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Abstract: Poly(propylene carbonate-co-phthalate) (PPC-P) is an amorphous copolymer of aliphatic
polycarbonate and aromatic polyester; it possesses good biodegradability, superior mechanical
performances, high thermal properties, and excellent affinity with CO2. Hence, we fabricate PPC-P
foams in an autoclave by using subcritical CO2 as a physical blowing agent. Both saturation pressure
and foaming temperature affect the foaming behaviors of PPC-P, including CO2 adsorption and
desorption performance, foaming ratio, cell size, porosity, cell density, and nucleation density, which
are investigated in this research. Moreover, the low-cost PPC-P/nano-CaCO3 and PPC-P/starch
composites are prepared and foamed using the same procedure. The obtained PPC-P-based foams
show ultra-high expansion ratio and refined microcellular structures simultaneously. Besides, nano-
CaCO3 can effectively improve PPC-P’s rheological properties and foamability. In addition, the
introduction of starch into PPC-P can lead to a large number of open cells. Beyond all doubt, this
work can certainly provide both a kind of new biodegradable PPC-P-based foam materials and an
economic methodology to make biodegradable plastic foams. These foams are potentially applicable
in the packaging, transportation, and food industry.

Keywords: poly(propylene carbonate-co-phthalate) (PPC-P); CO2 foaming; biodegradable foam;
high expansion ratio; low-cost foam; packaging materials

1. Introduction

In recent years, polymer foams have become much more irreplaceable in modern soci-
ety due to their known merits, such as unique porous structure and excellent comprehensive
performance, including lightweight, high impact strength, good heat, and sound insulation.
However, traditional foams such as polypropylene (PP) foams, polystyrene (PS) foams,
etc., are from non-renewable petroleum resources, and they can hardly degrade in the
natural environment. Biodegradable polymer foams from renewable resources, thus, have
emerged as the “green environmental” requires; for example, biodegradable foams like
poly(lactic acid) (PLA) [1] and poly(propylene carbonate) (PPC) [2] have been tried to use
as substitutes of the petroleum-based polymer foams. They have well-known merits, such
as relatively comparable impact strength, superior flexibility, and excellent biodegradability
and renewability. However, their comparatively low melt strength and heat resistance have
constrained their industrial use, which can be surmounted through modifications such as
hybridization with high-stiffness polymers by introducing crystallization, adding fillers, or
through graft branches [3–5].
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Poly(propylene carbonate) (PPC) is obtained through copolymerization of carbon
dioxide (CO2) and propylene oxide (PO) [6]. Due to that its raw materials mainly are
carbon dioxide and the obtained polymers are fully biodegradable, it is becoming increas-
ingly popular and receiving attention around the world. Besides, PPC has good oxygen
insulation performance, excellent transparency and processing performance, and high
flexibility with an elongation at break up to 1200%. It is widely considered to be used in
the foam field [7]. PPC/CaCO3 foams with well-developed and uniform cellular structures
were obtained through the chemical foaming method in order to improve PPC foams’
compressive strength by introducing CaCO3 fillers [2]. It has also been suggested that PPC
has higher solubility in CO2 compared with other biodegradable materials [8]; at the same
saturation condition, PPC showed a 23.1 wt% CO2 absorption capability, while PBAT only
absorbed 5.0 wt% CO2. Therefore, better resilient PPC/PBAT hybrid foams can also be
fabricated by using CO2 as the physical blowing agent. However, due to the low glass
transition temperature (Tg ~37 ◦C) and poor mechanical properties of PPC (Tensile strength
~20 MPa), its application is greatly limited. Thus, it is always challenging to prepare
biodegradable PPC foams with a high foaming ratio foams and fined cellular structure,
which often requires polymers to possess advanced melt strength, superior stiffness, and
good heat resistance. The main obstacles of PPC are insufficient to compensate for the
shortcomings of fast gas diffusion during the foaming process, resulting in cell collapse
and inferior cellular structure. There are many strategies to improve PPC’s melt strength,
thermal properties, and foaming abilities. Firstly, fillers such as calcium carbonate (CaCO3),
carbon black, graphite oxide, nano-cellulose, starch, and carbon nanotubes (CNTs) are
added [9,10]. The addition of nano-CaCO3 into the PPC matrix improved the thermal
properties and foaming abilities of PPC [11]; notably, the finest cell structure with a narrow
cell diameter distribution was obtained at a 3 wt% nano-CaCO3 content. On the other hand,
blending modification with other degradable polymers such as polylactic acid (PLA) [1],
polybutylene succinate (PBS) [12], and PBAT were investigated extensively [13–15]. The
compressive modulus of prepared PPC/PBS/PTFE (70/30/3) foams was 30-fold higher
than that of neat PPC foams [16]. Nevertheless, it still had inferior cell quality.

