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Abstract: Halide perovskites have gained considerable attention in materials science due to their
exceptional optoelectronic properties, including high absorption coefficients, excellent charge-carrier
mobilities, and tunable band gaps, which make them highly promising for applications in photo-
voltaics, light-emitting diodes, synapses, and other optoelectronic devices. However, challenges such
as long-term stability and lead toxicity hinder large-scale commercialization. Computational methods
have become essential in this field, providing insights into material properties, enabling the efficient
screening of large chemical spaces, and accelerating discovery processes through high-throughput
screening and machine learning techniques. This review further discusses the role of computational
tools in the accelerated discovery of high-performance halide perovskite materials, like the double
perovskites A2BX6 and A2BB′X6, zero-dimensional perovskite A3B2X9, and novel halide perovskite
ABX6. This review provides significant insights into how computational methods have accelerated
the discovery of high-performance halide perovskite. Challenges and future perspectives are also
presented to stimulate further research progress.

Keywords: halide perovskites; computational methods; high-throughput screening

1. Introduction

Halide perovskites have captured considerable interest in materials science due to
their exceptional optoelectronic properties, which include high absorption coefficients,
outstanding charge-carrier mobilities, and adjustable band gaps [1]. These attributes render
them highly promising for applications in photovoltaics, light-emitting diodes, synaptic
devices, and other optoelectronic technologies [2–4].

Pursuing high-performance halide perovskites involves optimizing their stability,
efficiency, and manufacturability. At present, while a power conversion efficiency (PCE)
of above 25% in a laboratory-scale device is being achieved by most of the leading labo-
ratories [5], long-term stability still stands as the main formidable obstacle for large-scale
commercialization, as it exhibits structural instability when exposed to moisture and electric
fields, presenting additional challenges in their development [5]. In addition, lead toxicity
remains another profound concern [6,7].

To address these issues, researchers increasingly focus on discovering stable, lead-free
alternatives that can offer similar or superior performance. Key performance metrics in-
clude high PCE, long-term operational stability, and the ability to process materials cheaply
and with scalable techniques. Achieving these goals requires a deep understanding of the
materials’ properties and their ability to predict how changes in compositions and struc-
tures will impact performance. This quest necessitates the exploration of vast compositional
and structural spaces, a task that is somehow impractical through traditional experimental
methods due to the associated time and cost. Moreover, halide perovskite materials are
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notable for their versatile structures, both in terms of their inorganic framework and overall
shape [8]. For example, their structural flexibility allows them to form low-dimensional
versions, which are more resistant to moisture and have adjustable crystal sizes [9–11].
Thus, a deeper understanding of the mechanism of the structure–activity relationship is
greatly needed for the design of high-performance halide perovskites [12].

Thus, computational methods have emerged as essential tools for the design and
discovery of new halide perovskite materials. Firstly, they enhance our understanding of
material properties. For instance, they provide insights into the stability and reaction mech-
anisms of halide perovskites, elucidating how various factors like ionic radii, electronic in-
teractions, and external conditions impact their structural integrity and functionality [13,14].
For example, perovskite materials with larger bandgaps are more stable under light expo-
sure because higher energy barriers reduce the non-ideal recombination of photo-generated
carriers. With multi-scale simulation techniques like ab initio molecular dynamics (AIMD),
the time and length scales of a material’s behavior can be dynamically revealed and can
be used to understand the structural evolution during a reaction [15]. Moreover, com-
putational methods enable the efficient screening of large chemical spaces, significantly
accelerating the discovery process, so-called high-throughput screening. Consequently,
significant efforts are being dedicated to developing new materials with improved stability
and optimal performance [4,5,16]. Recent advancements in machine learning have played a
pivotal role in this process by enabling the direct and fast prediction of material properties
from vast datasets, significantly reducing the computational cost of density functional
theory (DFT) calculations, allowing researchers to explore a larger chemical space in less
time [12]. Techniques such as support vector machines, random forests, and deep learning
models like graph neural networks have been used [17]. Some typical examples include Lu
et al. for identifying the lead-free halide perovskites [18] and Sun et al. for the discovery of
novel A3B2X9 perovskites [16].

This review sets the stage for discussing the accelerated discovery of halide perovskite
materials through computational tools that are widely utilized and highlighting their
application towards high-performance halide perovskites. The computational tools can
boost understanding of the structure–activity relationship by considering the structural
stability and electronic structure. Moreover, computational methods enable the high-
throughput screening of large chemical spaces, significantly accelerating the discovery
process. We then elaborate on the significant roles of computational methods in accelerating
the discovery of some significant halide perovskites like the double perovskites A2BX6 and
A2BB′X6 and novel halide perovskite ABX6. Looking ahead, the continued development
and integration of advanced computational techniques for machine learning hold great
promise for unlocking new, high-performance materials with tailored properties for a wide
range of applications.

