Next Article in Journal
p-Type Schottky Contacts for Graphene Adjustable-Barrier Phototransistors
Previous Article in Journal
Influence of Polypyrrole on Phosphorus- and TiO2-Based Anode Nanomaterials for Li-Ion Batteries
Previous Article in Special Issue
Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Advanced Spintronic and Electronic Nanomaterials

1
College of Physics, Sichuan University, Chengdu 610064, China
2
School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
*
Authors to whom correspondence should be addressed.
Nanomaterials 2024, 14(13), 1139; https://doi.org/10.3390/nano14131139
Submission received: 17 June 2024 / Revised: 27 June 2024 / Accepted: 28 June 2024 / Published: 2 July 2024
(This article belongs to the Special Issue Advanced Spintronic and Electronic Nanomaterials)
Since single-layer graphene [1] with ultrahigh carrier mobility was obtained experimentally in 2004, two-dimensional (2D) layered electronic materials have become more widespread [2,3,4,5,6,7,8,9]. Two-dimensional non-layered materials [10,11,12,13,14], with their abundant terrestrial resources and low costs, support broader practical applications. Consequently, the repository of 2D materials has become more diverse, facilitating their application in spintronics [15,16,17,18,19], flexible electronics [20,21], information science [22,23], and related fields [24,25].
Over the past two decades, spintronics and electronics [26,27,28,29,30] have developed very rapidly. In 2017, low-temperature long-range ferromagnetic order was experimentally discovered both in Cr2Ge2Te6 [26] and Crl3 [27] monolayer systems. Two-dimensional ferromagnetism immediately became of tremendous interest to researchers all over the world. As such, studies on 2D materials have expanded and now correlate with investigations of both traditional materials and emerging materials including diluted magnetic semiconductors and wide band gap semiconductors.
This Special Issue brings together ten articles, specifically eight research articles and two review articles, dedicated to advanced spintronic and electronic nanomaterials. The content of the Special Issue includes the following: the modulation of vortex resonance in ferromagnetic permalloy dots [31], the capping layer effect on tunneling magnetoresistance in tunnel junctions [32], the size-dependent superconducting properties of indium nanowires [33], the co-doping effect of Mn and halogen elements on GeSe monolayers [34], the colossal magnetoresistance in layered diluted magnetic semiconductor Rb(Zn,Li,Mn)4As3 [35], charge density wave transitions in 2D 1T-TaS2 crystals [36], characterizations of Mn5Ge3 contacts on Ge/SiGe heterostructures [37] and Ni-doped Cd3As2 films on GaAs (111) substrates [38], strain engineering of intrinsic ferromagnetism in 2D van der Waals materials [6], and spintronic applications of carbon-based nanomaterials [39]. Our Special Issue may promote and accelerate ongoing research efforts of advanced spintronic and electronic nanomaterials. It is of vital importance to 2D spintronic devices and will be of interest to general readers of Nanomaterials.

Author Contributions

H.R. and G.X. wrote this Editorial Letter. All authors have read and agreed to the published version of the manuscript.

Funding

H.R. acknowledges the Shandong Province Natural Science Foundation (Grant No. ZR202103040767). G.X. acknowledges the National Natural Science Foundation of China (NSFC) (Grant No. 52172272).