Additionally, incorporating aromatic polyester units into the PPC backbone to tune
comprehensive properties has attracted much more interest from researchers [17]. PPC-P
(PO/PA/CO2 terpolymers) is an amorphous aliphatic polycarbonate-co-aromatic polyester
synthesized from the alternative copolymerization of propylene oxide (PO), with CO2
and phthalic anhydride (PA). The chemical structures of PPC and PPC-P are shown in
Scheme S1. After introducing aromatic PA units, PPC-P exhibits comparatively higher
Tg (>45 ◦C) and tensile strength (>40 MPa) than PPC, and their values can be tailored by
varying the feed ratio of PA and PO [6,18], which are comparable to crystalline polymer PLA.
Moreover, PPC-P exhibits satisfactory biodegradability when compared with commercial
PBAT and PPC. Based on the above properties, PPC-P is expected to be used to produce
fully biodegradable foams with a high foaming ratio and fine cellular structure.

To our knowledge, no research on the foaming behaviors of PPC-P has been disclosed
because PPC-P has been reported and commercialized by our group very recently. In this
work, we first prepare PPC-P foams with different expansion ratios by using the autoclave
foaming method with sub-critical CO2 as the blowing agent. Followingly, we investigate
how the saturation pressure and foaming temperature affect the foaming behaviors of PPC-
P, including CO2 adsorption and desorption performance, the foaming ratio, cell density,
cell size, and porosity. Furthermore, the influences of nano-CaCO3 and starch fillers are
studied on the rheological properties of PPC-P polymer and the cellular structures of PPC-P
foams. The intent of this work is to provide new insights into how to prepare biodegradable
PPC-P foams and low-cost PPC-P-based composite foams with high foaming ratios and
fine cellular, together with their practical applications.
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2. Materials and Methods
2.1. Materials

PPC-P (Mn = 124 kg/mol, PDI = 2.2) was supplied by Shandong Lianxin Environ-
mental Protection Technology Co., Ltd. (Maoming, China). The melt flow rate and glass
transition temperature are respectively 20.1 g/10 min (at 190 ◦C/2.16 kg load) and ~46 ◦C.
Nano calcium carbonate(nano-CaCO3) was purchased from Macklin company (Shanghai,
China) and has an average size of 50 nm. The starch was provided by Guangzhou Jinling
Biotechnology Co., Ltd. (Guangzhou, China). All of them were dried at 80 ◦C under a
vacuum for 24 h before use. Commercial-purity-grade high-pressure CO2 (purity = 99.9%,
Guangzhou, China) was used as a physical blowing agent.

2.2. Fabrications of Polymeric Foams [19]

The foaming process can be divided into the following steps [19]. Firstly, the PPC-P
specimens are pressed into sheets with a thickness of approximately 1 mm on a hot plate
at 150 ◦C. And the specimens with a size of 1.0 cm × 1.0 cm are cut for gas solubility
measurement. Next, PPC-P sheets are sealed into an autoclave and are flushed with
low-pressure CO2 for about 2 min and then saturated with CO2 at 2.5–4.0 MPa. After
the saturation treatment for 24 h, the autoclave is cooled in an ice water bath until the
temperature is reduced to around 0 ◦C to avoid the pre-foaming phenomenon due to the
sharp plasticization effect of CO2 on PPC-P.

After the cooling process, the CO2-saturated sheets are removed from the autoclave
after a quick depressurization and then are rapidly put into a boiling-water bath for 60 s to
complete the foaming process. Finally, the foamed sheets are transferred into the ice-water
bath again to stabilize the porous structures. The obtained foam is named PPC-P-x foam (x
represents the saturation pressure of CO2 before foaming). After experimental optimization,
the foaming temperature is set as 50 ◦C or 60 ◦C.

