Vibration Analysis of Porous Cu-Si Microcantilever Beams in Fluids Based on Modified Couple Stress Theory
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Power-Law Model of Porous FGM Building
2.2. One-Dimensional Temperature Field
2.3. Driving Forces and Dynamic Response
2.4. Quality Factor and First Order Resonant Frequency
3. Example and Result Analysis
3.1. Power-Law Distribution of Material Properties for Porous FGM
3.2. One-Dimensional Temperature Field Distribution
3.3. Amplitude-Frequency Response in Fluids
3.4. Quality Factor and First Order Resonant Frequency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Fluids | Quality Factors | |
---|---|---|
air | 0 | 187.12 |
0.1 | 170.68 | |
0.2 | 154.14 | |
0.3 | 137.46 | |
0.4 | 120.59 | |
gasoline | 0 | 11.68 |
0.1 | 10.65 | |
0.2 | 9.62 | |
0.3 | 8.58 | |
0.4 | 7.53 | |
water | 0 | 3.35 |
0.1 | 3.06 | |
0.2 | 2.76 | |
0.3 | 2.46 | |
0.4 | 2.16 |
Resonant Frequencies (Hz) | ||
---|---|---|
1 | 0 | 19,155.38 |
0.1 | 19,155.38 | |
0.2 | 19,155.38 | |
0.3 | 19,155.38 | |
0.4 | 19,155.38 | |
5 | 0 | 25,228.81 |
0.1 | 26,255.51 | |
0.2 | 27,712.75 | |
0.3 | 29,956.38 | |
0.4 | 33,911.87 | |
10 | 0 | 27,459.22 |
0.1 | 29,084.01 | |
0.2 | 31,542.55 | |
0.3 | 35,758.53 | |
0.4 | 45,056.91 |
References
- Park, J.; Karsten, S.L.; Nishida, S.; Kawakatsu, H.; Fujita, H. Application of a new microcantilever biosensor resonating at the air–liquid interface for direct insulin detection and continuous monitoring of enzymatic reactions. Lab Chip 2012, 12, 4115–4119. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lim, C.W.; Hu, Q.; Ding, H. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary. Sci. China Phys. Mech. Astron. 2009, 52, 1414–1422. [Google Scholar] [CrossRef]
- Faegh, S.; Jalili, N.; Sridhar, S. A Self-Sensing Piezoelectric MicroCantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments. Sensors 2013, 13, 6089–6108. [Google Scholar] [CrossRef] [PubMed]
- Sader, J.E.; Borgani, R.; Gibson, C.T.; Haviland, D.B.; Higgins, M.J.; I Kilpatrick, J.; Lu, J.; Mulvaney, P.; Shearer, C.J.; Slattery, A.D.; et al. A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 2016, 87, 093711. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, X.; Zhou, X.; Liang, X.M.; Gao, D.; Liu, H.; Zhao, G.; Zhang, Q.; Wu, X. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation. Biosens. Bioelectron. 2016, 77, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H. Research and prospect of microelectromechanical systems. Electro-Mech. Eng. 2011, 27, 1–7. [Google Scholar] [CrossRef]
- Birman, V.; Byrd, L.W. Modeling and Analysis of Functionally Graded Materials and Structures. Appl. Mech. Rev. 2007, 60, 195–216. [Google Scholar] [CrossRef]
- Bauer, S.; Pittrof, A.; Tsuchiya, H.; Schmuki, P. Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochem. Commun. 2011, 13, 538–541. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Zghal, S.; Ataoui, D.; Dammak, F. Static bending analysis of beams made of functionally graded porous materials. Mech. Based Des. Struct. Mach. 2020, 50, 1012–1029. [Google Scholar] [CrossRef]
- Bellifa, H.; Benrahou, K.H.; Hadji, L.; Houari, M.S.A.; Tounsi, A. Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 265–275. [Google Scholar] [CrossRef]
- Liang, L.-N.; Ke, L.-L.; Wang, Y.-S.; Yang, J.; Kitipornchai, S. Flexural Vibration of an Atomic Force Microscope Cantilever Based on Modified Couple Stress Theory. Int. J. Struct. Stab. Dyn. 2015, 15, 1540025. [Google Scholar] [CrossRef]
- Kiracofe, D.; Kobayashi, K.; Labuda, A.; Raman, A.; Yamada, H. High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids. Rev. Sci. Instrum. 2011, 82, 013702. [Google Scholar] [CrossRef] [PubMed]
- Weaver, W., Jr.; Timoshenko, S.P.; Young, D.H. Vibration Problems in Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 1974; ISBN 9781443731676. [Google Scholar]
- Bao, R.; Wang, G.; Chen, L.; Yuan, H. Dynamics of Spinning Viscoelastic Tapered Shafts with Axial Motion. Int. J. Struct. Stab. Dyn. 2023, 2450158. [Google Scholar] [CrossRef]
- Soltani, M.; Asgarian, B. Finite Element Formulation for Linear Stability Analysis of Axially Functionally Graded Nonprismatic Timoshenko Beam. Int. J. Struct. Stab. Dyn. 2019, 19, 1950002. [Google Scholar] [CrossRef]
- Ramos, D.; Tamayo, J.; Mertens, J.; Calleja, M. Photothermal excitation of microcantilevers in liquids. J. Appl. Phys. 2006, 99, 124904. [Google Scholar] [CrossRef]
- Gu, S.; Song, Y.Q.; Zheng, Q. Vibration of functional gradient beams in fluids under photothermal excitation. J. Appl. Mech. 2021, 38, 589–596. [Google Scholar] [CrossRef]