Acknowledgments

The Guest Editors thank the authors for submitting their work to the Special Issue and for its successful completion. A special thank you to all the reviewers participating in the peer-review process of the submitted manuscripts and for enhancing the papers’ quality and impact. We are also grateful to thank all the staff in the Editorial Office who made the entire creation of the Special Issue a smooth and efficient process.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
  2. Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D Materials and Heterostructures. Nat. Nanotech. 2019, 14, 408–419. [Google Scholar] [CrossRef] [PubMed]
  3. Kurebayashi, H.; Garcia, J.H.; Khan, S.; Sinova, J.; Roche, S. Magnetism, Symmetry and Spin Transport in van der Waals Layered Systems. Nat. Rev. Phys. 2022, 4, 150–166. [Google Scholar] [CrossRef]
  4. Chen, X.; Zhang, X.; Xiang, G. Recent Advances in Two-dimensional Intrinsic Ferromagnetic Materials Fe3X (X = Ge and Ga) Te2 and Their Heterostructures for Spintronics. Nanoscale 2023, 16, 527–554. [Google Scholar] [CrossRef] [PubMed]
  5. Zhong, J.; Zhang, X.; He, W.; Gong, D.; Lan, M.; Dai, X.; Peng, Y.; Xiang, G. Large-scale Fabrication and Mo vacancy-induced Robust Room-temperature Ferromagnetism of MoSe2 Thin Films. Nanoscale 2023, 15, 6844–6852. [Google Scholar] [CrossRef] [PubMed]
  6. Ren, H.; Xiang, G. Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials. Nanomaterials 2023, 13, 2378. [Google Scholar] [CrossRef] [PubMed]
  7. Ren, H.; Xiang, G. Strain-modulated magnetism in MoS2. Nanomaterials 2022, 12, 1929. [Google Scholar] [CrossRef] [PubMed]
  8. Ren, H.; Xiang, G. Recent Progress in Research on Ferromagnetic Rhenium Disulfide. Nanomaterials 2022, 12, 3451. [Google Scholar] [CrossRef] [PubMed]
  9. Ren, H.; Liu, Y.; Zhang, L.; Liu, K. Synthesis, Properties, and Applications of Large-scale Two-dimensional Materials by polymer-assisted deposition. J. Semicond. 2019, 40, 061003. [Google Scholar] [CrossRef]
  10. Ren, H.; Xiang, G. Recent Advances in Synthesis of Two-Dimensional Non-van Der Waals Ferromagnetic Materials. Mater. Today Electron. 2023, 6, 100074. [Google Scholar] [CrossRef]
  11. Fan, X.; Chen, Z.; Xu, D.; Zou, L.; Ouyang, F.; Deng, S.; Wang, X.; Zhao, J.; Zhou, Y. Phase-controlled Synthesis of Large-area Trigonal 2D Cr2S3 Thin Films via Ultralow Gas-Flow Governed Dynamic Transport. Adv. Funct. Mater. 2024, 34, 2404750. [Google Scholar] [CrossRef]
  12. Dai, X.; Zhang, X.; Gong, D.; Xiang, G. Performance Enhancement and In Situ Observation of Resistive Switching and Magnetic Modulation by a Tunable Two-Level System of Mn Dopants in a-Gallium Oxide-based Memristor. Adv. Funct. Mater. 2023, 33, 2304749. [Google Scholar] [CrossRef]
  13. Boi, F.S.; Guo, J.; Xiang, G.; Lan, M.; Wang, S.; Wen, J.; Zhang, S.; He, Y. Cm-size Free-standing Self-organized Buckypaper of Bucky-onions Filled with Ferromagnetic Fe3C. RSC Adv. 2017, 7, 845–850. [Google Scholar] [CrossRef]
  14. Ren, H.; Xiang, G.; Gu, G.; Zhang, X.; Wang, W.; Zhang, P.; Wang, B.; Cao, X. Zinc Vacancy-Induced Room-Temperature Ferromagnetism in Undoped ZnO Thin Films. J. Nanomater. 2012, 1, 295358. [Google Scholar] [CrossRef]
  15. Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and Applications. Rev. Mod. Phys. 2004, 76, 323–410. [Google Scholar] [CrossRef]
  16. Burch, K.S.; Mandrus, D.; Park, J.G. Magnetism in Two-Dimensional Van Der Waals Materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef] [PubMed]
  17. Ren, H.; Xiang, G.; Lu, J.; Zhang, X.; Zhang, L. Biaxial Strain-mediated Room Temperature Ferromagnetism of ReS2 Web Buckles. Adv. Electron. Mater. 2019, 5, 1900814. [Google Scholar] [CrossRef]
  18. Ren, H.; Zhang, L.; Xiang, G. Web Buckle-mediated Room-temperature Ferromagnetism in Strained MoS2 Thin Films. Appl. Phys. Lett. 2020, 116, 012401. [Google Scholar] [CrossRef]
  19. Ren, H.; Lan, M. Progress and Prospects in Metallic FexGeTe2 (3 ≤ x ≤ 7) Ferromagnets. Molecules 2023, 28, 7244. [Google Scholar] [CrossRef]
  20. Liu, A.; Zhang, X.; Liu, Z.; Li, Y.; Peng, X.; Li, X.; Qin, Y.; Hu, C.; Qiu, Y.; Jiang, H.; et al. The Roadmap of 2D Materials and Devices toward Chips. Nano-Micro Lett. 2024, 16, 119. [Google Scholar] [CrossRef]
  21. Cao, W.; Bu, H.; Vinet, M.; Cao, M.; Takagi, S.; Hwang, S.; Ghani, T.; Banerjee, K. The Future Transistors. Nature 2023, 620, 501–515. [Google Scholar] [CrossRef] [PubMed]