Therefore, Scheme 1 depicts the autoclave foaming process with sub-critical CO2 as a
blowing agent.
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Scheme 1. The fabrication process of PPC-P-based foams.

2.3. Microstructure and Morphology Characterization

A TESCAN VEGA3 SEM is used to analyze the microscopic cellular structure of the
fabricated foamed samples. Before the SEM observation, all the foams are first freeze-
fractured after being immersed in liquid nitrogen for 10 min, and then the fracture surfaces
are coated with a layer of Ag. A 5 kV accelerating voltage and the secondary electron image
mode are used to take all SEM images.
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The water displacement method [20] is utilized to measure the density of the solid
(ρ) and foam samples (ρf), and the expansion volume ratio Re could be calculated by
Equation (1):

Re = ρ/ρf, (1)

where ρ and ρf are the density of the solid and foams, respectively. At least three foams are
selected to measure, and the average values are analyzed for the foams obtained under the
same conditions. The following tests also obeyed such principle.

The foams’ porosity (ε) is calculated based on the following Equation (2):

Porosity (ε) = (1 − 1/Re) × 100%, (2)

where Re is the foams’ expansion volume ratio.
Both the cell diameter and density are determined from the SEM (SEM, SU8010,

Hitachi, Tokyo, Japan) micrographs with nano-measure 1.2 software. The cell density (N0;
cells/cm3) and nucleation density (Nd; nuclei/cm3) are counted from Equations (3) and (4):

Cell density (N0) = ε ÷ [4/3 π(d/2)3] = 6ε/(πd3), (3)

nucleation density (Nd) = N0/ρf, (4)

where d is the average cell diameter (µm) of foams.

2.4. CO2 Adsorption and Desorption Measurement

The CO2 adsorption and desorption behaviors of PPC-P sheets are measured by
a widely utilized gravimetric method. The PPC-P sheets are placed in a high-pressure
autoclave with 50 mL volume at room temperature and 40 ◦C. The autoclave is flushed with
compressed CO2 for 2 min and then saturated at different pressures of 2.5–4.0 MPa. All the
PPC-P sheets are sealed into the autoclave for 24 h to ensure an equilibrium adsorption
of CO2. After the CO2 saturation process, the pressure is released, and the specimen is
transferred rapidly from the autoclave to a digital balance within 1 min to record the mass
loss as a function of time. The mass adsorption of CO2 in the high-pressure autoclave is
calculated by linear extrapolation of the initial stage of the desorption curve of CO2. The
samples’ initial masses are recorded as M0 before the samples are placed into the autoclave.
Next, the samples are quickly transferred to the analytical balance after depressurization,
and the samples’ mass is documented as Mt as the time t varies. Then, the CO2 adsorption
mass in the polymer can be expressed as (Mt − M0), and the CO2 adsorption capability in
the sample can be expressed as (Mt − M0)/M0, simply named as mt.

The desorption diffusion coefficient (D) of PPC-P polymers is calculated by the follow-
ing Equation (5) [21]:

mt/m∞ = 1 − 4/h (Dt/π)0.5, (5)

where m∞ refers to the solubility obtained by linear extrapolation based on the desorption
curve, h is the polymer sheet’s thickness, t is the desorption time, and D represents the gas
diffusion coefficient.

We provide other fabrications and characterization techniques of various blends and
foams in the (Supplementary Information File).

