Nanoplastic Contamination in Freshwater Biofilms Using Gel Permeation Chromatography and Plasmonic Nanogold Sensor Approaches
Abstract
:1. Introduction
2. Methods
2.1. Detection of NP in Biofilms
2.2. Biofilm Analysis
2.3. Data Analysis
3. Results
3.1. Nanoplastic Levels
3.2. Biofilm Caracterization
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dodson, G.Z.; Shotorban, A.K.; Hatcher, P.G.; Waggoner, D.C.; Ghosal, S.; Noffke, N. Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina. Mar. Pollut. Bull. 2020, 151, 110869. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Wu, C.; Elser, J.J.; Mei, Z.; Hao, Y. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River-From inland to the sea. Sci. Total Environ. 2019, 659, 66–73. [Google Scholar] [CrossRef] [PubMed]
- and antibiotic resistant genes by microplastics in urban rivers. Water Res. 2020, 183, 116113. [CrossRef]
- Wang, L.; Luo, Z.; Zhen, Z.; Yan, Y.; Yan, C.; Ma, X.; Sun, L.; Wang, M.; Zhou, X.; Hu, A. Bacterial community colonization on tire microplastics in typical urban water environments and associated impacting factors. Environ. Poll. 2020, 265, 114922. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-F.; Ding, J.-N.; Zhang, Y.; Li, Y.-F.; Zhu, R.; Yuan, X.-Z.; Zou, H. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci. Total Environ. 2018, 625, 64–70. [Google Scholar] [CrossRef]
- Seviour, T.; Derlon, N.; Dueholm, M.S.; Flemming, H.C.; Girbal-Neuhauser, E.; Horn, H.; Kjelleberg, S.; van Loosdrecht, M.C.M.; Lotti, T.; Malpei, M.F.; et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Res. 2019, 151, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [PubMed]
- Gagné, F. Toxicity and disruption of quorum sensing in Aliivibrio fisheri by environmental chemicals: Impacts of selected contaminants and microplastics. J. Xenobiot. 2017, 7, 7101–7106. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Huang, Y.; Liu, L.; Wang, L.; Tang, J. Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. J. Hazard. Mater. 2023, 459, 132099. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, Y.; Huang, F.; Su, Y.; Zhou, X.; Wang, J.; Gao, S.-H. Distinct responses of Pseudomonas aeruginosa PAO1 exposed to different levels of polystyrene nanoplastics. Sci. Total Environ. 2022, 852, 158214. [Google Scholar] [CrossRef]
- Shruti, V.C.; Kutralam-Muniasamy, G.; Perez-Guevara, F. Do microbial decomposers find micro- and nanoplastics to be harmful stressors in the aquatic environment? A systematic review of in vitro toxicological research. Sci. Total Environ. 2023, 903, 166561. [Google Scholar] [CrossRef] [PubMed]
- Gagné, F. Isolation and quantification of polystyrene nanoplastics in tissues by low pressure size exclusion chromatography. J. Xenobiot. 2022, 12, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Gagné, F. Detection of polystyrene nanoplastics in biological tissues with a fluorescent molecular rotor probe. J. Xenobiot. 2019, 9, 8147–8149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Cai, W.; Li, J.; Wu, D. Visual monitoring of polystyrene nanoplastics < 100 nm in drinking water based on functionalized gold nanoparticles. Sens. Actuators B Chem. 2023, 392, 134099. [Google Scholar]
- Greenspan, P.; Mayer, E.P.; Fowler, S.D. “Nile Red” A Selective Fluorescent Stain for Intracellular Lipid Droplets. J. Biol. Chem. 1985, 100, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.A. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, S.; Mao, X.; Zhao, X.; Wei, D. An Easy and Efficient Fluorescent Method for Detecting Aldehydes and Its Application in Biotransformation. J. Fluoresc. 2011, 21, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, S.-W.; Jung, E.-M.; Lee, E.-H. Biosorption of sub-micron-sized polystyrene microplastics using bacterial biofilms. J. Hazard. Mater. 2023, 458, 131858. [Google Scholar] [CrossRef]
- Miao, L.; Hou, J.; You, G.; Liu, Z.; Liu, S.; Li, T.; Mo, Y.; Guo, S.; Qu, H. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environ. Pollut. 2019, 255, 113300. [Google Scholar] [CrossRef]
- Miao, L.; Guo, S.; Wu, J.; Adyel, T.M.; Liu, Z.; Liu, S.; Hou, J. Polystyrene nanoplastics change the functional traits of biofilm communities in freshwater environment revealed by GeoChip 5.0. J. Hazard. Mater. 2022, 423, 127117. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, Y.J.; Lee, S.-W.; Lee, E.-H. Interactions between bacteria and nano (micro)-sized polystyrene particles by bacterial responses and microscopy. Chemosphere 2022, 306, 135584. [Google Scholar] [CrossRef]
