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Abstract: The last decade has seen dramatic progress in research on FETs with 2D channels. Starting
from the single devices fabricated using exfoliated flakes in the early 2010s, by the early 2020s,
2D FETs being trialed for mass production and vertical stacking of 2D channels made by leading
semiconductor companies. However, the industry is focused solely on transition metal dichalcogenide
(TMD) channels coupled with conventional 3D oxide insulators such as Al2O3 and HfO2. This has
resulted in numerous challenges, such as poor-quality interfaces and reliability limitations due to
oxide traps. At the same time, the alternative routes for 2D FETs offered by laboratory (LAB) research
have not been appreciated until now, even though the use of the native oxides of 2D channels has
recently resulted in the first 2D FinFETs. Considering the research progress achieved in the last
decade, from this perspective, we will discuss the main challenges for industry integration of 2D
FETs and also suggest possible future steps which could propel these emerging technologies towards
market applications.
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1. Introduction

The scaling of Si technologies driven by Moore’s law has resulted in enormous progress
towards making our electronics cheap and efficient in the last decades [1]. However,
modern integrated circuits have recently approached their scaling limits. For instance,
the typical channel lengths for the sub-2 nm nodes which are expected to come into play in
the next few years will be below 12 nm [2], and further scaling would result in degraded
performance due to short-channel effects. Although these limitations could be addressed
by making Si channels as thin as a few nanometers, this appears to be impractical due to
dramatically reduced carrier mobility [3]. Thus, naturally thin 2D semiconductors present
the most feasible option for continuing the scaling of modern electronics and extending
the life of Moore’s law [4,5]. Luckily, considerable progress in LAB research on FETs
with 2D channels has been achieved exactly at the time when it is urgently needed, with
recent demonstrations of large-area growth of TMD channels by chemical vapor deposition
(CVD) [6,7] for trial circuits [8] and the discovery of alternative gate insulators such as
CaF2 [9], STO [10] and native oxides of 2D channels [11,12].

Following the initial demonstration of the field effect in graphene [13], research atten-
tion has switched to real 2D semiconductors, with TMD channels being the most obvious
choice for enabling logic FETs due to their sizable bandgaps [14] and the wide availability
of controllable large-area CVD growth methods [15]. In contrast, zero-bandgap graphene
is mostly interesting for other applications such as optoelectronics and sensors. MXenes
lack large-area growth techniques and do not enable FET performance comparable to TMD
devices, though they are still attractive as sensors [16]. In Figure 1, we summarize the
three main paths and key milestones of the LAB research performed in the last decade.
Starting from the first proof-of-concept studies of the early 2010s [17], the combination of
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an MoS2 [8,18,19] or another TMD [20,21] channel and a 3D oxide like SiO2 [22], Al2O3 [19]
or HfO2 [23] has become common for almost any 2D FET fabricated in research labs. As a re-
sult, this TMD/3D path has progressed all the way from single prototype devices made
of exfoliated flakes to trial circuit integration [7,8]. This has become possible due to the
breakthrough progress achieved in the second half of the 2010s, first in the growth of
large-area TMD films by CVD [6,15], and then also in the deposition of high-k oxides onto
the TMD channels by atomic layer deposition (ALD) [7]. Remarkably, many LAB TMD/3D
FETs exhibit very promising performance with near-ideal subthreshold swing [23] and
on/off current ratios up to 1010 [24] and thus seem suitable for commercial applications at
first glance [5].

TMD/3D path
Single FETs with exfoliated 2D flakes

Scalable fabrication of back-gated FETs via CVD

First microprocessors made of back-gated FETs

Scalable top-gated FETs & trial circuits

B. Radisavljevic et al, Nature Nanotechnology 2011

K.K.H. Smithe et al, ACS Nano 2017
Yu.Yu. Illarionov et al, DRC 2018

S. Wachter et al, Nature Communiations 2017

H. Xu et al, Small 2018

Single FETs based on exfoliated hBN/TMD/hBN flakes

G.-H. Lee et al, ACS Nano 2015

X. Zou et al, Nanotechnology 2019

MnAl S2 4MnAl S2 4

MoS2

F. Xu et al, ACS Appl.
Mater & Int. 2022
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T. Li et al, Nature Electronics 2020
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C. Tan et al, Nature 2023
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J.-K. Huang et al, Nature 2022
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Y. Zhang et al, Nature Electronics 2022
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Figure 1. Key milestones of the three major paths of logic 2D FET technologies achieved in LAB
research. While TMD/3D devices are already under trial industry processing, TMD/vdW FETs
require more research, in particular in top gate integration. The devices with native oxides have re-
cently reached the point of breakthrough towards FinFETs based on the Bi2O2Se/Bi2SeO5 system and
thus urgently need industry attention to assess their future potential. Reproduced with permissions
from [6–12,17,25–27].