  22. Qiu, H.; Yu, Z.; Zhao, T.; Zhang, Q.; Xu, M.; Li, P.; Li, T.; Bao, W.; ChaiI, Y.; Chen, S.; et al. Two-dimensional Materials for Future Information Technology: Status and Prospects. Sci. China Inf. Sci. 2024, 67, 160400. [Google Scholar] [CrossRef]
  23. Zeng, S.; Liu, C.; Zhou, P. Transistor Engineering Based on 2D Materials in the Post-Silicon Era. Nat. Rev. Electr. Eng. 2024, 1, 335–348. [Google Scholar] [CrossRef]
  24. Yi, H.; Ma, Y.; Ye, Q.; Lu, J.; Wang, W.; Zheng, Z.; Ma, C.; Yao, J.; Yang, G. Promoting 2D Material Photodetectors by Optical Antennas Beyond Noble Metals. Adv. Sensor Res. 2023, 2, 2200079. [Google Scholar] [CrossRef]
  25. Samizadeh Nikoo, M.; Matioli, E. Electronic Metadevices for Terahertz Applications. Nature 2023, 614, 451–455. [Google Scholar] [CrossRef] [PubMed]
  26. Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.A.; et al. Discovery of Intrinsic Ferromagnetism in Two-dimensional Van der Waals Crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
  27. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent Ferromagnetism in a Van der Waals Crystal Down to the Monolayer Limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
  28. Boi, F.S.; Guo, J.; Xiang, G.; Lan, M.; Wang, S.; Wen, J.; Zhang, S.; He, Y. Controlling the Quantity of α-Fe Inside Multiwall Carbon Nanotubes Filled with Fe-based Crystals: The Key Role of Vapor Flow-rate. Appl. Phys. Lett. 2014, 105, 243108. [Google Scholar] [CrossRef]
  29. Wang, H.; Sun, S.; Lu, J.; Xu, J.; Lv, X.; Peng, Y.; Zhang, X.; Wang, Y.; Xiang, G. High Curie Temperature Ferromagnetism and High Hole Mobility in Tensile Strained Mn-Doped SiGe Thin Films. Adv. Funct. Mater. 2020, 30, 2002513. [Google Scholar] [CrossRef]
  30. Feng, Y.; Zhang, X.; Zhao, G.; G Xiang, G. A Skyrmion Diode Based on Skyrmion Hall Effect. IEEE Trans. Electron. Devices 2022, 69, 1293–1297. [Google Scholar] [CrossRef]
  31. Hu, S.; Cui, X.; Wang, K.; Yakata, S.; Kimura, T. Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot. Nanomaterials 2022, 12, 2295. [Google Scholar] [CrossRef]
  32. Kim, G.; Lee, S.; Lee, S.; Song, B.; Lee, B.-K.; Lee, D.; Lee, J.S.; Lee, M.H.; Kim, Y.K.; Park, B.-G. The Influence of Capping Layers on Tunneling Magnetoresistance and Microstructure in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions upon Annealing. Nanomaterials 2023, 13, 2591. [Google Scholar] [CrossRef]
  33. Noyan, A.A.; Ovchenkov, Y.A.; Ryazanov, V.V.; Golovchanskiy, I.A.; Stolyarov, V.S.; Levin, E.E.; Napolskii, K.S. Size-Dependent Superconducting Properties of In Nanowire Arrays. Nanomaterials 2022, 12, 4095. [Google Scholar] [CrossRef]
  34. He, W.; Zhang, X.; Gong, D.; Nie, Y.; Xiang, G. Mn-X (X = F, Cl, Br, I) Co-Doped GeSe Monolayers: Stabilities and Electronic, Spintronic and Optical Properties. Nanomaterials 2023, 13, 1862. [Google Scholar] [CrossRef]
  35. Peng, Y.; Shi, L.; Zhao, G.; Zhang, J.; Zhao, J.; Wang, X.; Deng, Z.; Jin, C. Colossal Magnetoresistance in Layered Diluted Magnetic Semiconductor Rb(Zn,Li,Mn)4As3 Single Crystals. Nanomaterials 2024, 14, 263. [Google Scholar] [CrossRef]
  36. Pan, X.; Yang, T.; Bai, H.; Peng, J.; Li, L.; Jing, F.; Qiu, H.; Liu, H.; Hu, Z. Controllable Synthesis and Charge Density Wave Phase Transitions of Two-Dimensional 1T-TaS2 Crystals. Nanomaterials 2023, 13, 1806. [Google Scholar] [CrossRef]
  37. Hutchins-Delgado, T.A.; Addamane, S.J.; Lu, P.; Lu, T.-M. Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure. Nanomaterials 2024, 14, 539. [Google Scholar] [CrossRef]
  38. Liang, G.; Zhai, G.; Ma, J.; Wang, H.; Zhao, J.; Wu, X.; Zhang, X. Circular Photogalvanic Current in Ni-Doped Cd3As2 Films Epitaxied on GaAs(111)B Substrate. Nanomaterials 2023, 13, 1979. [Google Scholar] [CrossRef]
  39. Pawar, S.; Duadi, H.; Fixler, D. Recent Advances in the Spintronic Application of Carbon-Based Nanomaterials. Nanomaterials 2023, 13, 598. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Xiang, G.; Ren, H. Advanced Spintronic and Electronic Nanomaterials. Nanomaterials 2024, 14, 1139. https://doi.org/10.3390/nano14131139

AMA Style

Xiang G, Ren H. Advanced Spintronic and Electronic Nanomaterials. Nanomaterials. 2024; 14(13):1139. https://doi.org/10.3390/nano14131139

Chicago/Turabian Style

Xiang, Gang, and Hongtao Ren. 2024. "Advanced Spintronic and Electronic Nanomaterials" Nanomaterials 14, no. 13: 1139. https://doi.org/10.3390/nano14131139

APA Style

Xiang, G., & Ren, H. (2024). Advanced Spintronic and Electronic Nanomaterials. Nanomaterials, 14(13), 1139. https://doi.org/10.3390/nano14131139

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop