Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO2 as Blowing Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrications of Polymeric Foams [19]
2.3. Microstructure and Morphology Characterization
2.4. CO2 Adsorption and Desorption Measurement
3. Results and Discussions
3.1. Solubility and Diffusivity of CO2 in PPC-P
3.2. Foaming Behavior of PPC-P Using Sub-Critical CO2 as Foaming Agent
Influences of Pressure and Temperature on Foam Morphology
3.3. Rheological Behavior and Mechanical Performance of PPC-P and PPC-P Composites
3.4. Foaming Behaviors of PPC-P Composites
3.4.1. Foaming Behavior of PPC-P/5%nanoCaCO3 Composite
3.4.2. Foaming Behavior of PPC-P/20%Starch Composite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nofar, M.; Park, C.B. Poly (lactic acid) foaming. Prog. Polym. Sci. 2014, 39, 1721–1741. [Google Scholar] [CrossRef]
- Jiao, J.; Xiao, M.; Shu, D.; Li, L.; Meng, Y.Z. Preparation and characterization of biodegradable foams from calcium carbonate reinforced poly(propylene carbonate) composites. J. Appl. Polym. Sci. 2006, 102, 5240–5247. [Google Scholar] [CrossRef]
- Vorawongsagul, S.; Pratumpong, P.; Pechyen, C. Preparation and foaming behavior of poly (lactic acid)/poly (butylene succinate)/cellulose fiber composite for hot cups packaging application. Food Packag. Shelf Life 2021, 27, 100608. [Google Scholar] [CrossRef]
- Zou, J.; Qi, Y.; Su, L.; Wei, Y.; Li, Z.; Xu, H. Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2’-Bis(2-oxazoline) Chain Extending. Macromol. Res. 2018, 26, 1212–1218. [Google Scholar] [CrossRef]
- Tiwary, P.; Park, C.B.; Kontopoulou, M. Transition from microcellular to nanocellular PLA foams by controlling viscosity, branching and crystallization. Eur. Polym. J. 2017, 91, 283–296. [Google Scholar] [CrossRef]
- Liang, J.; Ye, S.; Wang, W.; Fan, C.; Wang, S.; Han, D.; Liu, W.; Cui, Y.; Hao, L.; Xiao, M.; et al. Performance tailorable terpolymers synthesized from carbon dioxide, phthalic anhydride and propylene oxide using Lewis acid-base dual catalysts. J. CO2 Util. 2021, 49, 101558. [Google Scholar] [CrossRef]
- Li, X.H.; Meng, Y.Z.; Chen, G.Q.; Li, R.K.Y. Thermal Properties and Rheological Behavior of Biodegradable Aliphatic Polycarbonate Derived from Carbon Dioxide and Propylene Oxide. J. Appl. Polym. Sci. 2004, 94, 711–716. [Google Scholar] [CrossRef]
- Li, Y.; Dai, M.; Chen, X.; Yang, Y.; Yang, M.; Huang, W.; Cheng, P. Synergetic effect and mechanism between propylene carbonate and polymer rich in ester and ether groups for CO2 physical absorption. J. Clean. Prod. 2022, 336, 130389. [Google Scholar] [CrossRef]
- Barreto, C.; Altskär, A.; Fredriksen, S.; Hansen, E.; Rychwalski, R.W. Multiwall carbon nanotube/PPC composites: Preparation, structural analysis and thermal stability. Eur. Polym. J. 2013, 49, 2149–2161. [Google Scholar] [CrossRef]
- Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. Lightweight and conductive carbon black/chlorinated poly(propylene carbonate) foams with a remarkable negative temperature coefficient effect of resistance for temperature sensor applications. J. Mater. Chem. C 2018, 6, 9354–9362. [Google Scholar] [CrossRef]
- Yu, P.; Mi, H.-Y.; Huang, A.; Liu, X.; Chen, B.-Y.; Zhang, S.-D.; Peng, X.-F. Preparation of poly(propylene carbonate)/nano calcium carbonate composites and their supercritical carbon dioxide foaming behavior. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Chen, G.J.; Wang, Y.Y.; Wang, S.J.; Xiao, M.; Meng, Y.Z. Orientation microstructure and properties of poly(propylene carbonate)/poly(butylene succinate) blend films. J. Appl. Polym. Sci. 2013, 128, 390–399. [Google Scholar] [CrossRef]
