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Abstract: In recent years, smart windows have attracted widespread attention due to their ability
to respond to external stimuli such as light, heat, and electricity, thereby intelligently adjusting the
ultraviolet, visible, and near-infrared light in solar radiation. VO2(M) undergoes a reversible phase
transition from an insulating phase (monoclinic, M) to a metallic phase (rutile, R) at a critical tempera-
ture of 68 ◦C, resulting in a significant difference in near-infrared transmittance, which is particularly
suitable for use in energy-saving smart windows. However, due to the multiple valence states of vana-
dium ions and the multiphase characteristics of VO2, there are still challenges in preparing pure-phase
VO2(M). Machine learning (ML) can learn and generate models capable of predicting unknown data
from vast datasets, thereby avoiding the wastage of experimental resources and reducing time costs
associated with material preparation optimization. Hence, in this paper, four ML algorithms, namely
multi-layer perceptron (MLP), random forest (RF), support vector machine (SVM), and extreme
gradient boosting (XGB), were employed to explore the parameters for the successful preparation of
VO2(M) films via magnetron sputtering. A comprehensive performance evaluation was conducted
on these four models. The results indicated that XGB was the top-performing model, achieving a
prediction accuracy of up to 88.52%. A feature importance analysis using the SHAP method revealed
that substrate temperature had an essential impact on the preparation of VO2(M). Furthermore,
characteristic parameters such as sputtering power, substrate temperature, and substrate type were
optimized to obtain pure-phase VO2(M) films. Finally, it was experimentally verified that VO2(M)
films can be successfully prepared using optimized parameters. These findings suggest that ML-
assisted material preparation is highly feasible, substantially reducing resource wastage resulting
from experimental trial and error, thereby promoting research on material preparation optimization.

Keywords: machine learning; magnetron sputtering; energy-saving material; VO2(M); extreme
gradient boosting

1. Introduction

Vanadium dioxide (VO2) is a typical transition metal oxide with over ten crystalline
phases (A, B, D, P, M, etc.) [1–6]. However, only VO2(M) undergoes a metal-insulator
transition at 68 ◦C, drawing significant attention from researchers [7–9]. When the temper-
ature rises to the critical temperature, VO2(M) rapidly transforms from a low-temperature
monoclinic structure to a high-temperature tetragonal structure, resulting in a sudden
change in the optical and electrical properties of VO2. VO2(M) has a wide range of applica-
tions in various fields, including optoelectronic switches [10,11], smart windows [12,13],
military camouflage [14–17], and spacecraft thermal control [18,19]. Thus, the preparation
of high-purity VO2(M) films has long been a key concern in VO2 research, as it determines
the effectiveness of applications of VO2 film.

Magnetron sputtering, a widely employed physical vapor deposition method, is con-
sidered a promising technique for manufacturing VO2(M) films due to its high uniformity
and strong adhesion to the substrate [20,21]. However, the preparation of high-purity
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VO2(M) through magnetron sputtering requires precise control of sputtering parameters,
such as sputtering power, substrate temperature, and the ratio of the oxygen to argon
flow rate [22]. Therefore, the precise control of these deposition conditions is extremely
important for achieving high-purity VO2(M) films. However, the complex management of
deposition conditions during VO2 preparation introduces uncertainty in the sedimentary
results. Thus, it is vital to explore and optimize the preparation process of the VO2(M)
films. In the field of materials science, significant efforts from predecessors have led to the
accumulation of abundant experimental and computational data for material preparation,
containing numerous experimental parameters and conditions. Consequently, it is urgently
needed to manage this vast dataset for robust data handling methods. Machine learning
(ML), a typical data-driven pattern research method [23,24], fulfills the requirements for a
big data statistical analysis. It is a powerful tool for learning from training existing datasets,
enabling the extraction of underlying patterns and facilitating regression or classification
on previously unseen data. ML has been widely applied in various fields of materials
science, such as discovering new compounds or molecules with desired properties [25],
material synthesis [26–28], material structure design [29,30], and material structure and
performance prediction [31–34]. Owing to its potent capabilities, its application in aiding
the preparation of high-purity VO2(M) materials holds significant prospects.