3. Results and Discussions
3.1. Solubility and Diffusivity of CO2 in PPC-P

The CO2 absorption capability for PPC-P is presented in Figure 1. The absorption
behaviors under different saturation pressures and various saturation temperatures were
investigated since the gas solubility in the polymer and blowing agent system directly de-
termines cell nucleation and growth [22]. The low gas solubility and inferior plasticization
effect of physical blowing agents have been proven as the main obstacles to preparing
low-density and high-performance polymer foams. Therefore, the co-blowing agent with
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compressed CO2 together is always used to enhance CO2 solubility in polymers [23], while
the pure PPC polymer, due to over 40 wt% of CO2 content, exhibits significantly higher
CO2 solubility than most other polymers. As an analog of PPC, PPC-P theoretically is also
expected to possess superior CO2 absorption capability, as illustrated in Scheme S2. It is
testified that PPC-P can absorb the highest 11.2 wt% CO2 under 4.0 MPa and at 25 ◦C room
temperature. When the saturation pressure decreases, it is found that the uptake of CO2
decreases rapidly. Surprisingly, even under 3.0 MPa saturation pressure, 6.6 wt% CO2
absorption can also be achieved in the PPC-P, which can trigger sufficient cell nucleation
and further prepare foams with a high expansion ratio, in which the expansion ratios can
reach up to 19 times. Saturation temperature also affects the solubility of CO2 in PPC-P. As
the saturation temperature increases from 25 ◦C to 40 ◦C at 3.5 MPa, the CO2 absorption
decreases from 9.7 wt% to 7.3 wt%. Moreover, it can be seen that the relationship between
the pressure and the CO2 solubility is approximately linear, which agrees with Henry’s
law [24]. The Henry constant, which is gained from the curve’s slope, decreases with
increasing the foaming temperature, as presented in Table 1. To be specific, the Henry
constants at 25 and 40 ◦C saturation temperature are respectively 4.6 and 3.1 (100/MPa).
In general, the higher Henry constant means higher CO2 absorption capability. Therefore,
elevating the saturation temperature weakens the CO2 absorption capability [25]. That
is probably explained by the higher temperature affecting the movements of molecular
chains, thereby leading to the decline of CO2 solubility. Besides, the Henry constant of CO2
in PPC-P polymer is significantly higher than that of PBAT polymer, further verifying the
excellent affinity between CO2 and PPC-P. In conclusion, due to its unique molecular struc-
ture, PPC-P exhibits outstanding CO2 adsorption capacity under low saturation pressure,
which provides the possibility to produce low foam density and a high foaming ratio of
the foams.
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Figure 1. CO2 uptakes of PPC-P sheets with different saturation temperatures and pressures.

Table 1. Henry constant K of CO2 in PPC-P polymer under various saturation temperatures.

Saturation Temperature
(◦C) K × 102 (1/MPa)

25 4.6
40 3.1

Rapid gas escape is typically characteristic of a CO2-blowing agent for polymer foam-
ing. Hence, we also studied the CO2 diffusion behaviors in PPC-P polymer under varied
saturation pressure, as shown in Figure 2. Based on Equation (5), the diffusion coefficient
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D can be easily obtained from the slope of this graph. Obviously, it is evident that the
CO2 diffusion coefficient in PPC-P under 4.0 MPa saturation pressure is the highest one, as
demonstrated in Table 2. The CO2 diffusion coefficient decreases accordingly when the sat-
uration pressure increases. For instance, the CO2 diffusivity at 4 MPa is 8.06 × 10−9 m2·s−1,
which is 2 orders of magnitude higher than that of diffusivity at 2.5 MPa. This is because
the plasticization of CO2 blowing agent is more obvious for the saturation of 4.0 MPa;
thereby, the Tg of PPC-P is much lower than the room temperature. Hence, the PPC-P/CO2
solution at 4.0 MPa is in an extremely unstable state after removing it from the autoclave. It
can also be seen that the CO2 uptake decreases quickly within 10 min, and the residual CO2
uptake still remains 8.0 wt% after 30 min, which means that there is still enough foaming
agent to gain high cell density foams. Finally, 46 wt% of the CO2 mass escaped, and the
residual CO2 was about 6.0 wt% in 120 min, as shown in Figure 2. As the saturation pres-
sure decreases, the CO2 diffusion coefficient decreases accordingly. Especially at 2.5 MPa
saturation pressure, only 27 wt% CO2 escapes in 120 min. In other words, the rapid CO2
diffusion can be observed when the CO2 uptake is high in PPC-P.
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Table 2. Diffusion coefficient of PPC-P polymer under various saturation pressures.