- Lin, S.; Li, B.; Chen, T.; Yu, W.; Wang, X. Mechanical reinforcement in poly(propylene carbonate) nanocomposites using double percolation networks by dual volume exclusions. Compos. Sci. Technol. 2018, 167, 364–370. [Google Scholar] [CrossRef]
- Tian, H.; Yu, J.; Zhao, Y.; Pan, H.; Li, Y.; Xiao, Y.; Han, L.; Bian, J.; Hao, Y.; Zhang, H. Environmentally friendly poly(butylene adipate-co-terephthalate) and CO2-based poly(propylene carbonate) biodegradable foams modified with short basalt fiber. J. Therm. Anal. Calorim. 2023, 148, 12455–12466. [Google Scholar] [CrossRef]
- Gonçalves, L.F.F.F.; Reis, R.L.; Fernandes, E.M. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers 2024, 16, 1286. [Google Scholar] [CrossRef]
- Kuang, T.; Li, K.; Chen, B.; Peng, X. Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Compos. Part B Eng. 2017, 123, 112–123. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, M.; Wang, S.; Xia, L.; Hang, D.; Cui, G.; Meng, Y. Mechanism studies of terpolymerization of phthalic anhydride, propylene epoxide, and carbon dioxide catalyzed by ZnGA. RSC Adv. 2014, 4, 9503–9508. [Google Scholar] [CrossRef]
- Liang, J.; Wang, S.; Wu, C.; Wang, S.; Han, D.; Huang, S.; Huang, Z.; Xiao, M.; Meng, Y. A new biodegradable CO2-based poly(ester-co-carbonate): Molecular chain building up with crosslinkable domain. J. CO2 Util. 2023, 69, 102403. [Google Scholar] [CrossRef]
- Chai, J.; Wang, G.; Zhao, J.; Zhang, A.; Shi, Z.; Wei, C.; Zhao, G. Microcellular PLA/PMMA foam fabricated by CO2 foaming with outstanding shape-memory performance. J. CO2 Util. 2021, 49, 101553. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, J.; Mark, L.H.; Wang, G.; Yu, K.; Wang, C.; Park, C.B.; Zhao, G. Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chem. Eng. J. 2017, 325, 632–646. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, J.; Zhai, W.; Lee, R.E. Fundamental Influences of Induced Crystallization and Phase Separation on the Foaming Behavior of Poly(lactic acid)/Polyethylene Glycol Blends Blown with Compressed CO2. Ind. Eng. Chem. Res. 2016, 55, 12557–12568. [Google Scholar] [CrossRef]
- Lee, J.K.; Yao, S.X.; Li, G.; Jun, M.B.G.; Lee, P.C. Measurement Methods for Solubility and Diffusivity of Gases and Supercritical Fluids in Polymers and Its Applications. Polym. Rev. 2017, 57, 695–747. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, W.; Zhao, D.; Zhai, W. Poly(ether imide)/Epoxy Foam Composites with a Microcellular Structure and Ultralow Density: Bead Foam Fabrication, Compression Molding, Mechanical Properties, Thermal Stability, and Flame-Retardant Properties. ACS Omega 2020, 5, 25784–25797. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Wang, G.; Xu, Z.; Zhang, A.; Dong, G.; Zhao, G. Lightweight, low-shrinkage and high elastic poly(butylene adipate-co-terephthalate) foams achieved by microcellular foaming using N2 & CO2 as co-blowing agents. J. CO2 Util. 2022, 64, 102149. [Google Scholar] [CrossRef]
- Konigslow, K.v.; Park, C.B.; Thompson, R.B. Application of a constant hole volume Sanchez–Lacombe equation of state to mixtures relevant to polymeric foaming. Soft Matter 2018, 14, 4603–4614. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, M.; Li, Y.; Chen, B.; Tian, F.; Zhai, W. Cell structure and hardness evolutions of TPU foamed sheets with high hardness via a temperature rising foaming process. J. Supercrit. Fluids 2022, 188, 105654. [Google Scholar] [CrossRef]