2. Computational Tools
2.1. Structural Stability

Predicting the structural stability of halide perovskites remains a significant challenge
in the discovery of new functional materials. The formation energy is a critical measure
for evaluating the stability and synthesizability of halide perovskites. This energy can be
defined in two main ways: (1) in relation to the constituent unary, binary, or multinary
phases or (2) in comparison to the stable linear combination of competing phases in the
phase diagram (Ehull) [19].

Generally, the above energy can be calculated via DFT methods. However, they are
more focused on the ground-state properties at zero Kelvin and hugely ignore the stability
under different working conditions [12]. Effectively bridging time and length scales is
essential for the discovery of halide perovskites, as many dynamic properties of interest
cannot be directly obtained from static DFT calculations, and this requires multi-scale
strategies [15]. In this case, ab initio thermodynamics (AITD) can be utilized to assess the
temperature-dependent stabilities under a varying condition. Raman et al. [20] investigate
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the exsolution of Pt from ATiO3 perovskites (where A = Ca, Sr, or Ba) under different
temperatures, which finally suggests that Pt exsolution is influenced by the formation
of sub-surface vacancies, followed by the diffusion of Pt to the surface, and this process
depends significantly on the specific host perovskite and its exposed facets. To further
consider the time-dependent stabilities, ab initio molecular dynamic simulations can be
performed to indicate whether a halide perovskite can maintain its structural integrity at a
random temperature [18]. Such a technique is more focused on a system’s dynamics and
statistical properties [12]. Moreover, the solvent effect can be also considered explicitly in
the simulation. In some cases, the solvent can destabilize the perovskite [21].

For perovskites, some reliable empirical factors have been applied to evaluate the
structural stability. Through simple calculation, one can assess the stability of perovskite
materials quickly, which saves a lot of time compared to DFT simulations. Among them, the
ionic radii play a crucial role in shaping our understanding of bonding and stability in per-
ovskites. For example, Goldschmidt’s tolerance factor (t) has been widely employed [13,14]
as follows:

t = (rA + rX)/
√

2(rB + rX)

Here, ri (i = A, B, or X) represents the radius of a specific ion in perovskites. The
calculated tolerance factors of typical perovskite materials range between 0.81 and 1.11 [22].
Predicting the stability of perovskites using the tolerance factor requires only their chemical
compositions.

Furthermore, when the octahedral index (µ), the following is true:

µ = rB/rX

This factor falls within the range of 0.41 to 0.90, a significant distortion of the octahedral
geometry is suggested, and there is a high likelihood of multiphase coexistence [13]. The
ionic radii, tolerance factor, and octahedral factor have been regarded as the most important
criteria for classification, indicating that steric and geometric packing effects are key to the
stability of halide perovskites [17].

With the help of the machine learning (ML) techniques, the new tolerance factor (t) can
be discovered. Bartel et al. [23] present a new tolerance factor (τ) using an SISSO algorithm,
which has the following form:

τ =
rX

rB
− nA(nA − rA/rB

ln(rA/rB)
)

where nA is the oxidation state of A, ri is the ionic radius of ion i, rA > rB by definition, and
τ < 4.18 is the perovskite. A high overall accuracy and generalizability were achieved for
an overly broad range of halide perovskites.

When it comes to the stability of halide perovskites, structural distortions are signifi-
cant. These distortions impact the crystal structure by altering bond lengths, angles, and
overall lattice symmetry to minimize the system’s energy. Structural distortions in per-
ovskite materials occur due to various factors such as differences in ionic radii, electronic
interactions like the Jahn–Teller effect, temperature changes causing phase transitions,
external mechanical stress, chemical doping, and the presence of defects. The tolerance
factor serves as an indicator of the degree of distortion from an idealized cubic structure.
Typically, a stabilized cubic structure will have a relatively large tolerance factor, greater
than 0.9 [24]. Moreover, the DFT calculations can also help to confirm distortion in the
perovskites, such as the existence of sublattice distortion in Na-doped Cs2AgBiCl6 double
perovskites [25]. The more dynamic distortion processes in different environments like
temperature can be revealed via AITD or AIMD [26].

2.2. Electronic Structure

Electronic structure analysis is extremely important in the research of halide per-
ovskites because their unique electronic structure properties determine their optoelectronic
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and electronic performance to a large extent. The calculated electronic structure can also be
used to predict the absorption spectrum, using which researchers can gain detailed insights
into how perovskite absorbs light at different wavelengths [5,27,28]. In addition, the cal-
culated electronic structure provides detailed insights into the stability. By examining the
electronic structure, researchers can identify features such as antibonding orbitals, which
are molecular orbitals where electron occupation weakens or disrupts chemical bonds,
reducing material stability [29], or identify defect states (e.g., vacancies and interstitial
atoms) [30].

