0.981 0.043 0.063 0.871 0.113 0.161 

𝐷𝐶𝑂2
0.963 0.097 0.141 0.748 0.255 0.369 

All 0.991 0.055 0.091 0.934 0.151 0.247 

Sdiff 

𝑆𝑂2/𝐶𝐻4 0.969 0.051 0.082 0.767 0.136 0.217 

𝑆𝑁2/𝐶𝐻4 0.942 0.048 0.084 0.561 0.125 0.208 

𝑆𝐻2/𝐶𝐻4 0.968 0.071 0.107 0.781 0.180 0.271 

𝑆𝐻2𝑆/𝐶𝐻4 0.919 0.064 0.109 0.438 0.168 0.274 

𝑆𝐻𝑒/𝐶𝐻4
0.976 0.073 0.109 0.849 0.182 0.271 

𝑆𝐶𝑂2/𝐶𝐻4 0.940 0.098 0.153 0.586 0.247 0.384 

All 0.985 0.057 0.097 0.887 0.155 0.264 

LGBM D 

𝐷𝐶𝐻4
0.994 0.054 0.079 0.910 0.209 0.303 

𝐷𝑂2 0.988 0.055 0.076 0.865 0.173 0.254 

𝐷𝑁2 0.991 0.056 0.079 0.877 0.192 0.292 

𝐷𝐻2 0.988 0.049 0.071 0.864 0.151 0.238 

𝐷𝐻2𝑆 0.990 0.064 0.087 0.815 0.259 0.374 

𝐷𝐻𝑒 0.978 0.050 0.069 0.859 0.118 0.169 
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𝐷𝐶𝑂2 0.986 0.062 0.087 0.717 0.270 0.390 

All 0.993 0.052 0.077 0.954 0.127 0.207 

Sdiff 

𝑆𝑂2/𝐶𝐻4 0.979 0.048 0.067 0.817 0.131 0.194 

𝑆𝑁2/𝐶𝐻4 0.962 0.045 0.067 0.644 0.123 0.200 

𝑆𝐻2/𝐶𝐻4 0.985 0.054 0.074 0.792 0.183 0.266 

𝑆𝐻2𝑆/𝐶𝐻4 0.957 0.054 0.080 0.405 0.1778 0.282 

𝑆𝐻𝑒/𝐶𝐻4 0.988 0.056 0.076 0.852 0.187 0.266 

𝑆𝐶𝑂2/𝐶𝐻4
0.982 0.059 0.083 0.592 0.254 0.386 

All 0.991 0.054 0.077 0.931 0.127 0.207 

XGBoost 

D 

𝐷𝐶𝐻4 0.999 0.026 0.038 0.912 0.207 0.299 

𝐷𝑂2 0.997 0.026 0.036 0.872 0.170 0.248 

𝐷𝑁2
0.987 0.027 0.039 0.890 0.186 0.267 

𝐷𝐻2 0.997 0.025 0.036 0.874 0.149 0.229 

𝐷𝐻2𝑆 0.998 0.027 0.038 0.817 0.256 0.372 

𝐷𝐻𝑒 0.994 0.025 0.035 0.865 0.115 0.164 

𝐷𝐶𝑂2 0.997 0.027 0.039 0.738 0.263 0.383 

All 0.998 0.029 0.041 0.957 0.119 0.199 

Sdiff 

𝑆𝑂2/𝐶𝐻4
0.996 0.021 0.029 0.838 0.120 0.182 

𝑆𝑁2/𝐶𝐻4 0.993 0.020 0.030 0.668 0.114 0.181 

𝑆𝐻2/𝐶𝐻4
0.997 0.022 0.030 0.809 0.172 0.250 

𝑆𝐻2𝑆/𝐶𝐻4
0.996 0.021 0.030 0.838 0.120 0.182 

𝑆𝐻𝑒/𝐶𝐻4 0.998 0.022 0.030 0.870 0.172 0.244 

𝑆𝐶𝑂2/𝐶𝐻4 0.997 0.021 0.031 0.561 0.246 0.376 

All 0.998 0.024 0.033 0.928 0.123 0.210 

GBRT 

D Average 0.999 0.004 0.006 0.947 0.129 0.222 

Sdiff Average 0.999 0.005 0.007 0.907 0.135 0.240 
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Figure S10.  Predicted results of D by RF, XGB and GBRT ML algorithm models versus simulated results of 