- Gao, K.; Huang, Q.; Kitipornchai, S.; Yang, J. Nonlinear dynamic buckling of functionally graded porous beams. Mech. Adv. Mater. Struct. 2021, 28, 418–429. [Google Scholar] [CrossRef]
- Zenkour, A.M. A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos. Struct. 2018, 201, 38–48. [Google Scholar] [CrossRef]
- Fleck, N.; Muller, G.; Ashby, M.; Hutchinson, J. Strain gradient plasticity: Theory and experiment. Acta Met. Mater. 1994, 42, 475–487. [Google Scholar] [CrossRef]
- Stölken, J.; Evans, A. A microbend test method for measuring the plasticity length scale. Acta Mater. 1998, 46, 5109–5115. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Tang, X.; Ding, H.; Hu, P.; Cao, P. Size effects in the torsion of microscale copper wires: Experiment and analysis. Scr. Mater. 2012, 66, 406–409. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Dunstan, D.J.; Zhang, B.; Gan, Z.; Hu, P.; Ding, H. Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. Int. J. Plast. 2013, 41 (Supplement C), 30–52. [Google Scholar] [CrossRef]
- Stelmashenko, N.; Walls, M.; Brown, L.; Milman, Y. Microindentations on W and Mo oriented single crystals: An STM study. Acta Met. Mater. 1993, 41, 2855–2865. [Google Scholar] [CrossRef]
- Tang, F.; He, S.; Shi, S.; Dong, F.; Xiao, X.; Liu, S. Mechanical Behavior of Nanocircular Plates under Coupled Surface and Nonlocal Effects by Using Molecular Dynamics Simulations. Phys. Lett. A 2024, 500. [Google Scholar] [CrossRef]
- Lam, D.C.; Yang, F.; Chong AC, M.; Wang, J.; Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 2003, 51, 1477–1508. [Google Scholar] [CrossRef]
- Lei, J.; He, Y.; Guo, S.; Li, Z.; Liu, D. Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity. AIP Adv. 2016, 6, 105202. [Google Scholar] [CrossRef]
- Tang, F.; He, S.; Shi, S.; Xue, S.; Dong, F.; Liu, S. Analysis of Size-Dependent Linear Static Bending, Buckling, and Free Vibration Based on a Modified Couple Stress Theory. Materials 2022, 15, 7583. [Google Scholar] [CrossRef]
- Shi, S.; Tang, F.; Yu, Y.; Guo, Y.; Dong, F.; Liu, S. Size-dependent vibration analysis of the simply supported functionally graded porous material Al-Al2O3 rectangle microplates based on the modified couple stress theory with innovative consideration of neutral plane and scale distribution. Multidiscip. Model. Mater. Struct. 2024, 20, 229–246. [Google Scholar] [CrossRef]
- Mouro, J.; Pinto, R.; Paoletti, P.; Tiribilli, B. Microcantilever: Dynamical Response for Mass Sensing and Fluid Characterization. Sensors 2021, 21, 115. [Google Scholar] [CrossRef]
- Van Eysden, C.A.; Sader, J.E. Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J. Appl. Phys. 2006, 100, 114916. [Google Scholar] [CrossRef]
- Gao, W. Research on Thermally Excited Micro-Cantilever Beam Resonant MEMS Gas Sensor. Master’s Thesis, Tsinghua University, Beijing, China, 2011. [Google Scholar]
- Chen, G.Y.; Thundat, T.; Wachter, E.A.; Warmack, R.J. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 1995, 77, 3618–3622. [Google Scholar] [CrossRef]
- Ahn, S.-J.; Lee, H.; Cho, K.-J. 3D printing with a 3D printed digital material filament for programming functional gradients. Nat. Commun. 2024, 15, 3605. [Google Scholar] [CrossRef] [PubMed]
Parameter Name | Symbolic | Parameter Name | Symbolic |
---|---|---|---|
Reynolds number | Re | fluid dynamic viscosity | |
fluid density | Type III Bessel Functions | ||
Diameter of circular section |
Material Parameters | Cuprum (Cu) | Silicon (Si) |
---|---|---|
110 | 131 | |
8900 | 2330 | |
0.35 | 0.25 | |
1.422 | 0.592 | |
401 | 150 | |
386 | 695 | |
16.5 | 3 |
Fluids | ||
---|---|---|
air | ||
gasoline | ||
water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Tang, F.; He, S.; Dong, F.; Liu, S. Vibration Analysis of Porous Cu-Si Microcantilever Beams in Fluids Based on Modified Couple Stress Theory. Nanomaterials 2024, 14, 1144. https://doi.org/10.3390/nano14131144
Jiang J, Tang F, He S, Dong F, Liu S. Vibration Analysis of Porous Cu-Si Microcantilever Beams in Fluids Based on Modified Couple Stress Theory. Nanomaterials. 2024; 14(13):1144. https://doi.org/10.3390/nano14131144
Chicago/Turabian StyleJiang, Jize, Feixiang Tang, Siyu He, Fang Dong, and Sheng Liu. 2024. "Vibration Analysis of Porous Cu-Si Microcantilever Beams in Fluids Based on Modified Couple Stress Theory" Nanomaterials 14, no. 13: 1144. https://doi.org/10.3390/nano14131144
APA StyleJiang, J., Tang, F., He, S., Dong, F., & Liu, S. (2024). Vibration Analysis of Porous Cu-Si Microcantilever Beams in Fluids Based on Modified Couple Stress Theory. Nanomaterials, 14(13), 1144. https://doi.org/10.3390/nano14131144