Among the different properties of electronic structures, bandgap is a crucial parameter
that significantly impacts their performances. While the efficiency of a realistic device
depends on various properties, the bandgap is widely used as the screening criterion
due to its convenience in DFT calculations [15]. Firstly, the bandgap is related to the
stability and durability of halide perovskites. Perovskite materials with larger bandgaps
are more stable under light exposure because higher energy barriers reduce the non-ideal
recombination of photo-generated carriers. Moreover, the size of the bandgap directly
affects the photovoltaic conversion efficiency. Perovskite solar cells with low bandgaps can
absorb a broader spectrum of sunlight, enhancing their efficiency and overall effectiveness
in photovoltaic applications [31]. Materials with the bandgaps larger than 2.0 eV are
typically unsuitable for photovoltaics [3]. For example, if a multijunction solar cell consists
of multiple materials with different bandgaps, its overall photovoltaic conversion efficiency
can be enhanced as each absorbs different wavelengths of light. In this case, perovskite
materials can be tuned to match the bandgaps of other materials such as silicon or copper
indium gallium selenide, creating efficient multijunction solar cells. It is worth noting that
a direct bandgap allows electrons to directly emit photons when transitioning from the
conduction band to the valence band, while an indirect bandgap requires an additional
phonon interaction for this transition, which can be studied differently in different halide
perovskite systems.

The electronic structure of a perovskite can also influence its reactivity. For instance,
the electronic structure and the oxidation state of the B cation are predicted to impact the
reactivity of perovskites in relation to dissociative oxygen adsorption and the formation
energies of oxygen vacancies [32]. For example, perovskites with mixed cations at the B
site, maintaining a 3Pb:2Sn molar ratio, have demonstrated promising efficiency, reaching
15.1% [33].

2.3. Rational Design and High-Throughput Screening

Improvements in computational capacity, along with better simulation algorithms,
now make it possible to accurately calculate the properties of many materials efficiently.
This means we can explore a lot more materials quickly, which boosts our understanding
of their properties and potential applications. Consequently, there is a growing emphasis
on high-throughput screening of the vast chemical space, which greatly enhances our
understanding and intuition regarding material properties. For instance, hundreds of halide
perovskites have been screened using DFT and high-throughput calculations, leading to
the discovery of high-performance materials. Several candidates, such as Cs2BB′X6 (where
B = In, Tl; B′ = Sb, Bi; X = Cl, Br), have emerged as promising photovoltaic absorber
materials [5].

Machine learning plays a pivotal role in this process by enabling the direct and fast pre-
diction of material properties from vast datasets, significantly reducing the computational
cost of DFT calculations, and allowing researchers to explore a larger chemical space in less
time. In discovering and studying halide perovskite materials, various ML techniques can
be applied. These include, but are not limited to, the following: traditional ML methods
based on feature engineering such as support vector machines (SVMs) and random forests
for predicting material properties and structural stability [17]. Deep learning techniques
such as graph neural networks (GNNs) are used for the efficient processing of large-scale
structural data and predicting material performance [34]. In many material-based ML
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studies, predicting the stability of materials (formation energies, energy above hull) is
often the primary goal, or at least a significant subgoal, alongside key application-specific
metrics such as ionic conductivity, catalytic adsorption energies and activities, bandgaps,
etc. For example, Schmidt et al. [35] developed crystal graph attention networks with
a mean absolute error (MAE) of 30 meV/atom, which are then applied to identify sev-
eral thousand potentially stable ABCD2 compounds through the high-throughput search
of 15 million candidates based on the predicted distance to the convex hull. Takahashi
et al. [36] employed a ML model to categorize the bandgap of perovskite materials using
18 physical descriptors, which finally identify 10 thermodynamically stable undiscovered
perovskite materials with ideal band gaps for solar light capturing from 414736 perovskite
data items.

3. Accelerated Discovery of Novel Halide Perovskites

In this section, we classify emerging halide perovskites into several groups according
to their different spatial configurations and elemental compositions, and the significant
roles that computational methods play in accelerating the prediction of these systems are
then elaborated.

3.1. Vacancy-Ordered Double Perovskites: A2BX6

A2BX6-typed zero-dimensional (0D) halide perovskite materials, known as vacancy-
ordered double perovskites, or perovskite variants, are a newly emerging class of novel
compounds that have garnered rapid research attention in recent years [9–11]. Compared
to their double perovskite cousins, they maintain a 0D electronic structure, i.e., all octahedra
do not have contact with each other directly to form a plane or line, with all tetravalent metal
ions located at the octahedral centers [37]. Six halide anions bind with a one-metal cation
to form an octahedron, separated by the monovalent A-site constituents (Figure 1a). The
independently dispersed octahedra throughout the entire lattice endow the crystal structure
with periodically missing fundamental units, therefore imparting unique properties to
this material category [38–40]. DFT calculations have been comprehensively utilized to
predict the performances of perovskite variants [41–45]. Compared to other categories of
perovskite materials, the most remarkable advantages of perovskite variants are the ease of
forming self-trapping excitons (STEs) and exceptional chemical stability [46–48].