- White, L.J.; Hutter, V.; Tai, H.; Howdle, S.M.; Shakesheff, K.M. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater. 2012, 8, 61–71. [Google Scholar] [CrossRef]
- Zhai, W.; Jiang, J.; Park, C.B. A review on physical foaming of thermoplastic and vulcanized elastomers. Polym. Rev. 2021, 1–47. [Google Scholar] [CrossRef]
- Feng, D.; Li, L.; Wang, Q. Fabrication of three-dimensional polyetherimide bead foams via supercritical CO2/ethanol co-foaming technology. RSC Adv. 2019, 9, 4072–4081. [Google Scholar] [CrossRef]
- Motloung, M.P.; Ojijo, V.; Bandyopadhyay, J.; Ray, S.S. Cellulose Nanostructure-Based Biodegradable Nanocomposite Foams: A Brief Overview on the Recent Advancements and Perspectives. Polymers 2019, 11, 1270. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Gao, F.; Cao, H.; Zhou, Q.; Wang, X. Biodegradable and resilient poly (propylene carbonate) based foam from high pressure CO2 foaming. Polym. Degrad. Stab. 2019, 165, 12–19. [Google Scholar] [CrossRef]
- Watanabe, M.; Hashimoto, Y.; Kimura, T.; Kishida, A. Characterization of Engineering Plastics Plasticized Using Supercritical CO2. Polymers 2020, 12, 134. [Google Scholar] [CrossRef]
- Krause, B.; Mettinkhof, R.; van der Vegt, N.F.A.; Wessling, M. Microcellular Foaming of Amorphous High-Tg Polymers Using Carbon Dioxide. Macromolecules 2001, 34, 874–884. [Google Scholar] [CrossRef]
- da Silva Figueiró, C.; Trojaner, M.R.; Calcagno, C.I.W.; Santana, R.M.C. Rheological and structural characterization of cassava starches foam with low and high amylose contents. J. Polym. Res. 2022, 29, 30. [Google Scholar] [CrossRef]
- Li, Y.; Yin, D.; Liu, W.; Zhou, H.; Zhang, Y.; Wang, X. Fabrication of biodegradable poly (lactic acid)/carbon nanotube nanocomposite foams: Significant improvement on rheological property and foamability. Int. J. Biol. Macromol. 2020, 163, 1175–1186. [Google Scholar] [CrossRef]
- Hassan, M.M.; Le Guen, M.J.; Tucker, N.; Parker, K. Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA. Cellulose 2019, 26, 4463–4478. [Google Scholar] [CrossRef]
- Yang, Q.; Li, S.; Wang, X. Strategy for the Preparation of PBAT/Starch Blended Foam with High Resilience and Shrinkage Resistance. J. Polym. Environ. 2024. [Google Scholar] [CrossRef]
Saturation Temperature (°C) | K × 102 (1/MPa) |
---|---|
25 | 4.6 |
40 | 3.1 |
Saturation Pressure (MPa) | Diffusion Coefficient (m2 × s−1) |
---|---|
2.5 | 5.11 × 10−11 |
3.0 | 4.80 × 10−10 |
3.5 | 2.83 × 10−9 |
4.0 | 8.06 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Zhang, T.; Liang, J.; Yin, J.; Xiao, M.; Han, D.; Huang, S.; Wang, S.; Meng, Y. Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO2 as Blowing Agent. Nanomaterials 2024, 14, 1120. https://doi.org/10.3390/nano14131120
Wu C, Zhang T, Liang J, Yin J, Xiao M, Han D, Huang S, Wang S, Meng Y. Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO2 as Blowing Agent. Nanomaterials. 2024; 14(13):1120. https://doi.org/10.3390/nano14131120
Chicago/Turabian StyleWu, Change, Tianwei Zhang, Jiaxin Liang, Jingyao Yin, Min Xiao, Dongmei Han, Sheng Huang, Shuanjin Wang, and Yuezhong Meng. 2024. "Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO2 as Blowing Agent" Nanomaterials 14, no. 13: 1120. https://doi.org/10.3390/nano14131120
APA StyleWu, C., Zhang, T., Liang, J., Yin, J., Xiao, M., Han, D., Huang, S., Wang, S., & Meng, Y. (2024). Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO2 as Blowing Agent. Nanomaterials, 14(13), 1120. https://doi.org/10.3390/nano14131120