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Abstract: The vibrations in functionally graded porous Cu-Si microcantilever beams are investigated
based on physical neutral plane theory, modified coupled stress theory, and scale distribution theory
(MCST&SDT). Porous microcantilever beams define four pore distributions. Considering the physical
neutral plane theory, the material properties of the beams are computed through four different power-
law distributions. The material properties of microcantilever beams are corrected by scale effects
based on modified coupled stress theory. Considering the fluid driving force, the amplitude-frequency
response spectra and resonant frequencies of the porous microcantilever beam in three different fluids
are obtained based on the Euler–Bernoulli beam theory. The quality factors of porous microcantilever
beams in three different fluids are derived by estimating the equation. The computational analysis
shows that the presence of pores in microcantilever beams leads to a decrease in Young’s modulus.
Different pore distributions affect the material properties to different degrees. The gain effect of
the scale effect is weakened, but the one-dimensional temperature field and amplitude-frequency
response spectra show an increasing trend. The quality factor is decreased by porosity, and the
degree of influence of porosity increases as the beam thickness increases. The gradient factor n has a
greater effect on the resonant frequency. The effect of porosity on the resonant frequency is negatively
correlated when the gradient factor is small (n < 1) but positively correlated when the gradient factor
is large (n > 1).

Keywords: vibration; porosity; scale effects; microcantilever beams; quality factor

1. Introduction

Micro-electro-mechanical systems (MEMS) are widely used in aerospace, biochemical
testing, and environmental monitoring [1–5]. The functionally graded microbeam (FGM),
as a typical structure in MEMS, plays an irreplaceable role in many high-precision fields,
including electronics, mechanics, materials, automation, physics, chemistry, biology, and
other disciplines. It has shown a wide range of applications in consumer electronics, indus-
trial control, medical science and technology, communications, and national defense [6].
Functionally graded materials are uniquely suited for tuning material properties. Superior
material properties can lead to great performance gains in MEMS devices. Compared with
traditional materials, functionally graded materials have many excellent properties [7–9],
such as higher strength, more sensitive resonance properties, higher temperature resistance,
better corrosion resistance, etc. In a study of microcantilever beams, the pore structure
can effectively reduce the material density and Young’s modulus [10]. This improves the
vibration characteristics, durability, and mechanical properties of the beam. Directional
control of the microcantilever beam’s stiffness and deflection can be achieved by rationally
designing the pore structure to meet specific engineering requirements.
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In recent years, many scholars at home and abroad have devoted themselves to
researching vibrations in functional gradient cantilever beams. Hichen Bellifa et al. [11]
proposed a new first-order shear deformation theory and the concept of a physical neutral
surface to study the dynamic behavior of the FGM plate. Liang et al. [12] established a
vibration model of the FGM cantilever beam based on the modified dipole stress theory and
found that the intrinsic frequency of the microcantilever beam gradually drifted toward
a high frequency with an increase in the Si component and gradually drifted to higher
frequencies. Kiracofe et al. [13] investigated the photothermal excitation of microcantilever
beams in fluids and illustrated the effect of the geometry of microcantilever beams on
the photothermal response. Galerkin’s method is a numerical computational method for
solving mechanical differential equations [14]. The solution to the Euler–Bernoulli beam
differential equation can be obtained by weighting the solutions of the trial function series.
Bao et al. [15] have investigated the vibration and stability of a rotating viscoelastic conical
shaft using the Laplace transform and Galerkin’s methods. The intrinsic frequency and
modal damping were calculated. Soltani et al. [16] proposed an improved approach based
on the power series expansions to exactly evaluate the static and buckling stiffness matrices
for the linear stability analysis of axially functionally graded (AFG) Timoshenko beams
with variable cross-sections and fixed–free boundary conditions. For microcantilever
beams in fluids, considering photothermal excitation, D. Ramos et al. [17] established
the one-dimensional heat transfer equations for gold-silicon cantilever beams and their
vibrational response in water. Gu et al. [18] investigated the one-dimensional temperature
field distributions and frequency responses of three FGM microbeam structures in different
fluids based on the Euler–Bernoulli beam theory. When considering porosity, the vibration
characteristics of microcantilever beams change significantly. Gao et al. [19] considered
the static and dynamic response of functionally graded micro/nanoplates as a basis for
developing functionally graded MEMS devices. They concluded that the increase in
porosity decreases the critical buckling load and reduces the beam stiffness, and they
designed the minimum critical buckling load in the porosity distribution. Zenkour et al. [20]
investigated the bending response of porous functionally graded monolayer and sandwich
thick rectangular plates using quasi-3D shear deformation. The effects of power-law
exponents and porosity coefficients are emphasized.

When the size of the material structure is reduced to the micrometer level, many
experimental phenomena [21–23] show that its mechanical behavior and material properties
have noticeable differences from those at the macroscopic scale [24,25]. For micrometer scale
systems, the modified couple stress theory is the most commonly studied theory [26]. The
scale effect is the method used in this theory. At this time, it is of great significance to study
the scale effect correction of the theoretical model of the functionally graded microcantilever
beam. Lam et al. [27] found a sudden increase in the equivalent stiffness of 20-µm thick
cantilever beams when they carried out bending experiments on epoxy resin cantilever
beams with thicknesses ranging from 20 to 115 µm using the nanoindentation technique.
Later, Lei et al. [28] found the scale effect on the natural frequency of metal microbeam
vibration when studying the vibration response in 2~15 µm nickel-silicon cantilever beams,
proving that the scale effect has a significant influence on the mechanical properties of the
microstructures. Tang et al. [29], in using Kirchhoff’s thin-plate theory to study the bending,
buckling, and vibration in FGMs by considering the microscopic scale effect, they proposed
to use the concept of the equivalent bending stiffness of the microbeams to describe the
scale effect. They obtained the expressions for the modification of Young’s modulus in the
theoretical model under the microscopic scale effects. Shi et al. [30] conducted a vibration
analysis of Kirchhoff thin plates with four pore distributions based on the modified couple
stress theory.

In this paper, we innovatively introduce four pore distributions into cantilever beams
based on the study of the forced vibrations of microcantilever beams in different fluids
under scale effect. Based on the physical neutral plane theory, we have investigated
the properties of Cu-Si microcantilever beam materials using the power-law distribution
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method. The one-dimensional temperature field of a microcantilever beam subjected to
laser excitation is obtained. Based on the Euler–Bernoulli theory, the vibration response
solutions of microcantilever beams subjected to thermally driven and hydrodynamic con-
ditions are given computationally using Galerkin’s method. The effects of porosity, scale
effect, gradient factor, fluid properties, and geometry on Young’s modulus, resonant fre-
quency, and quality factor of the beam are also discussed by numerical analysis. The above
studies are relevant for mass sensing and fluid characterization related to cantilever beam
structures [31].

2. Theoretical Analysis
2.1. Power-Law Model of Porous FGM Building

Functionally graded microcantilever beams are made of a composite of two materials.
The upper surface material is Cu, and the lower surface material is Si. In the z-axis direction,
the material properties vary uniformly from bottom to top. There are no visible interfaces
inside the cantilever beam. The materials are tightly bonded and have almost no residual
internal stresses.

Based on the physical neutral plane theory, a power law theory model for micro-
cantilever beams can be developed, as shown in Figure 1. Due to inhomogeneity in the
functionally graded material, there is some deviation of the physical neutral plane from the
geometric midplane. In order to avoid the material tension–bending coupling, we use the
parameter z0 to correct the physical neutral plane.
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Figure 1. Power-law distribution and one-dimensional heat transfer model of FGM microcantilever
beams.

Based on the physical neutral plane theory, the power-law distribution and the one-
dimensional heat transfer theory model of the FGM microcantilever beam are given in
Figure 1. In Figure 2, we define four pore distributions in the y-z axis cross-section direction
of the microcantilever beam. These four distributions are (a) even distribution, (b) X-type
distribution, (c) O-type distribution, and (d) V-type distribution.

Considering the four pore distributions, the power-law distribution equation for the
material properties of the FGM microcantilever beam 30 can be given as

Even distribution:

P(z) = P2 + (P1 − P2)

(
1
2
+

z
h

)n
− α

2
(P1 + P2) (1)

X-type distribution:

P(z) = P2 + (P1 − P2)

(
1
2
+

z
h

)n
− α

2
(P1 + P2)

2|z|
h

(2)
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O-type distribution:

P(z) = P2 + (P1 − P2)

(
1
2
+

z
h

)n
− α

2
(P1 + P2)

(
1 − 2|z|

h

)
(3)

V-type distribution:

P(z) = P2 + (P1 − P2)

(
1
2
+

z
h

)n
− α

2
(P1 + P2)

(
1
2
+

z
h

)
(4)

where P(z) represents the material properties at a certain z value along the thickness
direction. P1 represents the material properties of Cu and P2 represents the material
properties of Si, such as Young’s modulus E, density ρ, scale constant l, Poisson’s ratio
v, thermal conductivity κ, specific heat capacity C, and coefficient of thermal expansion
β. n is the gradient factor. This value represents the material percentage of Cu and Si in
the FGM microcantilever beam. When n = 0, the microcantilever beam consists of pure
Cu; when n = ∞, the microcantilever beam consists of pure Si. α is the porosity inside the
microcantilever beam. h is the thickness of the microcantilever beam.
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The expressions for the distribution of material properties of four porous micro-
cantilever beams are known. We can express the equivalent scale constant le f f and the
equivalent Poisson’s ratio ve f f as follows:

le f f =
∫ h

2

− h
2

l(z)
h

dz (5)

ve f f =
∫ h

2

− h
2

v(z)
h

dz (6)
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Based on the modified couple stress theory, we use the scale effect to modify Young’s
modulus of the micrometer cantilever beam. From the literature [29], the equivalent
bending stiffness is used to describe the scale effect correction to Young’s modulus of
Kirchhoff thin plates. Similarly, the modified expression for the scale effect of Young’s
modulus of the microcantilever beam is as follows:

E
′
(z) = E(z) +

6E(z)l2
e f f

(
1 − ve f f

)
h2 (7)

Ee f f =
∫ h

2

− h
2

E
′
(z)
h

dz (8)

Based on the physical neutral plane theory, the physical neutral plane is the plane
where the stress and strain are zero in the pure bending of the material. For isotropic
materials, the physical neutral plane coincides with the geometric midplane. In FGM
microcantilever beams, the deviation z0 of the physical neutral plane from the geometric
midplane can be expressed as:

z0 =

∫ h
2
− h

2
zE

′
(z)dz

Ee f f
(9)

2.2. One-Dimensional Temperature Field

In a fluid environment, the FGM microcantilever beam is excited by the laser to
produce an internal temperature distribution field. As in the theoretical model of Figure 1,
the microcantilever beam is of length L, width W, and height h. Since the thermal diffusion
length is much larger than the beam thickness and the laser spot diameter is about the
same as the width of the beam, the temperature field is assumed to be constant along the y-
and z-axis directions. Thus, the one-dimensional heat transfer equation for a functional
gradient beam can be established.

Following Equations (1)–(6), we can express the equivalent material parameters re-
quired for a one-dimensional temperature field as follows:

κe f f
ρe f f
Ce f f

 =


∫ h

2
− h

2

κ(z)
h dz∫ h

2
− h

2

ρ(z)
h dz∫ h

2
− h

2

C(z)
h dz

 (10)

In the model in Figure 1, a thermally conductive microelement dx is taken. Under the
laser excitation, its heat increment is ∆Qe. The temperature of the microelement dx is T.
The temperature of the fluid environment is Thydro. The heat transfer coefficient between
the microcantilever beam and the fluid environment is γ, and the heat increment of the
heat transfer is Qh. After laser heating and fluid heat exchange, the energy storage term of
the microelement is Qst. From the theory of heat conduction and conservation of energy,
the one-dimensional temperature field equation for a microcantilever beam 18 is derived
as follows:

∆Qe = W·κe f f ·
∂2T
∂x2 dx (11)

Qh = 2γ·(W + h)
(

T − Thydro

)
dx (12)

Qst = ρe f f Ce f f Wh·∂T
∂t

dx (13)

Qst = ∆Qe − Qh (14)
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By substituting Equations (11)–(13) into Equation (14), we can obtain the one-dimensional
temperature field control equation for the FGM microcantilever beam as follows:

∂
(

T − Thydro

)
∂t

= K
∂2
(

T − Thydro

)
∂x2 − R

(
T − Thydro

)
(15)

where K and R are simplifying parameters.

K =
κe f f

ρe f f Ce f f
(16)

R =
2γ·(W + h)
Wρe f f Ce f f

(17)

Equation (15) is Fourier transformed and ∆T̂ is defined as the temperature increment
in the frequency domain. The thermal boundary conditions are first determined as

∆T̂
(
x−0

)
= ∆T̂

(
x+0

)
(18)

∂∆T̂
∂x

∣∣∣∣
x=x+0

− ∂∆T̂
∂x

∣∣∣∣
x=x−0

= − λP0

Wκe f f
(19)

∆T̂
∣∣
x=0 = 0,

∂∆T̂
∂x

∣∣∣∣
x=L

= − γh
κe f f

∆T̂ (20)

where Equation (18) indicates that the temperature on the beam satisfies the continuity
condition at x = x0 for laser loading. Equation (19) indicates that the thermos-fluid
temperature satisfies the jump condition at x = x0 for laser loading. λ represents the
absorption coefficient of laser energy by the microcantilever beam. P0 is the laser power.
Equation (20) represents the heat transfer boundary conditions for a cantilever beam. In
Equation (20), we assume that there is no heat flow loss at the fixed end, and the free end
satisfies the heat convection condition.

The frequency domain generalized solution of Equation (15) after Fourier transform
can be expressed as: {

∆T̂(x, ω) = H1erx + H2e−rx, (x < x0)
∆T̂(x, ω) = H3erx + H4e−rx, (x ≥ x0)

(21)

where ω is the circular frequency. r is the simplifying factor in the complex plane. Their
expressions are as follows:

ω = 2π f (22)

r =

√
R +

√
R2 + ω2

2K
+ i

√
−R +

√
R2 + ω2

2K
(23)

The generalization coefficients H1 ∼ H4 in Equation (21) are determined by the
boundary conditions of the Fourier transform. From Equations (18)–(20) the derivation can
be made as follows:

H1 = λP0
Wκe f f

×
e−rx0 ·

[
e2rL

(
r+ γh

κe f f

)
+e2rx0

(
r− γh

κe f f

)]
2r
[

e2rL
(

r+ γh
κe f f

)
+

(
r− γh

κe f f

)]
H2 = −H1

H3 = λP0
Wκe f f

×
e−rx0 ·(e2rx0−1)

(
r− γh

κe f f

)
2r
[

e2rL
(

r+ γh
κe f f

)
+

(
r− γh

κe f f

)]

H4 =
H3·e2rL

(
r+ γh

κe f f

)
(

r− γh
κe f f

)

(24)
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2.3. Driving Forces and Dynamic Response

The FGM microcantilever beam is subjected to the combined action of the photother-
mal driving force Fdrive and the hydrodynamic force Fhydro when it is vibrated by laser
excitation in a fluid.

Fe f f (x, ω) = Fdrive(x, ω) + Fhydro(x, ω) (25)

Due to the different material properties of the functionally graded beams along the
z-axis, the beams develop asymptotic axial stresses in the thickness direction. From the
thermoelasticity theory, the thermal stress distribution along the z direction and the bending
moment distribution along the x direction of the FGM microcantilever beam can be obtained
as follows:

σ(z) = E(z)β(z)∆T̂(x, ω) (26)

M(x, ω) = W
∫ h

2

− h
2

σ(z)(z − z0)dz (27)

Based on the classical beam theory, there is a double differential relationship between
the axial bending moment and the shear driving force. Then, Fdrive can be derived as follows:

Fdrive = −∂2M(x, ω)

∂x2 = −W
∫ d

2

− d
2

E(z)β(z)(z − z0)×
∂2∆T̂(x, ω)

∂x2 dz (28)

The vibration in microcantilever beams is very sensitive to changes in the fluid envi-
ronment, and it mainly manifests as the resonance frequency and quality factor change
significantly with small changes in the operating environment. From the literature [32],
cantilever beams are hydrodynamically hindered when vibrating in incompressible fluids.
The notation used in the hydrodynamic derivation is defined as the Table 1 shows.

Table 1. Table of parameters used in hydrodynamic derivation.

Parameter Name Symbolic Parameter Name Symbolic

Reynolds number Re fluid dynamic viscosity η
fluid density ρ f Type III Bessel Functions K0, K1

Diameter of circular section D

For the hydrodynamic force Fhydro is derived as follows:

Re =
ρ f ωD2

4η
(29)

Γ(ω) = Ω(ω)Γcirc(ω) (30)

Γcirc(ω) = 1 +
4iK1

(
−i

√
iRe

)
√

iReK0

(
−i

√
iRe

) (31)

Ω(ω) = Ωr + iΩi (32)

Ωr =

[
0.91324 − 0.48274 (log10 Re)1 + 0.46842 (log10 Re)2 − 0.12886 (log10 Re)3

+0.044055 (log10 Re)4 − 0.0035117 (log10 Re)5 + 0.00069085 (log10 Re)6

]

×
[

1 − 0.56964 (log10 Re)1 + 0.4869 (log10 Re)2 − 0.13444 (log10 Re)3

+0.045155 (log10 Re)4 − 0.0035862 (log10 Re)5 + 0.00069085 (log10 Re)6

]−1 (33)
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Ωi =

[
−0.024134 − 0.029256 (log10 Re)1 + 0.016294 (log10 Re)2 − 0.00010961 (log10 Re)3

+0.000064577 (log10 Re)4 − 0.00004451 (log10 Re)5

]

×
[

1 − 0.597021 (log10 Re)1 + 0.55182 (log10 Re)2 − 0.18357 (log10 Re)3

+0.079156 (log10 Re)4 − 0.014369 (log10 Re)5 + 0.0028361 (log10 Re)6

]−1 (34)

Fhydro =
π

4
ρ f Wω2Γ(ω)Z(x, ω) (35)

where Γcirc(ω) is the hydrodynamic function of a circular cross-section microcantilever
beam. Ω(ω) is the cross-section correction function. It corrects the hydrodynamic function
of the circular cross-section to the hydrodynamic function Γ(ω) of the rectangular cross-
section microcantilever beam.

After the resultant force Fe f f (x, ω) of FGM microcantilever beams vibrating in a fluid
is derived, we can find its dynamical deformation field Z(x, ω) based on Euler–Bernoulli
beam theory.

(EI)e f f
∂4Z(x, ω)

∂x4 − ρe f f Aω2Z(x, ω) = Fe f f (x, ω) (36)

where, (EI)e f f is the equivalent bending stiffness of the microcantilever beam. A is the
cross-sectional area.  A = W × h

(EI)e f f = W·
∫ h

2
− h

2
E(z)(z − z0)

2dz
(37)

Using Galerkin’s method to solve Equation (36), its solution can be expressed in the
form of a free cantilever beam normalized to the vibrational magnitude. In Galerkin’s
method, φi(x) is a trial function determined by the boundary conditions of the cantilever
beam. a is the frequency-dependent coefficient to be determined.

φi(x) = ai

{
cos(kix)− cosh(kix)−

cos(kiL) + cosh(kiL)
sin(kiL) + sinh(kiL)

[sin(kix)− sinh(kix)]
}

(38)


a1 = 1.000000054966522√

L

a2 = 1.0000000424921067√
L

a3 = 1.0000000837026268√
L

(39)


k1 = 1.875104

L

k2 = 4.694091
L

k3 = 7.854757
L

(40)

where ai is a coefficient determined by the boundary conditions, ki is the coefficient deter-
mined by the order of the trial function. In this paper, we extrapolate to the third order in
solving the microcantilever beam vibration pattern. So ai and ki are taken to the third order.

After Equation (36) is solved by Galerkin’s method, the dynamical deformation field
Z(x, ω) can be expressed as:

Z(x, ω) =
∞

∑
n=1

An(ω)φi(x) (41)

A(ω) =

∫ L
0 Fdrive(x, ω)φi(x)dx

(EI)e f f

{∫ L
0

[
d2 φi(x)

dx2

]2
dx − ρe f f Aω2

(EI)e f f

[
1 +

πW2ρ f
4Aρ Γ(ω)

]} (42)

2.4. Quality Factor and First Order Resonant Frequency

The quality factor is a characterization parameter of how fast or slow the energy is
dissipated in a microcantilever beam during vibration. A high value of quality factor
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indicates that the microcantilever beam has low energy dissipation during vibration. It
retains most of the energy for efficient operation. According to the literature [33], we
commonly use the following equation to estimate the quality factor of a cantilever beam
operating in a fluid.

Q =

(
Ee f f ρe f f

) 1
2 Wh2

24ηL2 (43)

In Section 2.3 above, we wrote about the process of solving the Euler–Bernoulli equa-
tion to obtain the third-order accurate amplitude-frequency response of the FGM microcan-
tilever beam using Galerkin’s method. According to the literature [34], we can estimate the
first-order resonant frequency of the microcantilever beam using a less computationally
intensive formula as follows:

f0 = 1.8752 × 1
2πL2

√
Ee f f h2

12ρe f f
(44)

3. Example and Result Analysis

In this paper, the mechanical behavior of microscale porous functional gradient ma-
terials is analyzed theoretically. However, experimentally, it is not currently possible to
fabricate porous functional gradient Cu-Si microcantilever beams with controllable material
distribution and pore distribution. We will follow up on the advanced fabrication process
at a later time [26,35].

3.1. Power-Law Distribution of Material Properties for Porous FGM

To study the power-law distribution of material properties of FGMs with pores, we
choose microcantilever beams made of Cu and Si. Its size condition is L = 300 µm,
W = 30 µm, h = 10 µm. The upper surface material is Cu, and the lower surface material
is Si. n is the gradient factor in the power-law distribution equation. It indicates the
percentage of material composition of Cu and Si. The material parameters for Cu and Si
are given in Table 2.

Table 2. The material parameters for Cu and Si.

Material Parameters Cuprum (Cu) Silicon (Si)

E (GPa) 110 131
ρ
(
kg/m3) 8900 2330

v 0.35 0.25
l (µm) 1.422 0.592

κ
(

W·(m·K)−1
)

401 150

C(J/(kg·K)) 386 695

β
(
×10−6·K−1

)
16.5 3

Based on the modified couple stress theory (MCST), we have corrected Young’s modu-
lus with the scale constant l, and compared the case without correction in the conventional
theory (CT). In Figures 3 and 4, we compare the distribution of Young’s modulus for
microcantilever beams without porosity and microcantilever beams with porosity (α = 0.2).

In Figure 3, the introduction of the scale effect increases the Young’s modulus of the
microcantilever beam. The increase in the gradient factor n leads to an increase in the
amount of silicon. Young’s modulus distribution inside the microcantilever beam rises.
In Figure 4, the presence of porosity reduces the Young’s modulus of the microcantilever
beam as a whole. Different pore distributions have a great influence on the internal
Young’s modulus distribution. At higher pore densities, the reduction in Young’s modulus
is evident.
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In Figure 5, we can visualize the correction of the equivalent Young’s modulus based
on the scale effect under MCST more intuitively. In Figure 6, the reduction of equivalent
Young’s modulus by different porosities is also evident, and the correction of the equivalent
Young’s modulus by the scale effect is weakened by an increase in porosity. In Figure 7, the
distribution of pores in the interior has little effect on the equivalent Young’s modulus and
Poisson’s ratio of the entire microcantilever beam.
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3.2. One-Dimensional Temperature Field Distribution

In this section, we continue to use the microcantilever beam dimensions from Section 3.1.
The laser frequency used is fl = 17, 430 Hz, and the power is P0 = 0.01 W. The loading
position of the laser is x0 = 0.5 L. The convective heat transfer coefficient of a gas to a
solid is γ = 10 W/

(
m2·K

)
. The absorption coefficient of laser energy by a microcantilever

beam is λ = 0.3. The fluid environment in which the microcantilever beam operates is air.
Disregarding the effect of scale effect, we investigated the one-dimensional temperature
field distribution of microcantilever beams under different porosity conditions separately.
The temperature field distribution of the microcantilever beam is shown in Figure 8 below.

The presence of pores produces bubbles inside the microcantilever beam. The one-
dimensional temperature field distribution of the microcantilever beam rises with increasing
porosity. The uniform distribution of pores has a more pronounced effect on the tempera-
ture field than the irregular distribution. The uniform distribution makes the temperature
field rise more. There is also a more pronounced linear trend in the rise of temperature with
increasing porosity. (b), (c), and (d) three irregular pore distributions have little difference
in their effect on the temperature field.
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3.3. Amplitude-Frequency Response in Fluids

In this section, we use microcantilever beams with dimensions L = 2500 µm,
W = 400 µm, and h = 160 µm. The laser loading position is x0 = 0.5 L. Laser power is
P0 = 0.5 × 10−3 W. The amplitude-frequency response of the FGM microcantilever beams
in three different fluids is investigated.

In Figures 9–11, we investigate the amplitude-frequency response of FGM microcan-
tilever beams with different porosities in air, gasoline, and water. The physical parameters
of these three fluids are given in the Table 3.

Table 3. Fluid Density and Dynamic Viscosity.

Fluids ρ
(
kg/m3) η (Pa·s)

air 1.205 1.81 × 10−5

gasoline 678 2.9 × 10−4

water 998 1.01 × 10−3
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Comparing Figures 9–11 longitudinally, we can find that the resonance summits of the
microcantilever beams flatten out as the fluid density and dynamic viscosity increase. This
is due to the fact that vibrations in the fluid generate additional damping. The photothermal
driving force is partially canceled by the hydrodynamic force. The vibration amplitude
of the FGM microcantilever beam also decreases gradually. The amplitude is maximized
when vibrating in air, and the amplitude is minimized when vibrating in water.

In a side-by-side comparison, the even distribution of pores and the X-type distribution
show a very regular effect. However, the effects of O-type and V-type distributions on
microcantilever beam vibrations are well characterized. Due to the presence of pores, the
amplitude of the microcantilever beam vibration increases as a whole, and the resonance
peaks collectively drift to lower frequencies except for the O-type distribution. The O-type
distributed pores give the microcantilever beam a hollow-like structure. This structure
causes the internal stress distribution in the cantilever beam to be concentrated at the
periphery when the force is applied. It increases the strength of the beam in terms of
structure. So, as the porosity increases, the resonance peak of the O-type distribution shifts
slightly towards higher frequencies. The V-type distribution allows most of the pores to
exist in the Cu portion of the upper material. As the porosity increases, the Cu metal
content in the FGM microcantilever beams decreases. The hardness of the microcantilever
beam gradually increases when the Si component content is higher than the Cu content.
This increase in hardness causes the amplitude of the microcantilever beam to decrease
when it vibrates. Therefore, in the V-type distribution, the larger the porosity, the smaller
the vibration amplitude will be.

3.4. Quality Factor and First Order Resonant Frequency

In this section, we investigate the quality factor of the FGM microcantilever beam with
L = 300 µm and W = 30 µm vibrating in three fluids. The gradient factor n of the FGM
microcantilever beam was determined to be 0.1, and the thickness h was increased from
50 µm to 300 µm. The porosity was used as a study parameter.

In Figures 12–14, the quality factor is clearly affected by the fluid environment. In a
fluid environment with high density and dynamic viscosity, the quality factor of the FGM
microcantilever beam is very small, and energy loss during vibration is very high. The
presence of pores resulted in a slight decrease in the quality factor of the microcantilever
beams. This is due to the fact that the pores cause a decrease in the Young’s modulus of
the microcantilever beam. The quality factor of even distributed microcantilever beams is
more sensitive to the response of pores. The quality factor decreases faster with increasing
porosity. The other three non-uniformly distributed microcantilever beams show a small
decrease. We provide data on some of the quality factors, as detailed in the Appendix A.
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In Figure 15, for the first-order resonant frequency of the microcantilever beam in air,
we use the same microcantilever beam dimensions as in Section 3.3. The gradient factor is
n = 0.1.

From the Figure 16, we can see that porosity causes a decrease in the first-order res-
onant frequency. The effect of porosity on the first-order resonance frequency of even
distributed microcantilever beams is large but small for non-uniformly distributed mi-
crocantilever beams. Corrective even stresses are considered to have a gain effect on the
resonance frequency of the microcantilever beam. The larger the scale constant l is, and the
scale thickness ratio l/d decreases, the more pronounced the gain effect of MCST & SDT.
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4. Conclusions

In this paper, based on the Euler–Bernoulli beam theory and modified couple stress
theory, the one-dimensional heat conduction equation of functional gradient beams under
photothermal excitation is established. Based on the physical neutral plane theory, the
temperature field distribution of the FGM microcantilever beam is obtained. By introducing
the hydrodynamic function, the analytical expressions of the photothermal vibration model
and the dynamic deformation field of the FGM microcantilever beam in fluid are obtained.
The effects of scale effect, porosity, geometry, material gradient factor, and fluid environ-
ment on the photothermal vibration in the functional gradient beam are investigated by
numerical calculations. We can draw the following conclusions:

(1) The scale effect increases the Young’s modulus of the FGM microcantilever beam.
On the contrary, the presence of pores decreases Young’s modulus. The greater the porosity,
the greater the decrease in Young’s modulus. The pores attenuate the correction of Young’s
modulus by the scale effect. FGM microcantilever beams with large porosity are less affected
by the scale effect. In engineering, we can control the porosity and pore distribution to
attenuate the scale effect at the microscale.

(2) The presence of pores causes the one-dimensional temperature field of the FGM
microcantilever beam to rise. The extent of the effect is highly dependent on the distribu-
tion of pores. When the porosity increases, the even distribution is affected more than the
non-uniform distribution. The pores cause the amplitude-frequency response of the micro-
cantilever beam to drift to lower frequencies and increase in amplitude as a whole. The
distribution of the pores also has a significant effect on the amplitude-frequency response,
where the amplitude-frequency response is characterized differently by the O-type and
V-type distributions.

(3) The quality factor of FGM microcantilever beams is strongly influenced by the fluid
environment. The presence of pores causes a small decrease in the quality factor. The larger
the porosity, the more the quality factor decreases, and the faster the energy is dissipated
when the cantilever beam vibrates. In contrast to the even distribution, the quality factor of
non-uniformly distributed microcantilever beams is less affected by the pore space.
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Appendix A

Table A1. Quality factors of FGM microcantilever beams in three fluids. (Even distribution, d = 200 µm).

Fluids α Quality Factors

air

0 187.12

0.1 170.68

0.2 154.14

0.3 137.46

0.4 120.59
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Table A1. Cont.

Fluids α Quality Factors

gasoline

0 11.68

0.1 10.65

0.2 9.62

0.3 8.58

0.4 7.53

water

0 3.35

0.1 3.06

0.2 2.76

0.3 2.46

0.4 2.16

Table A2. First-order resonant frequencies of FGM microcantilever beams in air. (Even distribution).

n α Resonant Frequencies (Hz)

1

0 19,155.38

0.1 19,155.38

0.2 19,155.38

0.3 19,155.38

0.4 19,155.38

5

0 25,228.81

0.1 26,255.51

0.2 27,712.75

0.3 29,956.38

0.4 33,911.87

10

0 27,459.22

0.1 29,084.01

0.2 31,542.55

0.3 35,758.53

0.4 45,056.91
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