Advanced Spintronic and Electronic Nanomaterials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D Materials and Heterostructures. Nat. Nanotech. 2019, 14, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Kurebayashi, H.; Garcia, J.H.; Khan, S.; Sinova, J.; Roche, S. Magnetism, Symmetry and Spin Transport in van der Waals Layered Systems. Nat. Rev. Phys. 2022, 4, 150–166. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Xiang, G. Recent Advances in Two-dimensional Intrinsic Ferromagnetic Materials Fe3X (X = Ge and Ga) Te2 and Their Heterostructures for Spintronics. Nanoscale 2023, 16, 527–554. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhang, X.; He, W.; Gong, D.; Lan, M.; Dai, X.; Peng, Y.; Xiang, G. Large-scale Fabrication and Mo vacancy-induced Robust Room-temperature Ferromagnetism of MoSe2 Thin Films. Nanoscale 2023, 15, 6844–6852. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xiang, G. Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials. Nanomaterials 2023, 13, 2378. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xiang, G. Strain-modulated magnetism in MoS2. Nanomaterials 2022, 12, 1929. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xiang, G. Recent Progress in Research on Ferromagnetic Rhenium Disulfide. Nanomaterials 2022, 12, 3451. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Liu, Y.; Zhang, L.; Liu, K. Synthesis, Properties, and Applications of Large-scale Two-dimensional Materials by polymer-assisted deposition. J. Semicond. 2019, 40, 061003. [Google Scholar] [CrossRef]
- Ren, H.; Xiang, G. Recent Advances in Synthesis of Two-Dimensional Non-van Der Waals Ferromagnetic Materials. Mater. Today Electron. 2023, 6, 100074. [Google Scholar] [CrossRef]
- Fan, X.; Chen, Z.; Xu, D.; Zou, L.; Ouyang, F.; Deng, S.; Wang, X.; Zhao, J.; Zhou, Y. Phase-controlled Synthesis of Large-area Trigonal 2D Cr2S3 Thin Films via Ultralow Gas-Flow Governed Dynamic Transport. Adv. Funct. Mater. 2024, 34, 2404750. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, X.; Gong, D.; Xiang, G. Performance Enhancement and In Situ Observation of Resistive Switching and Magnetic Modulation by a Tunable Two-Level System of Mn Dopants in a-Gallium Oxide-based Memristor. Adv. Funct. Mater. 2023, 33, 2304749. [Google Scholar] [CrossRef]
- Boi, F.S.; Guo, J.; Xiang, G.; Lan, M.; Wang, S.; Wen, J.; Zhang, S.; He, Y. Cm-size Free-standing Self-organized Buckypaper of Bucky-onions Filled with Ferromagnetic Fe3C. RSC Adv. 2017, 7, 845–850. [Google Scholar] [CrossRef]
- Ren, H.; Xiang, G.; Gu, G.; Zhang, X.; Wang, W.; Zhang, P.; Wang, B.; Cao, X. Zinc Vacancy-Induced Room-Temperature Ferromagnetism in Undoped ZnO Thin Films. J. Nanomater. 2012, 1, 295358. [Google Scholar] [CrossRef]
- Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and Applications. Rev. Mod. Phys. 2004, 76, 323–410. [Google Scholar] [CrossRef]
- Burch, K.S.; Mandrus, D.; Park, J.G. Magnetism in Two-Dimensional Van Der Waals Materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xiang, G.; Lu, J.; Zhang, X.; Zhang, L. Biaxial Strain-mediated Room Temperature Ferromagnetism of ReS2 Web Buckles. Adv. Electron. Mater. 2019, 5, 1900814. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, L.; Xiang, G. Web Buckle-mediated Room-temperature Ferromagnetism in Strained MoS2 Thin Films. Appl. Phys. Lett. 2020, 116, 012401. [Google Scholar] [CrossRef]
- Ren, H.; Lan, M. Progress and Prospects in Metallic FexGeTe2 (3 ≤ x ≤ 7) Ferromagnets. Molecules 2023, 28, 7244. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, X.; Liu, Z.; Li, Y.; Peng, X.; Li, X.; Qin, Y.; Hu, C.; Qiu, Y.; Jiang, H.; et al. The Roadmap of 2D Materials and Devices toward Chips. Nano-Micro Lett. 2024, 16, 119. [Google Scholar] [CrossRef]
- Cao, W.; Bu, H.; Vinet, M.; Cao, M.; Takagi, S.; Hwang, S.; Ghani, T.; Banerjee, K. The Future Transistors. Nature 2023, 620, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Yu, Z.; Zhao, T.; Zhang, Q.; Xu, M.; Li, P.; Li, T.; Bao, W.; ChaiI, Y.; Chen, S.; et al. Two-dimensional Materials for Future Information Technology: Status and Prospects. Sci. China Inf. Sci. 2024, 67, 160400. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, C.; Zhou, P. Transistor Engineering Based on 2D Materials in the Post-Silicon Era. Nat. Rev. Electr. Eng. 2024, 1, 335–348. [Google Scholar] [CrossRef]