Unlike bandgap emission excitons, STEs are transient excited states. In another word,
when the external irradiation is removed, STEs disappear immediately [49]. The creation of
such states is greatly facilitated in perovskite variants due to their low-dimensional elec-
tronic structures, which result in localized charge distribution and strong carrier–phonon
coupling [50]. In addition, owing to their lower energy levels, STEs generally emit light
with large Stokes shifts and longer wavelengths [51]. In a recent study, researchers con-
ducted DFT calculations to predict two new types of perovskite variants Cs2MoCl6 and
Cs2WCl6, capable of emitting near-infrared (NIR) light [52]. The computational results indi-
cate that the novel perovskite variants composed of heavy metals exhibit more pronounced
octahedra distortions, i.e., Jahn–Teller distortion, under photoexcitation processes, which
is the so-called heavy metal effect [26]. In addition, perturbed octahedra become more
notable with increasing temperature, as evidenced by the temperature-dependent projected
phonon density of states, conducted via AIMD simulations (Figure 1b). As the temperature
elevates, Cs-Cs and Mo-Cl bonds are largely extended, suggesting strengthened lattice
distortion, and facilitate formation of STEs.

As predicted by DFT calculations, the photoluminescence (PL) spectra of Cs2MoCl6
crystals exhibit a broadband emission extending into the NIR-II region, marking the longest
observed radiation wavelength in perovskite hosts to date (Figure 1c). The significant
Stokes shift of 550–600 nm, coupled with a broadband emission spanning 200–300 nm, indi-
cates STE emission, which is commonly observed in low-dimensional halide perovskites,
particularly those containing heavy metals [53,54]. Moreover, like other 0D halide per-
ovskites, these crystals do not display photoluminescence based on free excitons, likely
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due to the rapid generation of trapped excitons caused by structural distortion. More
importantly, in the high-temperature region, the increase in emission intensity indicates the
temperature-facilitated formation of STEs and the thermally activated release of trapped
charge carriers, demonstrating the good alignment of experimental results with theoretical
calculations [55].
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The instability of halide perovskite poses a significant obstacle to their practical appli-
cations [56,57]. In a recent study, molecular dynamics (MD) simulations were performed
to investigate the anti-water stability of the perovskite variant Cs2SnCl6 for its interface
with water [21]. Calculation results indicate that the surface terminated by specific bonds
shows the lowest surface energy and, thus, the best stability, and no reaction occurs at the
water/Cs2SnCl6 interface (Figure 2a). Considering the low photoluminescence efficiency
of Cs2SnCl6, researchers compute the feasibility of Te doping strategies and conduct DFT
calculations to gain more insights into the electronic structures of Cs2(TexSn1−x)Cl6 solid
solutions. The calculated Gibbs free energy of mixing metals, along with the corresponding
enthalpic and entropic contributions as functions of the doping ratio, demonstrates that
the solid solution reaction is a thermodynamically favorable and spontaneous process
(Figure 2b). More importantly, DFT calculations predict the formation of long-pair ns2

electrons with Te doping. Unlike Sn4+, Te4+ behaves filled pseudo-closed 5s2 orbitals,
leading to a higher absorption coefficient and extended absorption window (Figure 2c) [58].
In addition, ns2 electronic configuration suggests an antibonding characteristic at the
valence-band maximum, facilitating the formation of shallow-level acceptor defects with
low formation energies, rather than deep-level defects that act as traps and recombina-
tion centers, which endow them with higher defect tolerance and improved stability [29].
Based on aforementioned calculation prediction, the perovskite variant Cs2(TexSn1−x)Cl6
is synthesized using a facile hydrothermal approach, and as-prepared samples show a
pretty high photoluminescence quantum yield (PLQY) of 95.4% and exceptional anti-water
stability, which is consistent with the calculation results.
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Although halide perovskite materials have found utility in optical and optoelectronic
fields, the potential uses of halide perovskite materials in other application domains are
still rarely explored. Considering their inherent ability for facile composition modification,
it is imperative to explore and develop novel halide perovskite materials with specific
compositions. In this regard, computational methods demonstrate excellent performances
in predicting other properties of perovskite variants and their respective application do-
mains [59–61]. In a recent study, DFT calculation was used to evaluate the photogenerated
charge transfer on PtSA/Cs2SnI6 and its analogue PtNP/Cs2SnI6, showing that Pt nanopar-
ticle is anchored on Cs2SnI6 (Figure 3a) [28]. The difference in charge density before and
after photoexcitation indicates that photogenerated electrons disperse throughout the entire
Pt nanoparticle in PtSA/Cs2SnI6, leading to a reduction in electron density per Pt atom
within the nanoparticle. In contrast, in PtSA/Cs2SnI6, electrons are predominantly localized
between PtSA and the neighboring three I atoms, resulting in high electron density at the
Pt-I3 site. Consequently, PtNP exhibits a lower electron density per Pt atom compared to
PtSA, indicating the relatively electron-deficient nature of PtNP. This suggests that PtSA has
a stronger capability to capture electrons from Cs2SnI6, resulting in higher hydrogen pro-
duction activity. Therefore, the distinct electronic properties of PtNP and PtSA on Cs2SnI6
contribute to their differing catalytic dynamics in the hydrogen evolution reaction (HER),
with PtSA showing a significantly lower energy barrier than PtNP (Figure 3b). Based on
simulation results, researchers designed and synthesized PtSA/Cs2SnI6 complexes and
their counterparts as control groups to investigate their photocatalytic HER performances.
The photocatalytic activities for hydrogen evolution over PtSA/Cs2SnI6, PtNP/Cs2SnI6,
and Cs2SnI6 catalysts were assessed in an aqueous solution of hydroiodic acid under iden-
tical conditions (Figure 3c). PtSA/Cs2SnI6 exhibits superior activity for photocatalytic
hydrogen production, which is 17.2 and 5.8 times higher than those of pristine Cs2SnI6 and
optimized PtNP/Cs2SnI6, respectively.
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3.2. Traditional Double Perovskites: A2BB′X6