Despite the enormous progress in TMD/3D FETs, already at the very beginning it
was known that 2D insulators may be more suitable than widely available 3D oxides as
they form van der Waals (vdW) interfaces with TMD channels [18,28]. This has shaped
the second TMD/vdW path for 2D FET technologies. Here, major attention has been paid
to hBN, which has finally appeared as not suitable for scaling due to mediocre dielectric
properties [29] even though considerable progress in CVD growth of hBN [30,31] has been
achieved as compared to the initially used hBN/TMD/hBN flakes [25]. Although the com-
munity has started to look into beyond-hBN 2D insulators, the first device demonstrations
with mica [26] and MnAl2S4 [32] were still limited to exfoliated flakes. Thus, this path has
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reached the scalable production of MoS2 FETs with ionic CaF2 crystals which form quasi
vdW interfaces with 2D channels [9,33,34]. While FETs with just 2 nm thick CaF2 films have
demonstrated promising performance, these were only back-gated devices with a chan-
nel length down to 50 nm [34]. The same problem also applies to FETs with ultra-high-k
(permittivity around 300) SrTiO3 (STO) insulators, even though, in that case, local back
gates are created, and the developed transfer method for STO may hypothetically allow
top gate integration [10]. As a result, more research on the scalable growth of beyond-hBN
vdW insulators or deposition of fluorides on top of TMDs is still required to continue the
TMD/vdW path and make a clear conclusion about its future potential.

Given the obvious problems of the TMD/3D and TMD/vdW paths, most recently, the
research community has started to look back into the native oxide approach, which is the
key foundation of Si technologies owing to its perfect Si/SiO2 interface. However, initially
obtained native oxides of TMDs such as MoO3 [35] and WO3 [36] suffered from poor
dielectric stability owing to their non-stoichiometric structure; thus, they were not suitable
for device applications despite a number of available oxidation strategies for TMDs [37].
Luckily, a much better result was obtained using a more exotic 2D semiconductor, Bi2O2Se,
which can be controllably oxidized into its native oxide Bi2SeO5 while keeping an atomically
flat vdW interface and high crystallinity [11]. This approach has resulted in excellent top-
gated FETs with low gate leakage currents even for sub-0.5 nm equivalent oxide thickness
(EOT) [27]. Furthermore, most recently, even the first 2D FinFETs assembled into arrays [12]
have been fabricated using the Bi2O2Se/Bi2SeO5 system obtained by oxidizing wafer-scale
arrays of epitaxially grown vertical Bi2O2Se fins. This makes the native oxide path of 2D
FETs very attractive for the industry.