Saturation Pressure
(MPa)

Diffusion Coefficient
(m2 × s−1)

2.5 5.11 × 10−11

3.0 4.80 × 10−10

3.5 2.83 × 10−9

4.0 8.06 × 10−9

3.2. Foaming Behavior of PPC-P Using Sub-Critical CO2 as Foaming Agent

According to the cell formation mechanism, physical foaming technology can be
divided into pressure quench foaming and temperature rising foaming by using CO2 as
a blowing agent [15,26]. The main difference is the method of bubble nucleation and
cell growth. For temperature-rising foaming, the bubble nucleation and cell growth are
triggered by the rapid drop in the CO2 solubility in the polymer due to the increased
temperature (above the Tg). By varying the foaming temperature, the viscosity of the poly-
mer can be changed, resulting in different foaming behaviors. While for pressure quench
foaming, a sudden pressure drop is the induced parameter, by varying the depressurization
rate, various foaming behaviors can be obtained [27]. Besides, pressure quench foaming is
common in polymer systems, especially polymers with high crystallinity. Both foaming
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technologies are befitted to prepare foams of amorphous polymers. Because of the low cost
and convenience of the operation process for the temperature-rising foaming rather than
the pressure quench foaming, we utilize the temperature-rising foaming process to prepare
PPC-P-based foams.

Influences of Pressure and Temperature on Foam Morphology

The saturation pressure greatly influences the uptake of CO2 in the polymer prior to
foaming. Generally, the poor CO2 solubility results in the low uptake of foaming agents
and tends to form heterogeneous phases, which is not conducive to preparing foams with
uniform and fine cell structures [28]. According to homogeneous nucleation theory, higher
uptake of a foaming agent implies greater super-saturation degree and lower nucleation
barrier; hence, higher cell density can be achieved in the foaming product [29]. Because of
the excellent affinity between CO2 and PPC-P, the PPC-P/CO2 homogeneous solution can
be obtained under relatively low pressures. Therefore, the PPC-P sheets are saturated by
CO2 at different pressures of 2.5–4.0 MPa and then foamed at 50 ◦C for 60 s. Figure 3 shows
the cell morphologies of the PPC-P foams with different volume expansion ratios (VER),
and the cell size distributions are presented in Figure 4. Furthermore, the corresponding
average cell size, porosity, cell density, and nucleation density are summarized in Figure S3
and Table S1. At first, the un-foamed fractions are found in the cross-section of PPC-P
foam because of the insufficient CO2 uptake at 2.5 MPa saturation pressure for 24 h, hereby
leading to uneven and un-fully foaming behavior as shown in Figure 3a,b. When the
saturation pressure increases, much more uniform cell morphology is observed. Besides,
due to the increase of CO2 uptake from 2.5 MPa to 4.0 MPa of saturation pressure, the VER
values of PPC-P foam significantly increase from 6 times to 34 times at 50 ◦C. Meanwhile,
the cell size and porosity increase obviously with increasing the CO2 uptake, i.e., from 76.1
to 278.5 µm and from 92.9 to 97.1%, respectively. According to the cell growth theory, that
is probably because the earlier produced small pores tend to collapse and merge when the
much more physically trapped CO2 diffuses during the foaming procedure [30].

Figure 4a depicts the optical photograph of PPC-P foam with 36 times VER, which
possesses a pretty appearance and cell quality. As shown in Figure 4b–d, the cell size
distributions of all foams nearly obey the Gaussian distribution, and a narrower distribution
width can be found for the PPC-P-3.0 foam (Figure 4b). With the increase of the saturation
pressure, the cell size distribution becomes much broader. It is worth mentioning that the
high cell densities of those foams are obtained even with such high VER. For the PPC-P-4.0
foam with 34 times VER, its cell density is 0.9 × 107 cell/cm3, while for the one with
23 times VER, its cell density increases to 4.2 × 107 cell/cm3. With further decreasing CO2
saturation pressure, the cell density increases up to 4.0 × 108 cells/cm3 for PPC-P-3.0 foam.
More importantly, the nucleation density also increases to 4.5 × 109 nuclei/cm3. Compared
with the PPC foams described in reference [31], great progress has been made in the cell
quality of PPC-P foams. In conclusion, a fully “green,” high cell density, and VER foams
can be readily fabricated by using sub-critical CO2 as a physical blowing agent.