Given the great harm of toxicity in lead-based halide perovskites, lead-free perovskites,
which offer lower toxicity and enhanced stability as alternative materials, have become
a central research focus in recent years [62,63]. Early research primarily focused on Sn2+

and Ge2+ cations as substitutes for Pb2+, but these halide perovskites are even more un-
stable, mainly due to the easy oxidation of these elements in ambient conditions [64,65].
Another strategy involves replacing every two Pb2+ cations with one monovalent cation
and one trivalent cation, creating a charge-ordered double perovskite with the general
formula A2BB′X6 (A and B = monovalent cations; B′ = trivalent cations; X = halogen an-
ions), known as double perovskites (Figure 4a). Compared to the vacancy-ordered double
perovskites discussed in Section 3.1, traditional double perovskites possess quite different
structures, even though they both hold a 0D configuration. In detail, vacancy-ordered dou-
ble perovskites periodically lose octahedra, while traditional double perovskites maintain a
complete octahedral construction. To date, double perovskites have shown promise as high-
performance materials in various applications, including electrocatalysts, ferroelectrics,
white light emitters, phosphors, magneto-resistive materials, and spintronics [66].

Considering the multitude of potential components for double perovskites, researchers
have employed efficient simulation methods to predict easily synthesizable compositions
and anticipate their various properties [3,66,67]. In a representative study, researchers
selected 311 double perovskites, Cs2B1B2Cl6, from a pool of 903 compounds as potentially
stable candidates based on a statistically learned tolerance factor for perovskite stability.
These 311 double perovskites then underwent DFT calculations to evaluate their stability
and identify candidates with suitable band gaps for optoelectronic applications (Figure 4b).
Thermodynamic analysis predicted that 261 of these 311 compounds are likely to be
synthesized, as they are stable against decomposition into competing compounds. Among
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these 261 candidates, 47 are free of toxic elements and exhibit direct or nearly direct
band gaps within a desirable range for photovoltaic applications, as confirmed by DFT
calculations. Notably, a specific subgroup, Cs2[Alk]+[TM]3+Cl6, where Alk represents group
1 alkali atoms and TM denotes a transition-metal cation, forms a category of Cs2BB′Cl6
double perovskites characterized by large and tunable exciton binding energies.
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Another representative work utilizing computational methods involved analyzing the
electronic structures of double perovskites. By incorporating Na cations into Cs2AgInCl6,
researchers were able to disrupt the inversion-symmetry-induced parity-forbidden transi-
tion, also known as the dark transition. This was achieved by manipulating the parity of
the wavefunction of the self-trapped excitons and decreasing the electronic dimensionality,
resulting in a three-order-of-magnitude increase in photoluminescence efficiency compared
to pristine samples [25,68]. Computational results showed that the incorporation of Na
disrupts the inversion symmetry of the Cs2AgInCl6 lattice, altering the electron wavefunc-
tion at the Ag site from symmetric to asymmetric (Figure 5a). This change in parity in
the self-trapped excitons’ wavefunction enables radiative recombination. Additionally,
since Na+ does not contribute to either the conduction-band minimum or the valence-band
maximum, its incorporation decreases the electronic dimensionality of the Cs2AgInCl6
lattice by partially isolating the [AgCl6]5− octahedra [36]. Consequently, the [NaCl6]5−

octahedra in the alloyed compounds act as barriers, restricting the spatial distribution of
the self-trapped excitons, enhancing the overlap between electron and hole orbitals, and
increasing the transition dipole moment (Figure 5b). As a result, the optimally composed
Bi-doped Cs2(Ag0.60Na0.40)InCl6 emits warm-white light with a quantum efficiency of 86%
and operates continuously for over 1000 h (Figure 5c) [68].

