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Abstract: Magnetic metal absorbing materials have exhibited excellent absorptance performance.
However, their applications are still limited in terms of light weight, low thickness and wide ab-
sorption bandwidth. To address this challenge, we design a broadband and low-profile multilayer
absorber using cobalt–iron (CoFe) alloys doped with rare earth elements (REEs) lanthanum (La) and
Neodymium (Nd). An improved estimation of distribution algorithm (IEDA) is employed in con-
junction with a mathematical model of multilayer absorbing materials (MAMs) to optimize both the
relative bandwidth with reflection loss (RL) below −10 dB and the thickness. Firstly, the absorption
performance of CoFe alloys doped with La/Nd with different contents is analysed. Subsequently,
IEDA is introduced based on a mathematical model to achieve an optimal MAM design that obtains
a balance between absorption bandwidth and thickness. To validate the feasibility of our proposed
method, a triple-layer MAM is designed and optimized to exhibit wide absorption bandwidth cover-
ing C, X, and Ku bands (6.16–12.82 GHz) and a total thickness of 2.39 mm. Then, the electromagnetic
(EM) absorption mechanisms of the triple-layer MAMs are systematically investigated. Finally, the
triple-layer sample is further fabricated and measured. The experimental result is in good agreement
with the simulated result. This paper presents a rapid and efficient optimization method for designing
MAMs, offering promising prospects in microwave applications, such as radar-stealth technology,
EM shielding, and reduced EM pollution for electronic devices.

Keywords: cobalt–iron alloy; rare earth elements; electromagnetic absorption; multilayer absorbing
materials; estimation of distribution algorithm

1. Introduction

With the rapid development of wireless communications and electromagnetic (EM)
technologies, the intensive use of electronic devices has inevitably caused EM pollution.
The pervasive propagation of EM pollution poses significant challenges, such as signal
interference, data loss, and even damage to human health [1–3]. Therefore, EM microwave
absorbing materials have attracted much attention to meet the requirement of EM radiation
control in the both military and civilian fields. The demand for EM wave absorbers
with a wide absorption frequency range and reduced thickness has become urgent [4,5].
EM wave absorbers can convert EM wave energy into thermal energy through magnetic
or dielectric loss, which is mainly determined by the relative complex permeability or
permittivity. In recent years, magnetic metal materials and their alloys have generated
significant attention due to their favorable magnetic properties, including high relative
complex permeability and multiple EM wave loss mechanisms of ferromagnetic resonance
and eddy current effect [6,7]. Cobalt–iron (CoFe) alloys exhibit remarkable advantages,

Nanomaterials 2024, 14, 1107. https://doi.org/10.3390/nano14131107 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14131107
https://doi.org/10.3390/nano14131107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-0886-0852
https://orcid.org/0000-0001-8207-9055
https://orcid.org/0000-0002-0468-2868
https://orcid.org/0000-0002-9859-3232
https://orcid.org/0000-0002-8534-8596
https://doi.org/10.3390/nano14131107
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14131107?type=check_update&version=2


Nanomaterials 2024, 14, 1107 2 of 15

including large saturation magnetization, high Curie temperature, high permeability and
easy accessibility [8,9]. However, their potential as EM-absorbing materials is limited by
low natural resonance frequencies and simplistic loss mechanisms [3,10]. To overcome these
limitations and enhance the absorption performance of CoFe alloys, rare earth elements
(REEs), with their three unique d electrons and four localized f electrons as well as strong
coupling with magnetic materials, have emerged as outstanding material dopants [11].
Recent studies have demonstrated that incorporating a certain amount of REEs such as
lanthanum (La) and Neodymium (Nd) into CoFe alloys can extend the magnetic anisotropy
of the CoFe alloys [12,13], reduce matching thickness and increase the resonance frequencies,
which offer a promising direction for EM absorbing materials [14–16].