Foaming temperature critically decides the foaming window of a polymer. Due to the
glass transition temperature (Tg) of PPC-P being slightly higher than room temperature
and because of the plasticization of the CO2 blowing agent, the Tg value will inevitably
decrease after CO2 saturation [32]. Thus, the foaming window is relatively narrow. The
results can also be further verified. The PPC-P sheets cannot be fully foamed at a lower
temperature of 40 ◦C, and the samples have serious shrinkage at higher temperatures of
70 ◦C during the foaming process. The satisfactory foam samples can be obtained only
at the foaming temperature of 50 ◦C or 60 ◦C, and their VER profiles versus saturation
pressures are depicted in Figure 5. The PPC-P foams show an apparent increase of the
VER with increasing temperature. For instance, the VER of PPC-P-3.5 increases evidently
from 23 to 31 times by elevating the foaming temperature from 50 to 60 ◦C. This is because
the faster CO2 gas diffusion rate at higher foaming temperatures facilitates cell growth. It
should be noted that the average VER can reach up to 40 times with the 4.0 MPa saturation
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pressure and at the 60 ◦C foaming temperature. However, the error bars of VERs of the
foams obtained at 60 ◦C and high saturation pressure conditions are greater than those of
the foams obtained at 50 ◦C. This can be explained by the high-temperature incline, which
easily overcomes the potential energy of cell nucleation and puts PPC-P/CO2 samples in
an unstable state when the uptake of the blowing agent is high enough.
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Figure S1 displays the cell morphologies, and Figure S2 gives cell size distributions
of different PPC-P foams obtained at 60 ◦C. It can be observed that PPC-P-3.0 foam with
VER of 18 times at a foaming temperature of 60 ◦C has a uniform cell morphology with
negligible open cell structure. However, compared with the foams obtained at 50 ◦C,
with increasing CO2 saturation pressure, much more open cell structure and larger cell
size are observed due to abundant cells ruptured and reunited, which is attributed to
the fast CO2 gas diffusion at higher foaming temperature. Shrunk cells even appear at
a foaming temperature of 60 ◦C for the PPC-P-4.0 sample because the cell strength of
PPC-P cannot suffer such a large cell size. The approximate Gaussian distribution of
cell sizes at 60 ◦C can still be observed in Figure S2. With increasing average cell size,
the cell size distribution becomes even broader. Compared with the foams obtained at
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50 ◦C, both the cell sizes and porosities of the foams obtained at 60 ◦C increase, while
the cell densities and nucleation densities decrease. For example, the largest average cell
size (351.3 µm) and smallest cell density (4.3 × 106 cells/cm3), as well as the smallest
nucleation density (1.4 × 108 nuclei/cm3), are achieved for PPC-P-4.0 foam at the foaming
temperature of 60 ◦C according to Figure S3 and Table S1. It is suggested that with high pre-
saturation pressure, the foaming temperature significantly affects the cell size, cell density,
nucleation density, and morphology of the PPC-P foams. In fact, the accelerated movement
of molecular chains at higher temperatures weakens the resistance of the polymer matrix
to cell growth. The foam with a higher VER than 30 times is usually defined as ultralow-
density foam [33]. In our study, ultralow-density PPC-P foams with more than 40 times
VER can be fabricated delightfully.
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3.3. Rheological Behavior and Mechanical Performance of PPC-P and PPC-P Composites

The rheological behavior, especially at low frequencies, is very susceptible to the
variation of the microstructure of the filled polymer composites; thereby, the rheological
properties of the neat PPC-P and modified PPC-P are investigated in detail. Figure 6a–c
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shows the variations in dynamic storage modulus G′, loss modulus G′′, and complex
viscosity η* as a function of frequency ω. At low frequencies, the PPC-P/5%nanoCaCO3
composite exhibits the highest G′, G′′, and η*. When compared with pristine PPC-P, the G′