A very recent study looked at a novel type of double perovskite Cs2(PbIPbIII)0.25
(B1

IB2
III)0.75X6 (X = Cl, Br, I), in which the same metal element with different oxidation

states partially replaced the central metal atoms in the octahedral sites, significantly affect-
ing the electronic structure of the original perovskite matrix [27]. We refer to this doping
strategy as a form of disproportionate doping. Before Pb doping, pristine Cs2AgBiCl6
shows an indirect bandgap [69–71]. However, Pb substitution alters the topology of the
band structure, inducing an indirect-to-direct transition that is optically allowed (Figure 5d).
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It also significantly reduces the bandgap, leading to absorption in visible wavelengths.
Additional calculations on the optical absorption spectra of these disproportionated com-
pounds reveal absorption coefficients and solar efficiencies that are comparable to or even
higher than those of the state-of-the-art photovoltaic absorber material, CH3NH3PbI3 [72].
To gain a deeper understanding of the bandgap structure, a qualitative molecular orbital
diagram for Cs2(PbIPbIII)0.25(B1

IB2
III)0.75X6 was drawn, along with the orbital-projected

density of states. The results show that spin–orbit coupling plays a pivotal role in shaping
the electronic structures of these systems. The incorporation of spin–orbit coupling induces
a splitting of the Bi and Pb p orbitals, leading to a reduction in the conduction band pri-
marily at the Γ and X points, which is the main cause of the transition from an indirect
to a direct bandgap (Figure 5e). Additionally, transitioning the halide from Cl to Br and
then to I elevates the valence-band maximum due to the increase in atomic p-orbital energy
associated with decreasing electronegativity [73]. The valence bandwidth diminishes as
the energy disparity between B-d and X-p orbitals narrows. The enhanced delocalization
of p orbitals as the halide shifts from Cl to I expands the bottom of the conduction band,
resulting in a reduced bandgap from chlorides to iodides [74,75].
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To verify the simulation results, the experimental characterization of Cs2(PbIPbIII)0.25
(AgBi)0.75Br6 was conducted. The measured properties, including bandgap and chemical
stability, align closely with theoretical predictions. For instance, the absorption spectra
exhibited a sharp onset at approximately 550 nm for Cs2AgBiBr6, while a redshift of 30 nm
was noted for Cs2(PbIPbIII)0.25(AgBi)0.75Br6. From the Tauc plot results, direct bandgaps
of 2.31 eV and 2.13 eV were determined, respectively (Figure 5f). Their respective indirect
bandgaps were measured at 2.21 eV and 2.10 eV. The Pb2+ substitution resulted in a
reduction in the bandgap for both parent compounds. Notably, although the indirect
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bandgaps for the parent compounds are significantly lower than their respective direct
bandgaps, the direct and indirect bandgaps of the Pb-doped compound are nearly identical.
This observation corroborates the theoretical findings, suggesting a transition from an
indirect to a direct bandgap. It is worth mentioning that Cs2(PbIPbIII)0.25(AgBi)0.75Br6
has demonstrated superior stability compared to CH3NH3PbI3, even under conditions of
elevated humidity and temperature [76]. Consequently, disproportionate double perovskite
materials have the potential to surpass state-of-the-art materials and emerge as more
promising candidates.

3.3. Perovskite-Related Materials: A3B2X9

Halide perovskites are renowned for their appeal in radiation detection due to their
excellent intrinsic properties. These materials possess a large average atomic number, a
high carrier mobility–charge carrier lifetime product, and high resistivity, making them
ideal for high-sensitivity X-ray detection [77–79]. In addition, halide perovskites possess
larger average atomic number, i.e., proton number (Z), making them promising as X-
ray blocking materials. Sensitive X-ray detection is crucial in various applications, such
as therapeutic and diagnostic healthcare, industrial inspection, security screening, and
scientific research [80–82]. There are two general approaches for X-ray detection: indirect
conversion using scintillators and direct conversion of X-ray photons into electronic signals.
The latter approach is more advantageous due to its higher spatial resolution and simpler
system configuration. Utilizing reduced X-ray dose rates is often desirable, especially for
applications related to human and environmental security, emphasizing the need for highly
sensitive X-ray detectors.

Recently, perovskite-related materials A3B2X9 (A = monovalent constituents, B = triva-
lent metals, X = halogen anions) have attracted considerable attention for high-energy radia-
tion detection due to their high-density and wide-bandgap semiconducting features [83–87].
A3B2X9 compounds usually possess hexagonal zero-dimensional spatial configurations
(Figure 6a). In detail, [B2X9]3− dimers are formed by the face-sharing of [BX6]3− octahedra,
with A-site atoms spatially separating them to construct the zero-dimensional structure.

Considering the multitude of potential components in A3B2X9, high-throughput
screening has been performed to screen for promising perovskite materials that could
be potentially synthesized. In a recent study, researchers generated lattice structures by
populating lattice positions with anions and cations selected from a list of permissible
species [4]. They also generated a range of potential precursors from which a given material
could potentially decompose to estimate the material’s stability. The electronic energies of
both the material and the precursors were calculated to determine the formation energy
of the material relative to its precursors. As a result, some components more likely to
be synthesized under mild conditions were identified and later verified in experimental
reports [88–92].