Researchers have developed several strategies to enhance the absorption bandwidth, in-
cluding the utilization of multilayer structures with varying materials and thicknesses [17–20].
By implementing impedance matching, a gradient of effective permittivity and perme-
ability can be achieved, thereby further expanding the absorption band. To address the
challenging multi-objective optimization problem of determining the optimal thickness
and material type of each layer in a multilayer absorbing materials (MAMs) structure,
evolutionary algorithms (EAs) [21–24] such as genetic algorithm (GA), particle swarm
optimization (PSO), estimation of distribution algorithm (EDA) and artificial bee colony
(ABC) have been employed. In [17], a simple GA was employed to design various MAMs
for predicting return loss (RL). Simultaneously, PSO was also applied to design a triple-
layer microwave absorber [25]. Although the above studies show potential for optimizing
absorption properties, few works were verified by experiments. Furthermore, there is still
room for improvement in enhancing the performance of EAs to handle numerous variables
and complex targets.

In this study, CoFe alloys are doped with La and Nd to achieve a low-profile and
broadband absorber. Since the frequency range of EM waves detected by radar monitoring
is generally 2–18 GHz, the EM absorption materials are designed in this frequency range.
An improved EDA (IEDA) optimization is employed for the automated and efficient design
of the MAMs. The absorption performance of CoFe alloys doped with different contents of
La and Nd is analysed. To further broaden the absorption bandwidth, a multilayer structure
is adopted to improve the impedance matching and enable multiple resonance absorption
effects. Additionally, a mathematical model of the MAMs is established as an alternative to
complex and time-consuming EM simulations in order to reduce simulation time while
ensuring accuracy in EM performance evaluation. Consequently, IEDA is used to search
for the optimal combination of thicknesses and material types from various components of
La/Nd-doped CoFe alloys. To validate the effectiveness of the method, a triple-layer MAM
structure exhibiting broadband absorption ranging from 6.16 to 12.82 GHz is designed.
The absorption mechanisms of the triple-layer MAMs are analysed through impedance
matching, energy loss and field concentration. Finally, the triple-layer MAM is further
fabricated. The high agreement between experimental and numerical results demonstrates
the feasibility and reliability of our proposed method. Overall, this work provides a fast
and efficient design method that exhibits remarkable absorption performance in designing
MAMs based on REEs-doped CoFe alloys, which offers promising potential in the field of
EM absorption.

2. Materials and Methods
2.1. Preparation of CoFe Alloys Doped with Nd/La

The CoFe alloys, Co0.72Fe0.28, doped with Nd and La were synthesized by physical
processes including arc melting, strip casting, and ball milling, as shown in Figure 1. La and
Nd were used to enhance the magnetic anisotropy of CoFe alloys, which is based on our pre-
vious research [13]. Specifically, the alloys were prepared using Co (99.99 wt%, ZhongNuo
Advanced Material Technology Co., Ltd., Beijing, China), Fe (99.99 wt%, ZhongNuo Ad-
vanced Material Technology Co., Ltd.), and Nd/La (99.99 wt%, ZhongNuo Advanced
Material Technology Co., Ltd.) as raw materials. They were proportionally mixed and
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then alloyed by arc melting in the argon atmosphere. The melting state was maintained for
5 min to initiate the alloying process. To ensure a homogeneous composition of ingots, this
procedure was repeated 5 times to achieve the alloying. To further characterize the ingots,
they were crushed into powders in two steps. Firstly, the ingots were carefully polished
to eliminate the oxide layer followed by a strip casting process where delicate alloy strips
were obtained using a copper roller rotating at a fixed speed of 25 m/s. Subsequently, a
mixture of 5 g prepared strips with 20 g stainless steel balls was placed in a 250 mL jar. The
balling milling process lasted for 12 h at a rotation speed of 170 rpm. Finally, the Nd/La
dopped CoFe alloy powders were successfully obtained. The dopant ratios of Nd and
La were expressed as Mx(Co8Fe2)1−x (M = Nd, La, x = 0.075, 0.1). The collected powders
were designated as follows: CF denoting the primary Co0.72Fe0.28 alloy; NCF-1/2 repre-
senting Nd0.075(Co8Fe2)0.925 and Nd0.1(Co8Fe2)0.9; LCF-1/2 indicating La0.075(Co8Fe2)0.925
and La0.1(Co8Fe2)0.9.
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Figure 1. Schematic illustration of the synthesis for LCF and NCF.