In this paper, multi-layer perceptron (MLP), support vector machine (SVM), random
forest (RF), and extreme gradient boosting (XGB) were implemented to train the preparation
dataset of VO2 obtained from laboratory experiments and the literature. Each model was
evaluated based on indicators such as specificity, accuracy, and recall to optimize the final
deposition process. Additionally, a feature importance analysis was conducted on the
dataset to explore the influence of different deposition conditions on the results. The
results revealed that XGB demonstrated the highest classification performance on this
dataset, achieving a prediction accuracy of 88.52% on the test dataset. The XGB model
can effectively instruct the preparation of high-purity VO2(M). This paper offers insights
into the use of ML methods for aiding the targeted generation of VO2 materials, while the
proposed prediction model introduces novel approaches for optimizing the research of
material preparation technologies.

2. Results and Discussion
2.1. Optimized Synthesis Frame Design

During the experimental procedures, it is usually desired to achieve an effective prepa-
ration of the target material under predetermined deposition conditions. However, under
varied experimental conditions, fixed parameters may fail to yield optimal results. Thus,
to avoid unnecessary experimental errors and minimize costs, it is crucial to determine a
model capable of adjusting experimental conditions and predicting results accurately. In
this article, an ML-assisted approach for depositing VO2 films by magnetron sputtering was
presented (Figure 1). The conventional magnetron sputtering method entails introducing
specific proportions of O2 and argon gas into a high-vacuum environment, where the target
material undergoes oxidation and is subsequently deposited onto the substrate surface via
magnetron sputtering to produce VO2(M). In this study, ML can aid in optimizing the depo-
sition parameters for VO2(M) films. Before sputtering, predictive models were employed to
forecast deposition parameters, thereby determining the likelihood of achieving pure-phase
VO2(M) under these conditions and using the predicted probability as a benchmark for
adjusting comprehensive parameters. The high probability of sedimentation parameters
in the experiments significantly diminished the uncertainty of the results and minimized
resource waste caused by trial and error.
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Figure 1. Machine learning optimization framework for VO2(M) magnetron sputtering preparation.

2.2. Dataset Establishment

Data preparation is a fundamental aspect of optimizing material preparation. In this
article, a dataset was constructed, including 203 experimental data points from laboratory
experiments and the relevant literature. The crystal structure of VO2 was identified by
comparing the X-ray diffraction (XRD) data with the JCPDS standard card, serving as the
foundation for data acquisition [35]. Table 1 presents the experimental parameters utilized
in the preparation of VO2(M) via magnetron sputtering, mainly including sputtering power,
substrate temperature, ratio of the oxygen to argon flow rate, reaction pressure, target
material, and substrate.

Table 1. Reaction conditions and labeling comparison table.

Mark Reaction Conditions

Power The sputtering power of magnetron sputtering
Temp The temperature of the substrate
O2:Ar The ratio of oxygen to argon flow rate
Press Magnetron sputtering reaction pressure
Tar Sputtering target material
Sub Sputtering reaction substrate

Before model training, the dataset was preprocessed, including encoding the string
data and assigning numerical values of “1” and “0” to pure-phase VO2(M) and non-VO2(M),
respectively. The scatter plot matrix is a visual aid used to analyze the relationships between
multiple variables, as illustrated in Figure 2. A Pearson correlation coefficient analysis
was employed to assess the degree of interdependence among variables in the dataset.
The correlation between the six features obtained is shown in Figure 3. The positive and
negative values in the figure represent positive and negative correlations between features,
respectively. Based on the analysis results, the correlation coefficients between the selected
features approached 0, indicating a high degree of independence among each feature,
thereby reducing the data redundancy that arises from highly correlated data and the
problem of feature weight allocation during model training.
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2.3. Classification Model

Following dataset establishment and preprocessing, it was necessary to train four ML
models (MLP, XGB, SVM, and RF) to accurately predict experimental results. Before in-
putting the dataset, it needed to be segmented, with 75% randomly allocated as the training
set and the remaining 25% as the validation set. After building the model framework, it was
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essential to adjust the hyperparameters of the model [36], search for hyperparameters of
each model through a grid search, and then fine-tune based on validation set performance,
aiming to determine the optimal hyperparameters and ensure the best predictive perfor-
mance. Additionally, to prevent overfitting in model predictions, ten-fold cross-validation
was conducted for each model. Subsequently, the test set was utilized to comprehensively
assess the performance of each model. Eventually, the optimal model was chosen based on
the evaluation results and employed to guide the optimization of the magnetron sputtering
process. This model can predict material preparation results and minimize the uncertainty
of deposition experiments.