Furthermore, the application of machine learning techniques to aid in the discov-
ery of novel A3B2X9 perovskites has been documented [16]. By increasing experimental
throughput, researchers successfully synthesized and characterized 75 new halide per-
ovskite compositions, comprising 17 compounds and 58 alloy compositions, with 4 com-
pounds being reported for the first time. More intriguingly, the dual-site alloy series
Cs3(SbxBi1−x)2(BrxI1−x) was introduced, showcasing a transition from zero-dimensional to
two-dimensional structures and non-linear bandgap tunability. The discovery of non-linear
bandgap behavior in this series paves the way for the development of halide perovskites
for multijunction solar cells.

In practical implementation, researchers initially acquire a database rapidly through
high-throughput synthesis, encompassing various experimental properties from samples
with varying compositions, which serves as the testing dataset. In the meantime, simulated
X-ray diffraction (XRD) patterns are utilized as the training dataset within the identical neu-
ral network architecture and hyperparameters. Data augmentation significantly improves
classification accuracy, surpassing a baseline below 60% achieved with non-augmented data.
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However, relying exclusively on simulated XRD patterns for training captures nuanced
differences among experimental XRD patterns, encompassing systematic errors in sample
alignment and random human errors in synthesis. To accurately represent these experi-
mental intricacies, collected powder XRD patterns of unique compositions are segregated
into two experimental datasets. Group 1 includes manually identified perovskites with
space group and dimensionality labels, while Group 2 comprises materials lacking detailed
structure information (Figure 6b). To further refine accuracy, the final training dataset
integrates simulated data with a randomly selected 80% subset of Group 1 experimental
patterns. Through cross-validation, a blindfold model achieves 90% accuracy for Group
1 materials, highlighting substantial improvements in model accuracy and robustness by
incorporating experimental data into the training set.
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Through the utilization of machine learning, not only can the composition of materials
be predicted, but so can the evolution of properties exhibited by the materials as the
composition varies continuously. In this study, it is observed that the band gap undergoes
a non-continuous transition in the alloy series Cs3(Bi1−xSbx)2(I1−xBrx)9. Specifically, the
alloy exhibits a band gap lower than either of its zero-dimensional or two-dimensional end
phases. Machine learning diagnostics highlight that starting from around a 20% dopant
level of Cs3Sb2Br9, the alloy begins to manifest characteristics typical of a two-dimensional
(2D) perovskite crystal structure. Remarkably, alongside the structural transformation,
there is a non-linear relationship observed in the optical properties, marking a novel
phenomenon in lead-free perovskite-inspired materials (Figure 6c).

The aforementioned optical properties have been confirmed in subsequent
reports [83,84,95–98]. For instance, Cs3Bi2X9 (X = Cl, Br, I) nanocrystals are synthesized
through a straightforward room-temperature reaction, resulting in emission wavelengths
spanning from 400 to 560 nm, corresponding to a band gap ranging from 2.2 eV to
3.1 eV, which aligns well with the calculated results (Figure 6d) [94]. In another study, a
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nucleation-controlled solution method for growing large, high-quality Cs3Bi2I9 perovskite
single crystals is reported, and researchers successfully harvest centimeter-sized single
crystals possessing pre-eminent X-ray detection performance with a high sensitivity of
1652 µC Gyair−1 cm−2 and exceptionally low detectable dose rate of 130 nGyair s−1, both
of which are highly desirable for medical diagnostics [93]. These examples demonstrate
that combining an accelerated experimental cycle with machine learning-based diagnostics
represents a significant step towards achieving fully automated laboratories for material
discovery and development.

Inspired by the aforementioned computational methods applied to perovskite-related
materials such as A3B2X9, numerous studies have emerged in recent years. For instance,
a Cs3Bi2I9 single-crystalline thin film was seamlessly integrated onto various substrates,
including Si wafers, using a straightforward and low-temperature solution-processing
technique [85]. The excellent lattice match and band alignment between Si(111) and
Cs3Bi2I9(001) facets facilitate photo-generated charge dissociation and extraction, signifi-
cantly enhancing photoelectric sensitivity by 10 to 200 times compared to photodetectors
based on other substrates. In another research, through an environmentally friendly and
straightforward process utilizing ethanol as the anti-solvent, the synthesized Cs3Bi2Br9
quantum dots exhibit blue emission at 410 nm with a PLQY of up to 19.4% [84]. Fur-
thermore, Cs3Bi2Br9 quantum dots demonstrate exceptional photo-stability and moisture
stability owing to their all-inorganic composition and surface passivation.

3.4. Novel Halide Perovskites: ABX6

ABX6 compounds have a structure where A is a monovalent atom, B is a pentavalent
cation, and X is a halogen. ABX6 compounds typically adopt a double-perovskite structure,
where two BX6 octahedra are connected through shared vertices. The A-site cations are
in the gaps between the octahedra [99]. These compounds often have high symmetry,
contributing to their excellent crystalline and electronic properties. Based on Goldschmidt’s
tolerance factor and octahedral index, the stability of ABX6 depends on having appropriate
ionic radii to maintain the lattice integrity.