2.2. Characterization

To analyse the EM absorption properties, the samples were prepared by dispersing
the powders in paraffin wax with a weight ratio of 60 wt%. The EM parameters (relative
permeability and relative permittivity) between 2 and 18 GHz were measured by a vector
network analyser (VNA, Agilent N5244A, Santa Clara, CA, USA).

3. Design and Optimization of Multilayer Absorber Materials
3.1. Mathematical Model of the Multilayer Absorbing Materials

The propagation of EM waves in a MAM design involves reflection and transmission
across different layers with varying mediums. Figure 2 illustrates the mathematical model
of a multilayer absorber consisting of N layers with different materials, backed by a
perfect electric conductor (PEC). The total RL of a MAM design (TR0) can be obtained
by a recursive formulation [26]. The computation of the total RL considers the multiple
reflections (R1, R2, . . ., RN) at each interface, which can be recursively calculated by:

TRi =
Ri + TRi+1e−2jki,zdi

1 + RiTRi+1e−2jki,zdi
, (1)

where the wave number is ki,z = cos θiω
√

µiεi and ω = 2π f is the angular frequency. f is
defined as the operation frequency. According to Snell’s law [27], the incident angle of the
EM wave propagates into each interface is as follows:

sin θi
sin θi−1

=

√
µi−1εi−1

µiεi
. (2)

In this model, the RL at each interface is expressed as:

Ri =
µiki−1,z − µi−1ki,z

µiki−1,z + µi−1ki,z
. (3)

As θ0, µi, θi and εi are generally known and the reflection coefficient of the PEC layer
is TRN = −1, the total RL of the MAMs TR0 at 2–18 GHz can be derived.
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denote the thickness, relative permeability, and relative permittivity of the ith layer, where i represents
the layers recursively as i = 1, 2, . . ., N. i = 0 indicates the air. It is supposed that the incident wave
propagates from the air at an incident angle of θ0.

3.2. Optimization Using IEDA for Searching the Broadband and Low-Profile Structure

The optimization process of the MAM design based on IEDA is shown in Figure 3. The
process is mainly composed of three parts: EM modelling of the MAM design, construction
of the objective function, and optimization using IEDA. In terms of the EM modelling for
multilayer absorber materials design, some physical parameters need to be predefined,
including the number of layers N and the source of the material database. Subsequently,
the objective function should be determined depending on the performance requirements.
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EDA [28] has been developed to guide the search for the global optimum by estimating
and sampling the probabilistic model of promising solutions. Over the past few decades,
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EDA has been extensively applied to solve complex problems [29]. In order to improve the
efficiency of EDA, the improved estimation of distribution algorithm (IEDA) is introduced
in this article. Firstly, a randomly generated initial population is evaluated by the objective
function. If the stopping criterion is met, the optimization process terminates and outputs
the optimal solution with specified material type and thickness for each layer. Otherwise,
individuals with better objective function values are selected from the population. Next, a
competitive neighbourhood search [30] is adopted to locally explore promising individuals
in two neighbourhoods surrounding these selected individuals, fully leveraging informa-
tion from the probabilistic model. Subsequently, based on these promising individuals,
we estimate the probabilistic model [28]. To effectively improve population diversity, a
two-level correlation [23] is used to modify the probabilistic model. Sampling individuals
are then randomly drawn according to the modified probabilistic model. Finally, both
promising individuals and sampling individuals constitute the new population. In this
way, IEDA achieves a balance between local exploitation and global exploration.