- González-Fernández, C.; Toullec, J.; Lambert, C.; Le Goïc, N.; Seoane, M.; Moriceau, B.; Huvet, A.; Berchel, M.; Vincent, D.; Courcot, L.; et al. Do transparent exopolymeric particles (TEP) affect the toxicity of nanoplastics on Chaetoceros neogracile? Environ. Pollut. 2019, 250, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Jachimowicz, P.; Jo, Y.-J.; Cydzik-Kwiatkowska, A. Polyethylene microplastics increase extracellular polymeric substances production in aerobic granular sludge. Sci. Total Environ. 2022, 851, 158208. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Wang, J. Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts. Water Res. 2021, 201, 117319. [Google Scholar] [CrossRef] [PubMed]
- Douville, M.; Gagné, F.; Zhu, B.; Fortier, M.; Fournier, M. Characterization of Commercial Microbial Products by Polymorphic DNA Markers and Enzymatic Activity Diversity: Occurrence and Potential Effects on Freshwater Mussels exposed to Municipal Effluents. Res. J. Biotechnol. 2010, 5, 31–48. [Google Scholar]
- Sørensen, L.; Gomes, T.; Igartua, A.; Lyngstad, I.L.; Almeida, A.C.; Wagner, M.; Booth, A.M. Organic chemicals associated with rubber are more toxic to marine algae and bacteria than those of thermoplastics. J. Hazard. Mater. 2023, 458, 131810. [Google Scholar] [CrossRef] [PubMed]
- Roubeau Dumont, E.; Gao, X.; Zheng, J.; Macairan, J.; Hernandez, L.M.; Baesu, A.; Bayen, S.; Robinson, S.A.; Ghoshal, S.; Tufenkji, N. Unraveling the toxicity of tire wear contamination in three freshwater species: From chemical mixture to nanoparticles. J. Hazard. Mater. 2023, 453, 131402. [Google Scholar] [CrossRef]
- von Mikecz, A.; Schikowski, T. Effects of Airborne Nanoparticles on the Nervous System: Amyloid Protein Aggregation, Neurodegeneration and Neurodegenerative Diseases. Nanomaterials 2020, 10, 1349. [Google Scholar] [CrossRef]
Sites | Category | Location | Characteristics |
---|---|---|---|
Le Renne | Plastics | 45.653801, −72.595262 | This site is downstream from 3 industries involved in plastics and rubber and 2 from textiles and 1.9 km downstream of a municipal effluent discharge point The treated effluents (aeration ponds) are produced from a town of 5100 inhabitants and wastewaters from a textile industry. |
Chibouet | Agri | 45.784506, −72.869389 | Agricultural area (corn) and receive leachates from cultivation fields. |
Yamaska South (Bringham) | Municipal | 45.255359, −72.866851 | Located 2.1 km downstream the discharge effluents from the city of Brigham (circa 500 inhabitants) |
Yamaska North | Industrial/Urban | 45.35977, −72.78041 | Located downstream of an area supporting 45 industries with 27 ones involved in plastics and rubber and 18 ones for textiles (Granby area). It is located 1.7 km from the discharge point of domestic municipal wastewaters from 39,000 inhabitants. |
Yamaska South (Cowansville) | Municipal | 45.232789, −72.800473 | Located 3.2 km downstream Cowansville city (15,000 inhabitants) and 7 industries involved in plastics. |
Beauport | Rainfall overflow | 46.865749, −71.209895 | Rainfall overflows from the area of Beauport city. |
Du Cap Rouge | Rainfall overflow | 46.771915, −71.356592 | Rainfall overflow site located downstream of a national road (tire wear) |
Du Cap Rouge (Tributary) | Rainfall overflow | 46.778240, −71.352577 | Rainfall overflow collection site |
Milette | Rainfall water overflows | 46.320774, −72.562209 | Rainfall water collector downstream a national road (tire wear). |
Saint-Charles | Watershed drainage without direct sources of pollution. | 46.910453, −71.371260 | Site located from any direct sources of pollution. The river drains an area of 170 km2. Considered a reference site in the present study. |
Lipids | Ald | Viscosity | NP(nAU) | Esterase | Prot | NP(SEC) | |
---|---|---|---|---|---|---|---|
Lipids | 1 | ||||||
Ald | 0.57 | 1 | |||||
Viscostiy | 0.04 | −0.1 | 1 | ||||
NP(nAu) | −0.11 | 0.04 | 0.54 | 1 | |||
Est | −0.07 | −0.03 | −0.27 | −0.37 | 1 | ||
Prot | 0.36 | −0.03 | 0.24 | −0.04 | −0.02 | 1 | |
NP(Sec) | −0.12 | 0.16 | 0.57 | 0.63 | −0.18 | −0.08 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roubeau Dumont, E.; Gagné, F. Nanoplastic Contamination in Freshwater Biofilms Using Gel Permeation Chromatography and Plasmonic Nanogold Sensor Approaches. Nanomaterials 2024, 14, 1288. https://doi.org/10.3390/nano14151288
Roubeau Dumont E, Gagné F. Nanoplastic Contamination in Freshwater Biofilms Using Gel Permeation Chromatography and Plasmonic Nanogold Sensor Approaches. Nanomaterials. 2024; 14(15):1288. https://doi.org/10.3390/nano14151288
Chicago/Turabian StyleRoubeau Dumont, Eva, and Francois Gagné. 2024. "Nanoplastic Contamination in Freshwater Biofilms Using Gel Permeation Chromatography and Plasmonic Nanogold Sensor Approaches" Nanomaterials 14, no. 15: 1288. https://doi.org/10.3390/nano14151288
APA StyleRoubeau Dumont, E., & Gagné, F. (2024). Nanoplastic Contamination in Freshwater Biofilms Using Gel Permeation Chromatography and Plasmonic Nanogold Sensor Approaches. Nanomaterials, 14(15), 1288. https://doi.org/10.3390/nano14151288