- Yi, H.; Ma, Y.; Ye, Q.; Lu, J.; Wang, W.; Zheng, Z.; Ma, C.; Yao, J.; Yang, G. Promoting 2D Material Photodetectors by Optical Antennas Beyond Noble Metals. Adv. Sensor Res. 2023, 2, 2200079. [Google Scholar] [CrossRef]
- Samizadeh Nikoo, M.; Matioli, E. Electronic Metadevices for Terahertz Applications. Nature 2023, 614, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.A.; et al. Discovery of Intrinsic Ferromagnetism in Two-dimensional Van der Waals Crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent Ferromagnetism in a Van der Waals Crystal Down to the Monolayer Limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Boi, F.S.; Guo, J.; Xiang, G.; Lan, M.; Wang, S.; Wen, J.; Zhang, S.; He, Y. Controlling the Quantity of α-Fe Inside Multiwall Carbon Nanotubes Filled with Fe-based Crystals: The Key Role of Vapor Flow-rate. Appl. Phys. Lett. 2014, 105, 243108. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Lu, J.; Xu, J.; Lv, X.; Peng, Y.; Zhang, X.; Wang, Y.; Xiang, G. High Curie Temperature Ferromagnetism and High Hole Mobility in Tensile Strained Mn-Doped SiGe Thin Films. Adv. Funct. Mater. 2020, 30, 2002513. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, X.; Zhao, G.; G Xiang, G. A Skyrmion Diode Based on Skyrmion Hall Effect. IEEE Trans. Electron. Devices 2022, 69, 1293–1297. [Google Scholar] [CrossRef]
- Hu, S.; Cui, X.; Wang, K.; Yakata, S.; Kimura, T. Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot. Nanomaterials 2022, 12, 2295. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.; Lee, S.; Song, B.; Lee, B.-K.; Lee, D.; Lee, J.S.; Lee, M.H.; Kim, Y.K.; Park, B.-G. The Influence of Capping Layers on Tunneling Magnetoresistance and Microstructure in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions upon Annealing. Nanomaterials 2023, 13, 2591. [Google Scholar] [CrossRef]
- Noyan, A.A.; Ovchenkov, Y.A.; Ryazanov, V.V.; Golovchanskiy, I.A.; Stolyarov, V.S.; Levin, E.E.; Napolskii, K.S. Size-Dependent Superconducting Properties of In Nanowire Arrays. Nanomaterials 2022, 12, 4095. [Google Scholar] [CrossRef]
- He, W.; Zhang, X.; Gong, D.; Nie, Y.; Xiang, G. Mn-X (X = F, Cl, Br, I) Co-Doped GeSe Monolayers: Stabilities and Electronic, Spintronic and Optical Properties. Nanomaterials 2023, 13, 1862. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, L.; Zhao, G.; Zhang, J.; Zhao, J.; Wang, X.; Deng, Z.; Jin, C. Colossal Magnetoresistance in Layered Diluted Magnetic Semiconductor Rb(Zn,Li,Mn)4As3 Single Crystals. Nanomaterials 2024, 14, 263. [Google Scholar] [CrossRef]
- Pan, X.; Yang, T.; Bai, H.; Peng, J.; Li, L.; Jing, F.; Qiu, H.; Liu, H.; Hu, Z. Controllable Synthesis and Charge Density Wave Phase Transitions of Two-Dimensional 1T-TaS2 Crystals. Nanomaterials 2023, 13, 1806. [Google Scholar] [CrossRef]
- Hutchins-Delgado, T.A.; Addamane, S.J.; Lu, P.; Lu, T.-M. Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure. Nanomaterials 2024, 14, 539. [Google Scholar] [CrossRef]
- Liang, G.; Zhai, G.; Ma, J.; Wang, H.; Zhao, J.; Wu, X.; Zhang, X. Circular Photogalvanic Current in Ni-Doped Cd3As2 Films Epitaxied on GaAs(111)B Substrate. Nanomaterials 2023, 13, 1979. [Google Scholar] [CrossRef]
- Pawar, S.; Duadi, H.; Fixler, D. Recent Advances in the Spintronic Application of Carbon-Based Nanomaterials. Nanomaterials 2023, 13, 598. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, G.; Ren, H. Advanced Spintronic and Electronic Nanomaterials. Nanomaterials 2024, 14, 1139. https://doi.org/10.3390/nano14131139
Xiang G, Ren H. Advanced Spintronic and Electronic Nanomaterials. Nanomaterials. 2024; 14(13):1139. https://doi.org/10.3390/nano14131139
Chicago/Turabian StyleXiang, Gang, and Hongtao Ren. 2024. "Advanced Spintronic and Electronic Nanomaterials" Nanomaterials 14, no. 13: 1139. https://doi.org/10.3390/nano14131139
APA StyleXiang, G., & Ren, H. (2024). Advanced Spintronic and Electronic Nanomaterials. Nanomaterials, 14(13), 1139. https://doi.org/10.3390/nano14131139