4. Results and Discussion
4.1. Effect of Doping La/Nd on the Absorption Performance of CoFe Alloys

Typically, the relative permittivity (ε) and relative permeability (µ) can be utilized to
evaluate the EM absorption performance of materials [31]. The real and the imaginary
parts of ε and µ represent the energy storage and dissipation capabilities of EM waves,
respectively. The loss tangent value can illustrate the attenuation capability. Figure 4
illustrates the measured EM parameters of CF, LCF-1 and LCF-2 within a frequency range
of 2 to 18 GHz. In Figure 4a, the curve depicting the real part of permittivity (ε′) exhibits a
decreasing trend with increasing frequency for LCF-1 and LCF-2. The ε′ values of CF, LCF-1
and LCF-2 vary in the range of 5.7–9.6, 8.6–11.7 and 7.8–12.2, respectively. The introduction
of La doping induces significant modifications in the ε′ values of CF accompanied by a
pronounced resonance peak in polarization leading to an augmentation in dielectric loss.
From Figure 4b, the imaginary part of the permittivity (ε′′) values for CF are close to 0.
The ε′′ values fluctuate in the range of 1.1–5.2 for LCF-1 and 1.1–7.3 for LCF-2. LCF-2
exhibits the biggest ε′′ values, which indicates that LCF-2 has a higher dielectric dissipating
property. Both LCF-1 and LCF-2 exhibit a resonance peak for ε′′, implying the intense
polarization relaxation in the powders. The dielectric loss tangent (tanδe = ε′′/ε′) values
exhibit a similar trend to the ε′ values shown in Figure 4c. The curve of CF almost has no
change. With the doping of La, the peak tanδe values were observed for LCF-1 and LCF-2
at 12.08 GHz and 9.84 GHz, indicating good dielectric loss. As depicted in Figure 4d and e,
µ′ values of CF, LCF-1 and LCF-2 all vary in the range of 0.6–2.0, which illustrates that the
doping of La has little effect on the real part values of permeability (µ′) for CoFe alloys. The
imaginary part values of permeability (µ′′) values fluctuate in the range of 0.1–0.8 for both
LCF-1 and LCF-2. With the increase in La doping, µ′ exhibits a decreasing trend, while µ′′

demonstrate an increasing trend, thereby contributing to higher magnetic loss. The plot
in Figure 4f illustrates the variation in the magnetic loss tangent (tanδm = µ′′/µ′) values.
It is evident that the magnetic loss values increase with the increase in the La component,
which is mainly because the increased doping of the La phase might bring strengthened
magneto crystalline anisotropies, hence hoisting the natural resonance frequencies and
magnetic loss.

Figure 5 shows the values of ε and µ for CoFe alloys doped with different Nd contents
in the frequency range from 2 GHz to 18 GHz. In Figure 5a, ε′ values of NCF-1 and NCF-2
vary in the range of 12.2–16.1 and 11.3–13.2, respectively. In Figure 5b, ε′′ values vary in the
range of 0.3–1.4 and 1.3–7.4 for NCF-1 and NCF-2, respectively. However, despite NCF-2
having more Nd content, ε′ and ε′′ values of NCF-2 are lower than those of NCF-1. It
indicates that an appropriate Nd doping strategy can effectively enhance the conductivity
of CF. In addition, the tanδe values follow a similar trend as the ε′ values in Figure 5c.
Although µ′ values of NCF-1 and NCF-2 decrease, µ′′ values have an increasing trend with
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the doping of Nd content from Figure 5d,e, which implies the improvement of magnetic
loss, as the curves shown in Figure 5f.
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Figure 6 shows the loss factor tanδ (tanδ = tanδe + tanδm) of CF, LCF-1/2 and NCF-1/2
in the frequency of 2–18 GHz. The curve representing CF exhibits the lowest values com-
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pared to LCF-1/2 and NCF-1/2, which indicates poor EM loss capability. From Figure 6a,
it is evident that an increase in La content leads to a significant improvement in the tanδ
values of LCF, suggesting a notable enhancement in their EM loss ability. Specifically,
LCF-1 and LCF-2 exhibit maximum tanδ values of 0.99 at 12.52 GHz and 1.06 at 10.24 GHz,
respectively, indicating that LCF-1/2 exhibits a superior loss effect in the high-frequency
region. As seen in Figure 6b, when the Nd content is doped, the tanδ value of NCF has
a great improvement. Notably, NCF-2 demonstrates a superior loss effect compared to
NCF-1 with a maximum loss factor of NCF-2 reaching up to 0.92 at 9.04 GHz. It can be
found that the loss tanδ of CoFe alloys is enhanced when La and Nd are doped, which
could be caused by the high mobility of the three Nd/La itinerant d electrons and four
localized f electrons [32]. As a result, the enhanced dielectric and magnetic losses of LCF
and NCF render them highly promising materials for absorption applications.
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The relationship curves of RL and frequency of Nd/La-doped CoFe samples with
varying thicknesses are presented in Figure 7. The absorption performance of the samples
significantly is improved with increasing doping of La and Nd content. In comparison to
NCF samples, LCF samples exhibit superior absorption performance in both low-frequency
and mid-to-high-frequency bands. All LCF samples demonstrate better RL values in the
low-frequency band for all thicknesses, while also exhibiting a wider absorption bandwidth
in the mid-high frequency bands. The dopant of La and Nd can increase the magnetic
anisotropy of the CoFe alloys, thereby increasing the magnetic natural resonance frequency.
As a result, the absorption frequency band of La/Nd-doped CoFe alloys can be extended
to higher frequencies. As the thickness values increase, the minimum RL values and
their corresponding frequencies decrease accordingly. However, it can be seen that the
absorption bandwidths of samples are not improved with the increasing of the thicknesses,
indicating that there is no linear relationship between the absorption bandwidth and the
thickness. Due to the single-layer structure, the LCF and NCF samples would operate at
around the central frequency of the wavelength and suffer from narrow bandwidth. To
broaden the absorption bandwidth and ensure a low-profile structure, a MAM structure is
designed and optimized. Different from the single-layer MAMs, the multilayer structure of
absorbing materials can not only achieve 1/4 wavelength (λ/4) resonance absorption but
also increases the interface between materials and free space, which has been proved to
be an efficient strategy for achieving broadband absorption [33,34]. In this study, we take
LCF and NCF with favorable EM parameters as the material database and improve the
impedance matching by optimizing the thickness and material type of each layer of the
MAMs. This approach integrates multiple loss mechanisms to achieve flexible regulation
of EM waves.
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4.2. MAMs Design Using IEDA Optimizer

Generally, the absorption performance of a MAM design is simulated by EM simu-
lation software, such as CST Microwave Studio 2021 (release version is 2021. 01), which
provides accurate results but requires significant time investment. In CST Microwave
Studio, field monitors and post-processing templates are incorporated to obtain the total RL
of MAMs through the Finite Integration method [35]. In contrast, the mathematical model
of multilayer absorber materials design can effectively calculate the RL by Equation (1),
thereby enhancing optimization efficiency. To validate the feasibility of the mathematical
model in Section 3.1, the calculated results by Equation (1) are compared with the simu-
lated results conducted in CST software. From Figure 8, the calculated results are highly
coincident with the simulated results. It can be seen that the mathematical model can
replace the EM simulation to achieve the rapid evaluation of the absorption performance
of the MAMs.
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In order to validate the availability of the proposed optimization method, a triple-layer
MAM (N = 3) is designed, with materials selections from NCF-1/2 and LCF-1/2. Table 1
shows the relevant parameters. The thickness range of each layer is defined ranging from
0.45 mm to 3 mm. The material type (mi) and thickness (di) for each layer are encoded as
binary code, which are written as:

mi = mi2 × 2 + mi1 × 1 + 1

di =

(
di8 × 128 + di7 × 64 + di6 × 32 + di5 × 16
+di4 × 8 + di3 × 4 + di2 × 2 + di1 × 1