2.4. Model Selection and Performance Evaluation

To optimize magnetron sputtering, a thorough performance evaluation was conducted
on the ML model, and the optimal model based on a dataset with high confidence was
selected. This study utilized four ML algorithms—MLP, XGB, SVM, and RF—for training
based on the original dataset. Previous studies have demonstrated the widespread appli-
cation and effectiveness of these four models in the optimization of material preparation,
particularly on small datasets [27,37,38]. To identify the conditions for the optimal model,
this article assessed six indicators, the receiver operating characteristic curve (ROC), area
under the ROC curve (AUC), accuracy, specificity, recall, and F1 score, to evaluate the per-
formance of the four models. Among these indicators, ROC assessed the model’s predictive
ability, with the AUC value representing its efficacy. Accuracy measured the percentage
of correctly predicted samples, specificity quantified the percentage of correctly predicted
negative samples, recall determined the percentage of correctly predicted positive samples,
and the F1 score represented the harmonic average of accuracy and recall. The results
of the model evaluation are depicted in Figure 4a. Overall, these results indicated rapid
convergence of all ML models without encountering overfitting or underfitting issues, and
they exhibited outstanding predictive capabilities.
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Among the four trained models, the XGB model exhibited the highest prediction
accuracy, reaching 88.52%, which is higher than previous relevant reports [39,40], followed
by the RF model at 86.89%. The F1 score was a comprehensive evaluation indicator of
accuracy and recall. Comparing the F1 scores of the four models, XGB still achieved
the highest score of 0.78. Regarding other evaluation indicators, XGB still maintained
the highest recall rate as well as specificity, which were 0.74 and 0.98, respectively. The
ROC curve was considered one of the most important evaluation tools for classification
models. Usually, the closer the curve is to the upper left corner, the better its classification
performance. Figure 4b illustrates the ROC curves of the four models, demonstrating
that the XGB model exhibited the curve closest to the upper left corner, with the highest
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AUC value of 0.90 among them. Based on the above, this study further investigated the
optimization of preparation pathways using XGB models. Figure 5a displays the learning
curve of the XGB model. As the sample size increased, the model scored steadily on both
the training and validation sets, demonstrating the feasibility of using the XGB model
without overfitting problems. The confusion matrix is obtained according to the dataset
and prediction results, as shown in Figure 5b, and the specificity and sensitivity can be
calculated from the matrix, showing that the XGB model has a good performance.
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This discovery indicated a significant correlation between the prediction results of the
XGB model and the experimental results reported in the published literature. In order to
evaluate the predictive performance of the XGB model, the experimental conditions on the
preparation of VO2 by magnetron sputtering were validated in the recent literature. The
prediction results under various experimental conditions are shown in Table 2. Among
these conditions, the first three conditions have been confirmed to successfully prepare pure-
phase VO2(M), while the latter two conditions cannot. These findings indicated a significant
correlation between the prediction results of the XGB model and the experimental results
reported in the published literature.

2.5. Material Synthesis Pathway Optimization

To optimize the feature parameters of the preparation process, the Shapley Additive
exPlanning (SHAP) method was used to extract the importance of features from the six
feature parameters. SHAP is a tool for interpreting model outputs. By analyzing the impact
of each feature parameter on the output, the sum of Shapley values (contributions) of all
feature parameters can be obtained, which is the magnitude of importance [41]. Figure 6
demonstrates that substrate temperature (Temp) had the most significant impact on the
purity of VO2(M), followed by the ratio of the oxygen to argon flow rate (O2:Ar) and
sputtering power (Power), whereas substrate type (Sub) and target type (Tar) had the least
impact. To optimize the range of feature parameters, a dataset containing 6,375,000 virtual
experimental condition data points was generated. The XGB model is employed to predict
the probability of successfully preparing VO2(M) from these data. Subsequently, the data
with a probability greater than 90% were filtered out, resulting in 1,527,400 high-success-
rate data points. The range of values for each feature parameter is shown in Table 3. By
selecting the characteristic parameter values within this range, the preparation purity of
VO2(M) can be optimized to a certain extent, accelerating the controllable preparation
speed of the materials.
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2.6. Model Verification