and η* of PPC-P/5%nanoCaCO3 composite increase by about 280% and 130% respectively
at ~0.1 rad/s. It is generally believed that the high G′ can advantageously support cell
growth and obtain polymer foams with high VERs. Unexpectedly, although the storage
modulus of PPC-P/20%starch composite is higher than that of the pristine PPC-P at a
frequency of 0.1 rad/s, the complex viscosity is lower instead, which might be caused by
the high content of amylose in starch [34]. The damping factor Tan δ is equal to G′′/G′.
When the value of Tan δ increases, the viscoelasticity of polymers improves, and the foaming
ability of polymers is expected to enhance [35]. As Figure 6d shows, all PPC-P composites
exhibit improved viscoelasticity compared with pristine PPC-P at low frequencies. Besides,
the tensile properties of neat PPC-P and modified PPC-P are also assessed, as shown in
Figure S4. Consistent with the results of storage modulus, the PPC-P/5%nanoCaCO3
composite exhibits the highest tensile strength due to the enhancement of nano-fillers.
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of the neat PPC-P, PPC-P/5%nanoCaCO3 and PPC-P/20%starch composites as a function of ω at
150 ◦C.

3.4. Foaming Behaviors of PPC-P Composites

The incorporation of inorganic or biomass materials, such as nanoCaCO3 and starch,
by simple blending method, can obviously reduce the cost of biodegradable polymers.
The presence of those fillers can also improve the melt strength and affect the foaming
behaviors of the polymer matrix. Moreover, the fillers can act as nucleating agents to affect
the distribution of the gas phase and then control the foams’ morphology. Hence, fully
biodegradable and low-cost PPC-P composite foams with adjustable microcellular struc-
tures are fabricated using sub-critical CO2 as a blowing agent by introducing nanoCaCO3
and starch as fillers, respectively.
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3.4.1. Foaming Behavior of PPC-P/5%nanoCaCO3 Composite

The influences of saturation pressure on the foaming behavior of PPC-P/5%nanoCaCO3
composite are also investigated, in which the composite sheets are foamed at 60 ◦C after
being saturated with CO2 under pressure of 3.0–4.0 MPa. Figures 7 and S6 display the SEM
images and cell distributions of PPC-P/5%nanoCaCO3 foams under different saturation
pressures. The corresponding average cell sizes, porosities, cell densities, and nucleation
densities are summarized in Figure S5 and Table S1. Firstly, the CO2 uptakes of PPC-
P/5%nanoCaCO3 sheets are slightly lower than those of the pristine PPC-P sheets under
different saturation pressures (for example, the change is from 9.7% to 8.2% for 3.5 MPa satu-
ration pressure, Table S1). With the increase of saturation pressure from 3.0 MPa to 4.0 MPa,
the CO2 uptake of the PPC-P/5%nanoCaCO3 sheet increases from 6.0 to 9.8 wt%. As a re-
sult, after foaming at 60 ◦C, the VER increases from 20 to 37 times, and the cell size increases
from 124.9 µm to 330.4 µm, correspondingly for PPC-P/5%nanoCaCO3 foam. Pointedly,
the PPC-P/5%nanoCaCO3-3.5 foam with VER of 26 times has the smallest cell size and the
largest cell density as well as the largest nucleation density, 110.0 µm, 1.4 × 108 cells/cm3

and 2.9 × 109 nuclei/cm3 respectively. While the pristine PPC-P foam with the close VER of
23 times shows bigger cell size and lower cell density as well as lower nucleation density of
about 163.4 µm, 4.2 × 107 cells/cm3, and 7.7 × 108 nuclei/cm3, respectively, indicating that
the presence of nanoCaCO3 filler improves the foaming behavior of PPC-P. That is because
nanoCaCO3 can act as heterogeneous nucleation sites where cell nucleation happens at a
low level of free energy during foaming.
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(b,d,f) show the details of the cell structure.

On the other hand, the PPC-P/5%nanoCaCO3 foams show even narrow cell diameter
distribution, as shown in Figure S6. It also can be confirmed by comparing the cell mor-
phologies of the PPC-P/5%nanoCaCO3 foams with those of the pristine PPC-P foams. The
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former exhibits a much more uniform cell structure. In addition, PPC-P/5%nanoCaCO3
foams show fewer open cell structures under higher pressure than the pristine PPC-P
foams, as shown in Figure S1. Presumably, it results from the enhanced modulus of PPC-
P/5%nanoCaCO3 compared to that of the pristine PPC-P. Combined with the compressive
strength of foams, as presented in Table S2, the added nanoCaCO3 can significantly improve
the compressive strength of PPC-P foams. Oppositely uniform dispersion of nanoCaCO3
particles also can be observed in Figure 7d. Thus, the added nanoCaCO3 can effectively
ameliorate the foams’ cellular structure, decrease the cell diameter, and increase cell density.