)
× 0.01 + 0.45

, (4)

where mi1~mi2 and di1~di8 are binary codes. The material database consists of four ma-
terials, with thicknesses categorized based on the range. Consequently, a 30-bit binary
encoding is employed to represent the decision variables. The objective of this article is
to obtain a triple-layer MAM that exhibits the widest relative frequency band where the
RL is below −10 dB and possesses the lowest relative thickness. It is a multi-objective
optimization and can be described as:

min : f itness = −FBW/dr, (5)

where FBW and dr are the relative bandwidth with the RL below −10 dB and the relative
thickness. Meanwhile, FBW and dr are given as

FBW = 2 × ( fH − fL)/( fH + fL), (6)

and dr = (d1 + d2 + . . . + dN)/(λL − λH), di ∈ [0.2, 3], (7)

where fL and fH are the low and high limits of the frequency range with the RL below
−10 dB. The wavelength of fL and fH are λL = c/ fL and λH = c/ fH, where c is the velocity
of light in free space.

Table 1. Material database for the triple-layer MAMs.

Material Name Supplementary Notes Material Name Label

Lax(Co8Fe2)1−x
x = 0.075 LCF-1 1

x = 0.1 LCF-2 2

Ndx(Co8Fe2)1−x
x = 0.075 NCF-1 3

x = 0.1 NCF-2 4

IEDA is compared with GA and EDA to demonstrate the superiority of the proposed
method, and the evolution of the iterations can be seen in Figure 9a. The optimal fitness
achieved by IEDA (−7.80) outperformed that obtained by EDA (−4.94) and GA (−4.90),
indicating that IEDA converges faster and explores better solutions. These results validate
the feasibility and efficiency of our proposed optimization method. The RL and absorption
results of the optimal triple-layer MAMs obtained by IEDA are described in Figure 9b. The
optimized triple-layer MAMs cover the C and X bands ranging from 6.16 GHz to 12.82 GHz.
Table 2 shows the optimization parameters of the optimal structure, the material types
of each layer are LCF-2/, LCF-1/LCF-2 from the first and third layers, respectively. By
employing the proposed optimization method, a remarkable relative bandwidth of 70.18%
and a relative thickness of 0.09 are achieved.

The magnetism plays a crucial role in determining the microwave loss, as it is essential
for the typical magnetic phases. Figure 10 presents the measured saturation magnetization
(Ms) and coercivity (Hc) at room temperature. As observed, the CoFe alloy has high Ms but
low Hc values. The dopant of Nd/La leads to noticeable reductions in Ms but significant
increases in Hc for the NCF/LCF samples. Ms reflects the alignment of magnetic domains
within the magnets, while Hc represents their resistance to alternate EM fields, resulting in
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higher energy consumption required for realignments. This aligns with variations ob-
served in real/imaginary permeability trends, where Nd- and La-doped samples exhibit
higher µ′′ values and enhanced magnetic loss characteristics in Figures 4 and 5. Further-
more, the triple-layer MAMs also maintain the magnetic properties of LCF samples. The
slight decrease in Ms could be attributed to binder-induced effects from paraffin without
compromising Hc values. Therefore, even with triple-layer MAM samples, potent magnetic
loss is preserved.
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Table 2. Optimization parameters of the triple-layer MAM design.