CoRE-MOFs on the testing set.  
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Figure S11. Predicted results of Sdiff  by RF, XGB and GBRT ML algorithm models versus simulated results of 

CoRE-MOFs on the testing set.  
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Section S6. Analysis of the relative importance of features 

In this study, we utilized TreeExplainer in conjunction with Shapley Additive exPlanations (SHAP) to 

interpret the predictions made by a machine learning (ML) model. By integrating the LGBM model with SHAP 

values, we assessed the relative importance of each feature—in other words, the extent to which each feature 

impacts the model's output. The significance of each feature's influence is reflected by the average absolute 

SHAP value across the entire dataset. The outcomes of this analysis are presented in Tables S8 and S9. 

Table S8. Importance ranking of features (Based on D). 

No. 1 2 3 4 7 8 9 

Feature PLD Diai Poli VSA Quai ρ Dipi 

Importance (%) 36.13 -30.55 -30.82 21.67 0.50 -0.90 0.13 

Table S9. Importance ranking of features (Based on Sdiff). 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

Feature ΔPol PLD Diai VSA ΔDia Poli LCD ϕ ρ ΔQua ΔDip Quai Dipi 

Importance (%) 0.68 -23.61 -35.79 -14.84 0.36 -29.78 6.15 4.23 -9.47 2.13 -0.08 0 0 

Shapley additive explanation 

In this research, we employ SHAP to elucidate the significance and function of various predictors within 

our analysis. SHAP, grounded in game theory, treats the model's predicted values as an aggregation of 

contributions from each input feature. When approximating the original model f for a particular input x, the 

explanation’s attribution values ϕi for each feature i should sum up to the output f(x), represented by equation 

S3: 

f(x)=ϕ
0
(f)+ ∑ ϕ

i

M

i=1

(f,x)     (S3). 

Where the sum of the feature attributesφi(f,x) matches the output f(x) of the original model, M is the total 

number of input features, ϕ0 represents the expected value when all inputs are missing, and ϕi is a measure of 
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the contribution of a given feature i to the prediction. According to game theory, the Shapley value is the only 

criterion that satisfies local accuracy, missing, and consistency. They are also very intuitive because they use the 

same units as the model output (D or Sdiff in this work). 

SHAP value is the Shapley value of a conditional expectation function f(x), which can be derived from 

equation S4: 

𝜙𝑖 = ∑
1

𝑀!
𝑅∈ℛ

[𝑓𝑥(𝑃𝑖
𝑅 ∪ 𝑖) − 𝑓𝑥(𝑃𝑖

𝑅)]  (S4), 

where ℛ is the set of all feature orderings, Pi
R is the set of all features that come before feature i in 

ordering ℛ, and M is the number of input features for the model. For tree-based models, our study utilizes the 

TreeExplainer algorithm developed by Lundberg et al.[21], which adeptly calculates the SHAP values. The 

TreeExplainer assigns SHAP values to each individual sample within the dataset, providing a measure of the 

impact of each feature on the model's output. Subsequently, these individual predictions are aggregated and 

visualized to offer a comprehensive, global interpretation of the model's behavior. 

Section S7. Various structural parts of MOFs 

Table S10. Benchmark of Di and Sdiff (i/j) for six gas mixtures 

Gas mixture 

i/j 
Di Sdiff (i/j) 

Gas mixture 

i/j 
Di Sdiff (i/j) 

He/CH4 9.50E-07 1000 O2/CH4 1.00E-07 26 

H2/CH4 1.00E-06 300 N2/CH4 1.00E-07 5.5 

CO2/CH4 9.00E-08 10 H2S/CH4 1.00E-09 1.9 
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Figure S12. Example of Optimal Material Screening Strategy 
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