3.4.2. Foaming Behavior of PPC-P/20%Starch Composite

It is well known that starch, as a natural, fully biodegradable polysaccharide, has been
broadly studied due to its low cost [36,37]. However, its poor melt processing properties
limit starch’s extensive application. Therefore, plasticizers are always utilized to modify
starch. In our present work, the PPC-P/20%starch composite is fabricated successfully due
to the excellent processing performance of PPC-P. Following this, the influence of starch
content on the foaming behavior of PPC-P is studied. Figure 8 displays the SEM images
and cell distributions of PPC-P/20%starch foams at different foaming temperatures and
under 3.0 MPa of CO2 saturation pressure. The average cell sizes, porosities, cell densities,
and nucleation densities are summarized in Table S1. With the increase of the foaming
temperature from 50 ◦C to 60 ◦C, the VER and cell size of PPC-P/20%starch foam increases
from 13 to 21 times and from 124.6 µm to 217.6 µm respectively. Also, with the increase
of VER, the cell distribution becomes much wider. We can also find that the cell size of
PPC-P/20%starch foams is larger than those of pristine PPC-P foams with the close VER;
for instance, the cell size of PPC-P/20%starch foam is about 124.6 µm with 13 times of VER,
while the PPC-P foam has only about 76.1 µm of cell size with 14 times of VER.
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details of cell structure. The inserts in (b,d) show the cell size distributions of PPC-P/20%starch foams.

Figure 8 shows that abundant open cells are found in the cell morphologies of PPC-
P/20%stach foams, while the closed cells are the majority structure for both PPC-P and
PPC-P/5%nanoCaCO3 foams. Expectedly, PPC-P/20%starch foams with enough open
cells probably can be used for petroleum oil spill clean-up. Moreover, the produced open
cell structure presumably ascribed to the inferior complex viscosity of PPC-P/20%starch
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composite. Therefore, a large number of blowing gases coalesced and collapsed, resulting
in the appearance of large cell size and open cell structure. Uniform and large starch
particles can be obviously found in the foams, as shown in Figure 8b,d. According to
heterogeneous nucleation theory, the aggregated and uneven micro-particles, which have
a low surface-to-volume ratio, then reduce the number of heterogeneous nucleation sites
during foaming. This is embodied in the decreased nucleation density compared with the
pristine foams of the close VERs. As a result, the PPC-P/20%starch foams have large cell
sizes and low cell density.

4. Conclusions

For the first time, fully biodegradable PPC-P foams with different VERs and refined
cellular structures can be fabricated via the autoclave foaming method by using sub-critical
CO2 as a physical blowing agent. It is demonstrated that the increased saturation pressure
can availably increase the CO2 uptake to 11.2 wt% under 4.0 MPa. Moreover, the VER
of PPC-P foam can reach up to 40 times at the 60 ◦C foaming temperature and under the
4.0 MPa saturation pressure. The optimal foaming conditions are under 3.5 MPa and at
60 ◦C. The foaming ratio, average cell size, cell density, and nucleation density, respectively,
are 31 times 260.3 µm,1.1 × 107 cells/cm3, and 2.6 × 108 nuclei/cm3 in turns. In addition,
by adding nanoCaCO3 filler, the storage modulus and complex viscosity of PPC-P increase
by 280% and 130%, respectively, at ~0.1 rad/s, which are beneficial to improve the foaming
properties of PPC-P. It can be verified that the PPC-P/5%nanoCaCO3 foam with 26 times
VER has a smaller cell size and larger cell density as well as larger nucleation density than
those of the pristine PPC-P foam with close to 23 times VER. Besides, the cell structure of
PPC-P-based foams can be transformed from closed cell to enriched open cell by introducing
20%starch. In all, this work successfully provides a kind of new, fully biodegradable, and
low-cost PPC-P-based foams that can be found in a well-broad application in food and
packaging areas in the future.
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