Structure Material Thickness (mm) Total Thickness
(mm)

Triple-layer MAMs

m1 = LCF-2 d1 = 0.71

2.39m2 = LCF-1 d2 = 0.64

m3 = LCF-2 d3 = 1.04
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To further explain the necessity of the impedance matching design, the equivalent
impedance of the triple-layer MAMs is calculated by:

Zeff =

√√√√ (1 + S11)
2 − S21

2

(1 − S11)
2 − S21

2
, (8)
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where S11 and S21 are the reflectance and transmittance of the absorber. Figure 11a shows
the impedance matching between the triple-layer MAMs and free space. From 6.16 GHz
to 12.82 GHz, the real part of the equivalent impedance (Real(Zeff)) is close to one and the
imaginary part of the equivalent impedance (Imag(Zeff)) fluctuates around zero, implying
excellent impedance matching with free space and facilitating efficient entrance of incident
EM waves into the triple-layer MAMs. To illustrate the EM energy loss mechanism of the
triple-layer absorber, the power loss ratio of each layer in the triple-layer MAMs is analysed
in Figure 11b. It can be seen that the PEC does not absorb energy. The second layer of
LCF-1 exhibits the smallest absorption power ratio, ranging from 7.58% to 31.67%. From
2 GHz to 18 GHz, significant energy absorption occurs in the third layer of LCF-2. The
average absorption power ratio of the third layer is 33.52%, with a maximum power loss
ratio of 47%. The first layer of LCF-2, adjacent to the free space, has an average absorption
power ratio of 21.78% and a maximum power loss ratio of 39.05%. Although the first layer
and the third layer are both composed of LCF-2 material, their absorption properties differ
significantly due to the variations in thicknesses that should be carefully designed. The
first and second layers exhibit similar power loss ratios at 2–7 GHz as well as 12–18 GHz,
differing only by a range of 0.4–4.3%. From 11 GHz to 18 GHz, the second and third
layers demonstrate comparable power loss ratios. In other frequency bands, the third
layer exhibits a higher absorption power ratio compared to the other two layers. Through
the synergistic absorption effects among material layers, the designed triple-layer MAMs
achieve wideband absorption performance by absorbing over 90% of EM wave energy
within the frequency range of 6.16–12.82 GHz. It is evident that there are two absorption
peaks at 7.344 GHz and 12.176 GHz which correspond to the RL and absorption results in
Figure 9a. To further investigate the absorption mechanism of the triple-layer MAMs, the
simulated distributions of the electric field (E filed) and magnetic field (H field) and power
loss density are shown in Figure 12. At a low frequency, such as 7.344 GHz from Figure 12a,
the distribution curves of E and H fields form a separation in the third layer next to the
PEC, which exhibits the occurrence of standing wave and exerts the typical quarter-wave
(λ/4) resonance. The power loss density and the H field both concentrate on the third layer,
which manifests λ/4 magnetic resonance. It shows that most of the energy is consumed by
the third layer, as discussed in Figure 11b. As the frequency increases to 12.176 GHz, the
skin depth decreases. From Figure 12b, the E field is primarily localized within the first and
second layers, as well as at their interface, which demonstrates multiple reflections of EM
waves occur in the adjacent layers and thus promotes the dissipation of the EM energy. The
distribution of the H field is mainly concentrated at the third layer and the interface of each
layer. Compared with the distribution of E and H fields in the third layer at 7.344 GHz,
there is an increase in both E field intensity and H field intensity in the second layer as
well as at each interface. The power loss distribution reveals a notable enhancement at
the interface between the first and second layers, indicating a synergistic effect arising
from both dielectric and magnetic losses. In conclusion, the various loss mechanisms
in the La-doped CoFe alloy (LCF materials) contribute to EM energy dissipation, while
the multilayer structure enhances impedance matching and controls field distribution.
Consequently, broadband absorption of the triple-layer MAMs is achieved through the
combined effects of impedance matching, energy loss and field concentration.