Furthermore, under the guidance of the XGB model, a set of experimental parameters
with high success rates were selected to verify the reliability of the model. The specific
experimental conditions are a sputtering power of 150 W, substrate temperature of 550 ◦C,
ratio of the oxygen to argon flow rate of 1.6, reaction pressure of 0.4 Pa, target material of
vanadium metal, substrate of SiO2, and deposition time of 2 h. According to the prediction
of the XGB model, the success rate under these experimental conditions was 93.61%. Under
these conditions, magnetron sputtering experiments were conducted, and the products
were analyzed using the Bruker D8 advanced X-ray diffractometer. The obtained XRD
patterns are shown in Figure 7a. The main diffraction peaks at 2θ degrees of 27.8◦ and
42.3◦ corresponded to the (011) and (210) orientations of the VO2(M) phase, respectively.
The high-resolution XPS spectrum of VO2(M) is shown in Figure 7b. The spectrum of
V2p can be resolved into two independent peaks, where the V2p3/2 peak was 515.8 eV,
corresponding to the valence state of V4+ ions in VO2. The O1s peak at 530.0 eV is usually
attributed to the O2− in the sample, which is consistent with the previous results [42,43].
Combined with the XRD results, it can be further determined that the VO2(M) was obtained.
Figure 7c represents the SEM image of the obtained VO2(M) films via magnetron sputtering.
The film surface was composed of spherical-like grains from ~80 nm to ~260 nm, with
typical grain size of ~180 nm. Due to the transition characteristics of VO2 from the low-
temperature semiconductor phase to high-temperature metal phase, its resistance changes
by nearly two orders of magnitude during heating and cooling between 20 ◦C and 120 ◦C
(Figure 7d). These experimental findings demonstrate that high-purity VO2(M) materials
can be successfully prepared with the assistance of the XGB model, validating the ability of
the trained ML model to promote the preparation of film materials.
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Table 2. Prediction of recently published literature parameters using XGB model.

Number Power
(W)

Temp
(◦C) O2:Ar Press

(Pa) Tar Sub Model
Predict Reference

1 90 650 0.013 1.33 V Al2O3 86.23% Zhang C et al. [44]
2 100 650 0.013 1.33 V Si 85.50% Zhang C et al. [45]
3 80 580 0.06 1.00 V Si 71.47% Ma X et al. [46]
4 100 500 0.025 1.00 V2O3 Al2O3 28.64% Yang Z et al. [47]
5 200 600 0.05 1.00 V Si 30.41% Xiong Y et al. [48]

Table 3. Optimizing the range of features. The 0, 1, 2, and 3 of Tar represent V, V2O5, VO2, and
V2O3, respectively, and the 0, 1, 2, 3, and 4 of Sub represent Al2O3, NaCa glass, Si, SiO2, and stainless
steel, respectively.

Parameters Min Max

Power (W) 110 210
Temp (°C) 500 700

O2:Ar 0.1 2.2
Press (Pa) 0.15 2.9

Tar 0 or 1, 2, 3
Sub 0 or 1, 2, 3, 4
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Figure 7. (a) XRD pattern; (b) XPS spectrum; (c) SEM image; (d) resistivity vs. temperature of VO2(M)
prepared with magnetron sputtering.

3. Conclusions

Four ML models were selected to train the dataset, and their performance was com-
prehensively evaluated in this study. Among them, the XGB model exhibited the highest
prediction accuracy, reaching 88.52%. The comprehensive parameter space was explored by
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utilizing the trained XGB model. Then, the range of each feature value was determined with
a high probability of success in the preparation process, thus offering experimental guide-
lines. A feature importance analysis was conducted using the SHAP method, revealing that
substrate temperature had a significant impact on the purity of VO2(M). Subsequently, ex-
perimental verification was performed. The experimental findings confirmed the successful
preparation of pure-phase VO2(M) films. In conclusion, this study illustrated that machine
learning can effectively facilitate the experimental preparation process, thereby minimizing
the uncertainty of experimental results and reducing resource consumption associated
with trial and error. This study provides methodological guidance for optimizing material
preparation, which has enormous potential in advancing materials science.
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