Appreciating the above advances made by our research society, the industry started
to look into the FAB integration of 2D FETs back in 2017, when imec reported the
first WS2 films grown by CVD and ALD on 300 mm wafers [38]. Up to now, imec, Intel
and TSMC have shaped their own paths for 2D FETs, as shown in Figure 2. Remarkably,
they all rely solely on the TMD/3D strategy since the widely available high-k oxides are
more suitable for the process lines developed for Si technologies. These leading com-
panies have already addressed the most obvious initial issues of LAB-to-FAB transition,
which are the controllable growth of large-area 2D films and the need to match the CMOS
thermal budget of 450 °C [39]. For instance, imec uses their mature dry transfer method
for large TMD films grown by metal-organic CVD (MOCVD) on sacrificial substrates
at up to 1000 °C [40,41]; Intel employs MOCVD on target substrates, with high quality
of at least four TMDs achieved by proper selection of metal-organic precursors even at
300–400 °C [42]; and TSMC has several options including metal-assisted CVD [43] and
transfer methods [44]. Also, the three leaders have demonstrated scalable fabrication of
top-gated TMD/3D FETs down to nanoscale dimensions via ALD growth of high-k ox-
ides on TMD channels [41,43,45], and TSMC has recently made a breakthrough towards
a gate all around (GAA) MoS2 FETs for multi-channel stacking [44]. In recent studies
by Intel [42] and TSMC [46], the contact resistance was reduced below 1 kΩ by using Sb,
Ru or composite Sb/Pt contacts. However, a more extensive look into the techniques for
making clean contacts known from LAB research [47] may be still required. While contact
metals and seed layers used for ALD growth of high-k oxides offer excellent opportunities
for obtaining n- and p-FETs using the same TMD channel [46,48], Intel and TSMC have
approached trial complementary integration of their devices. Furthermore, imec, which
has not yet reported top-gated p-FETs, still demonstrated ring oscillators made of WS2
n-FETs [49], which may open a way to pseudo CMOS integration of 2D FETs in future. It is
also important that all the manufacturers have demonstrated FETs with channel lengths
scaled down to tens of nanometers, and TSMC has invested specific efforts into the scaling
of the top gate insulator down to an EOT of about 1 nm [50]. However, it is still important
to reproduce excellent performance parameters such as the subthreshold swing (SS) and
mobility achieved in LAB devices (summarized in [29,51]) when moving to FAB devices,
including new designs like GAA FETs. While this is expected to be possible via further
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optimization of FAB processes, the major fundamental issue which is still not addressed by
the industry is the reliability of TMD/3D FETs. For instance, the first imec devices are far
below Si standards [52], Intel has provided only fragmentary data [45] and no studies are
available for TSMC devices.

Figure 2. Key milestones of the recent efforts at integrating TMD/3D FETs achieved by imec,
Intel and TSMC in the last few years. The table in the bottom shows that all three companies have
addressed the initial issues and approached the stage of trial circuit integration, even though imec
has not demonstrated mature p-FETs so far. However, reliability of available prototypes of FAB
TMD/3D FETs is either far below Si standards or not well understood. Reproduced with permissions
from [38,41–44,46,48–50].

Based on the present stage of research on 2D FETs and already achieved progress
in their LAB-to-FAB transition, in Figure 3, we schematically illustrate possible future
trends in the development of these new technologies. Considering the fast initial success
of the TMD/3D strategy was based on decades-long experience with Si technologies, we
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are confident that this path selected by the industry will continue playing the key role
in the foreseeable future. Thus, in the coming years, the semiconductor industry will
continue using a top-gated TMD/3D FET as the core element in their studies. They will
further extend the range of TMD channels suitable for large-area growth at reasonable
temperatures and develop their custom high-k oxides and seed layers for ALD growth
while keeping their composition a secret, e.g., TSMC’s ILX [50]. At the same time, apart
from achieving high quality for the dielectric stacks, the goal will consist of scaling its EOT
below 1 nm. Also, more options to vary the channel conductivity type by changing the
chemical content of contacts and seed layers will be suggested by extending the range of
available materials. This will pave the way towards more attempts at circuit integration
of FAB 2D FETs, possibly including those made using vertical stacking and GAA device
layouts [44].

However, with all the obvious advantages of the TMD/3D strategy selected by the
industry, high-k oxides, known from Si technologies, are not naturally made for 2D ma-
terials. Although the industry has already mastered their ALD growth on top of various
TMD channels with a quality good enough to separate the top gate from the channel,
these oxides are still amorphous when grown in thin layers. As a result, both the high-k
oxides and nm thick oxidized seed layers used for their nucleation on inert 2D surfaces
should contain a sizable number of border traps [53]. By exchanging charges with the
channel, these defects can cause hysteresis and bias temperature instabilities (BTI) of the
gate transfer characteristics, thereby severely degrading the device reliability [51,54]. Thus,
given our extensive experience with various LAB 2D FETs [9,24,54] and the first imec FAB
prototypes of MoS2 FETs [52], we are confident that the progress of TMD/3D devices to
mass production will include comprehensive reliability analysis. Considering that charge
trapping is thermally activated [54], which results in a dramatic increase in BTI drifts at
high temperatures, reliability tests will have to be performed at different temperatures in
order to determine the safe operation conditions of 2D FETs. As schematically shown in
Figure 3, the most feasible way to enhance the reliability of TMD/3D FETs should be based
on band diagram engineering [51,55]. Therefore, we expect that the industry will finally use
only those TMD/3D oxide combinations in which fundamental oxide defect bands [56] are
energetically far from the conduction and valence bands of the channels, thereby increasing
the energy barriers for charge trapping in both n- and p-FETs. Interestingly, long ago,
a similar approach was tested by imec when using SiGe to suppress charge trapping in
Si FETs [57]. Considering our recent results on the nanoscale imec MoS2 FETs showing
counterclockwise hysteresis and abnormal BTI dynamics due to process-induced defects in
scaled top gate stacks [52], we expect that, at the next stage, considerable attention will be
paid to the further improvement of the processing techniques.