4.3. Experimental Verification

After determining the geometric parameters and material type, a triple-layer sample
was prepared for verification in this study. Each layer of the sample was separately obtained
and pressed into the coaxial waveguide cavity to obtain the triple-layer MAMs, as shown
in Figure 13a. The sample ring had an outer diameter of 7.0 mm, an inner diagram of
3.0 mm and a thickness of 2.39 mm for microwave reflection measurement. The coaxial
method was used to obtain the reflection of the sample in the VNA. Figure 13b shows the
simulated, calculated and measured results, which exhibit excellent agreement between the
simulation and measurement curves with minor discrepancies attributed to the limitation
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in measurement techniques and manufacturing errors during fabrication processes. The
calculation and simulation curves are in good consistency, which further demonstrates
the feasibility of our proposed method. In summary, our proposed optimization method
enables a broadband absorption performance with low-profile MAMs. Table 3 presents a
comparison between our triple-layer MAMs with other relevant works in recent years for
EM wave absorption. Notably, in comparison to the single-layer absorber utilizing CoFe ma-
terials [36], the multilayer absorber [20], two absorbers incorporating REEs [7,14], and the
proposed low-profile and broadband MAMs have broader bandwidth and lower relative
thickness, indicating the feasibility of this design method in the EM absorption field.
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5. Conclusions 
In this work, an efficient design method for broadband and low-profile MAMs based 

on La/Nd-doped CoFe alloys is proposed. The effects of the La/Nd content on the absorp-
tion performance of CoFe alloys are analysed, revealing that the excellent dielectric and 
magnetic loss of LCF and NCF make them promising candidates for EM absorption ma-
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Table 3. Comparison with other related work.

Reference Materials Structure FBW EAB (GHz) Operating
Frequency

Relative
Thickness

Total Thickness
(mm) Fitness

[36] CoFe/Go composite Single-layer 36.19% 8.6–12.4 X, Ku 0.47 5 −0.77

[20] CoFe-C alloy Triple-layer 59.56% 7.9–14.6 C, X, Ku 0.20 3.5 −2.98

[14] CoZn ferrites doped with Pr Single-layer 50.96% 10.69–18 X, Ku 0.22 2.5 −2.32

[7] Bi doped LaFeO3 Single-layer 30.01% 10.28–13.91 X, Ku 0.29 2.18 −1.03

This work CoFe alloy doped with La Triple-layer 70.18% 6.16–12.82 C, X, Ku 0.09 2.39 −7.80

5. Conclusions

In this work, an efficient design method for broadband and low-profile MAMs based
on La/Nd-doped CoFe alloys is proposed. The effects of the La/Nd content on the absorp-
tion performance of CoFe alloys are analysed, revealing that the excellent dielectric and
magnetic loss of LCF and NCF make them promising candidates for EM absorption materi-
als. To further enhance the absorption bandwidth, a mathematical model of the MAMs is
established to replace complex and time-consuming EM modeling. The agreement between
calculation and simulation results demonstrates the reliability of this mathematical model.
Additionally, an IEDA is introduced to simultaneously optimize thickness and RL below
−10 dB of the MAMs. To verify the proposed method, a triple-layer MAM is designed with
a wide absorption bandwidth covering C, X, and Ku bands (6.16–12.82 GHz) and a total
thickness of 2.39 mm. The absorption mechanism of the triple-layer MAMs is systematically
investigated, showing that various loss mechanisms in La-doped CoFe alloy (LCF materials)
contribute to EM energy dissipation while the multilayer structure enhances impedance
matching and controls field distribution. Finally, a triple-layer ring prototype based on the
designed triple-layer MAMs is fabricated. The good agreement between simulation and
experimental results confirms the efficiency of our proposed method. The designed MAMs
hold great potential in radar-stealth technology development, EM shielding for health
safety as well as reduced EM pollution for electronic devices. The proposed design method
can be extended to other absorbing materials, such as ferromagnetic materials [37,38],
offering promising prospects for EM wave absorption.
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