The crystalline structures of ABX6, when viewed from the [010] and [101] directions,
exhibit distinct characteristics compared to other zero-dimensional perovskite compounds
(Figure 7a). When observed from the [010] direction, the octahedra [BX6]− and cations are
arranged into two distinct rows, alternating in sequence. Conversely, when viewed from
the [101] direction, these components form layers composed of rows of octahedra [BX6]−

and cations, which stack together to create lamellar structures. Moreover, to evaluate
the stability of the novel zero-dimensional materials against decomposition, researchers
calculate the formation energy associated with commonly utilized synthetic routes for
producing ABX6. It is evident that most chlorides are predicted to be thermodynamically
stable, and the perovskites composed of V and Sb exhibit higher stability compared to their
Bi-based counterparts. Subsequently, the electronic properties of these compounds are
calculated, including bandgaps (Figure 7b). Our results show that chloride compounds
generally exhibit wider bandgaps compared to bromides. Among them, Sb-chlorides
have the widest bandgaps, while Sb-bromides possess wider bandgaps than V-bromides.
Bi-chlorides have bandgaps like those of Sb-based bromides. It is worth noting that the
size of the cation A+ can significantly influence the bandgaps of the compounds, e.g., the
bandgap value is 0.35 eV higher for CsSbBr6 than N-EtPySbBr6, as calculated using hybrid
DFT functional.
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To validate predictions regarding the structures and properties of ABX6 perovskites,
extensive experimental efforts are focused on synthesizing such materials [102–106]. Ex-
emplified by (PEA)SbCl6 (PEA = phenylethylammonium), results indicate that B-site
metals not only exist in pentavalence but also ease the transfer to trivalence to form
(PEA)4SbIIISbVCl12 compounds [101]. The geometries observed in SEM images vary signif-
icantly, as (PEA)SbCl6 exhibits a sheet-like shape, whereas (PEA)4SbIIISbVCl12 crystallizes
into a rod-like structure (Figure 7c). The Kubelka–Munk-transformed diffuse reflectance
spectra of (PEA)SbCl6 and (PEA)4SbIIISbVCl12 are provided to facilitate a comparison of
their optical properties. Overall, there is a moderate level of agreement between the experi-
mentally obtained optical bandgaps and the electronically calculated electronic bandgaps.
However, it is important to note that the optical properties of the two compounds ex-
hibit significant differences in detail (Figure 7d). The yellow hue of (PEA)SbCl6 indicates
absorption primarily in the blue spectrum, with significant absorption extending into
the near-ultraviolet range. Conversely, the spectrum for the dark red, mixed-valence
(PEA)4SbIIISbVCl12 exhibits similarities in the ultraviolet range, and it also demonstrates
weaker, more uniform absorption across the blue, green, and yellow wavelengths, gradu-
ally tapering off towards the near-infrared wavelength. This lower energy absorption is
likely attributed to intervalence charge transfer between SbIII and SbV, supported by its
resemblance to the low energy feature observed in Cs2SbCl6 [107].

In next step, the investigation of ABX6 perovskites needs to be focused on further
discovering new properties experimentally, as predicted by computation methods. For
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instance, zero-dimensional perovskites based on the Group VA elements Sb and Bi exhibit
characteristics akin to molecular crystals, including a comparable absorption spectrum to
those of sunlight and carrier mobilities suitable for photovoltaic applications [100]. These
unique properties arise from the strong hybridization between the s orbital of the Group
VA element and the p orbital of the halide in ASbBr6 and ABiCl6, with significant overlap
of these hybrid states among neighboring octahedra.

4. Conclusions and Perspectives

In summary, this review underscores the significant advancements and future po-
tential of halide perovskite materials, especially in the context of computational methods
accelerating their discovery and optimization. Computational methods are essential for
gaining insights into material properties, enabling accelerated material discovery through
high-throughput screening and ML techniques. The ongoing challenges, such as achieving
long-term stability and addressing lead toxicity, are being actively tackled through the
development of novel perovskite compositions and structures with the help of computa-
tional methods.

In addition to the four halide perovskite materials discussed in this review, com-
putational methods have played an important role in studying other sub-categories of
perovskites, such as novel antiperovskites and chalcogenide perovskites. For example,
through ion-type inversion and anion ordering on perovskite lattice sites, two novel classes
of pnictogen-based quaternary antiperovskites have been devised [5]. More importantly,
their phase stability levels and adjustable band gaps were then comprehensively predicted
through first-principle calculations in order to further screen these materials as photo-
voltaic candidates. Moreover, computational methods have been applied to predict the
ferroelectric properties in molecular ferroelectrics, and many other intriguing electrical
properties have been investigated as well [108]. Furthermore, chalcogenide perovskites, as
state-of-the-art perovskite materials, have been exploited with the assistance of computa-
tional methods [109]. Overall, the integration of advanced computational methods with
experimental efforts is paving the way for the next generation of high-performance halide
perovskite materials.
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