Still, despite our moderately optimistic view on the future of TMD/3D FETs, we
expect that the most recent breakthrough towards Bi2O2Se/Bi2SeO5 FinFETs [12] will
encourage the industry to make considerable investments in the native oxide strategy,
including oxidation of TMDs [35,36]. This is not to exclude the possibility that, given the
relative simplicity of the oxidation process and some similarity to the Si/SiO2 technology,
in the coming years, this approach will be reproduced using FAB process lines. As for the
TMD/vdW path, from today’s point of view, it should be highly demanded for More than
Moore applications such as sensors [58] or photodetectors [59], which do not necessarily
require top gates. However, given the recent progress in the epitaxial growth of crystalline
CaF2 on silicene [60], we would not exclude the possibility that, sooner or later, competitive
top-gated FETs will be also created using TMDs or even other 2D channels. It is also worth
noting that the extensive findings on low-resistance contacts and vertical stacking gained
for the TMD/3D FETs could be transferred to the two alternative paths if, in future, they
reach the FAB integration stage. As for the reliability issues, owing to the crystalline nature
of insulators, this problem is expected to be less sound for future TMD/vdW and native
oxide FETs.
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Figure 3. Schematic representation of possible future development of 2D FET technologies. TMD/3D
path has already entered FAB lines and gained an extensive choice of materials for channels, insulators
and contacts. However, comprehensive reliability analysis is still required, which should include
analysis of the optimum choice of channel/oxide combinations to suppress the impact of oxide defect
bands and also address the issues related to process-induced defects in FETs with nanoscale top gates.
At the same time, native oxide and TMD/vdW FETs still require more research attention and a long
LAB-to-FAB transition even though they may have some advantage over the TMD/3D devices in
terms of their reliability.

We also note that most of the challenges with the FAB integration of TMD FETs
discussed above are also relevant to graphene devices. Although graphene cannot be
used for logic FETs due to its zero bandgap, this material is attractive for optoelectronics,
sensors and radio-frequency applications, which can be integrated in the same circuits
and thus should be technologically compatible with FETs. Furthermore, graphene devices
also contain channel/insulator interfaces and thus suffer from the same reliability issues
which can be hopefully addressed by using crystalline insulators like CaF2 [61], or band
diagram engineering if conventional 3D oxides are used [55]. Thus, graphene/3D and
graphene/vdW paths could be developed similarly to TMD/3D and TMD/vdW paths,
considering specific features of the large-area growth of graphene and relaxed requirements
for insulator scaling for non-logic devices. Furthermore, the use of MXenes [16] in electronic
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devices would also require addressing most of the challenges discussed above if these
materials approach FAB integration at a certain point.

In summary, we suppose that, sooner or later, the industry will find a way to ad-
dress the existing reliability challenges of TMD/3D FETs and select suitable material
combinations for mass production. This, however, does not exclude the possible parallel
development of the two other strategies employing the native oxides of 2D channels and
vdW insulators, which could benefit from the recent achievements made for TMD/3D
devices. Furthermore, an avalanche breakthrough in the LAB-to-FAB integration of these
alternative 2D FET technologies may be possible if leading semiconductor companies start
investing in them as much as they have been doing for devices with conventional 3D oxides
in the last few years.

Funding: The authors acknowledge the financial support given through the start-up fund of the
Southern University of Science and Technology (SUSTech) and also Shenzhen Science and Technol-
ogy Program (20231115150611001) and Guangdong Basic and Applied Basic Research Foundation
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