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Abstract: Metallic nanoparticles have gained attention in technological fields, particularly photonics.
The creation of silver/gold (Ag/Au) alloy NPs upon laser exposure of an assembly of these NPs
was described. First, using the Nd: YAG pulsed laser ablation’s second harmonic at the same
average power and exposure time, Ag and Au NPs in distilled water were created individually.
Next, the assembly of Ag and Au NP colloids was exposed again to the pulsed laser, and the
effects were examined at different average powers and exposure times. Furthermore, Ag/Au alloy
nanoparticles were synthesized with by raising the average power and exposure time. The absorption
spectrum, average size, and shape of alloy NPs were obtained by using an ultraviolet-visible (UV–Vis)
spectrophotometer and transmission electron microscope instrument. Ag/Au alloy NPs have been
obtained in the limit of quantum dots (<10 nm). The optical band gap energies of the Ag/Au alloy
colloidal solutions were assessed for different Ag/Au alloy NP concentrations and NP sizes as a
function of the exposure time and average power. The experimental data showed a trend toward
an increasing bandgap with decreasing nanoparticle size. The nonlinear optical characteristics
of Ag/Au NPs were evaluated and measured by the Z-scan technique using high repetition rate
(80 MHz), femtosecond (100 fs), and near-infrared (NIR) (750–850 nm) laser pulses. In open aperture
(OA) Z-scan measurements, Ag, Au, and Ag/AuNPs present reverse saturation absorption (RSA)
behavior, indicating a positive nonlinear absorption (NLA) coefficient. In the close-aperture (CA)
measurements, the nonlinear refractive (NLR) indices (n2) of the Ag, Au, and Ag/Au NP samples
were ascribed to the self-defocusing effect, indicating an effective negative nonlinearity for the
nanoparticles. The NLA and NLR characteristics of the Ag/Au NPs colloids were found to be
influenced by the incident power and excitation wavelength. The optical limiting (OL) effects of the
Ag/Au alloy solution at various excitation wavelengths were studied. The OL effect of alloy NPs is
greater than that of monometallic NPs. The Ag/Au bimetallic nanoparticles were found to be more
suitable for optical-limiting applications.

Keywords: laser ablation; metal alloy NPs; metal NPs; surface plasmon resonance; femtosecond laser;
Ag–Au alloy NPs

1. Introduction

Nonlinear optical (NLO) materials have attracted substantial interest from researchers,
especially with the progress of ultrashort laser pulses [1]. These materials hold pivotal
significance in the advancement of all-optical and electro-optical systems, along with
various applications in optical communications, light-induced chemical reactions, and
optical computing [2–5]. Nanostructured materials stand out among NLO materials due to
their distinct and highly sought-after attributes, such as large surface-to-volume ratios and
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distinct structures, which often yield superior electrical and optical attributes than their
bulk counterparts. Metal nanoparticles (NPs) have emerged as a focal point of research due
to their exceptional optical properties and their diverse applications across various fields,
including biosensing, drug delivery, catalysis, and physiochemical and optoelectronic
domains, as well as surface-enhanced Raman scattering and detection [6–13]. Quantum
dots (QDs) are made of very small metal particles, a thousand times less than the size of a
hair. Metal and alloy nanoparticles in the quantum size regime have attracted attention in
recent years due to their ability to size-dependently control electrical, optical, and catalytic
capabilities, as well as the potential for technological advancement [14–18]. Offering a
versatile range of emitted light from ultraviolet to infrared, typically within the diameter
range of 2 to 10 nm [19]. In recent times, alloy NPs have attracted more interest owing
to their unique characteristics and wide range of applications [20–23]. Notably, silver
(Ag)/gold (Au) alloy nanostructures have found extensive utilization across diverse fields,
including antibacterial applications [24], bioimaging [25], biolabeling [26], catalysis [27,28],
drug delivery, cancer therapy [29], nanophononics [30], optoelectronics [31], and nanoscale
optical biosensors [32].

Numerous methods, classified as top-down and bottom-up techniques, are utilized
to create Au and Ag NPs. These techniques include chemical, physical, and biological
approaches [33,34]. Among these, a common technique involves the coproduction of
metal precursor salts; however, this method often falls short in yielding purified NPs,
necessitating chemical purification and the use of potentially hazardous reagents [34].
To overcome these constraints, a novel, adaptable, and very effective physical technique
known as pulsed laser ablation in liquid (PLAL) of a bulk target has gained favor as an
approach to creating NPs, offering a wide array of optical properties, compositions, and
morphologies [35,36]. This physical method, which usually follows a top-down approach,
involves separating small particles (atoms, ions, etc.) from bulk materials to produce
small nanoclusters.

In laser-based methods, the bulk material is heated by a laser, leading to its evapora-
tion followed by vapor condensation, ultimately forming nanoparticles [37]. The efficacy
and characteristics of the ablation process, including particle size distribution and structure,
are influenced by factors such as the medium, experimental geometry, and laser parameters
(pulse duration, wavelength, repetition rate, and energy) [38–41]. Many studies have
explored the creation of alloy NPs via laser irradiation combined with two different metal
nanoparticles. This technique is known as pulsed laser irradiation in liquid (PLIL) [42–45].
Izgaliev et al. described the synthesis of colloidal solutions of Au and Ag NPs separately
through target ablation in a liquid medium, followed by irradiation of the combined Ag and
Au NPs with a pulsed laser to produce Au–Ag alloy NPs [42,46]. Similarly, Hajismailbaiji
et al. achieved the generation of Au–Ag alloy NPs by irradiating a combination of inde-
pendently produced monometallic colloidal suspensions [46]. Qayyum et al. investigated
the influence of 1064 nm and 532 nm lasers on Ag/Au alloy NP formation, observing a
direct correlation between the alloying process and the laser wavelength utilized [37]. Lee
et al. discussed the creation of Ag/Au alloy NPs employing pulsed laser ablation of bulk
metals used in alloys within water, marking significant advancements in these burgeoning
techniques [47].

Vincenzo et al. presented how the plasmonic properties of bilayers of Ag on Au
nanoporous films can lead to an effective dielectric permittivity much larger than that of the
original constituent metals, allowing the creation of nanoporous metal layers with tailored
optical responses [48].

Despite progress, a comprehensive understanding of the nonlinear optical (NLO)
attribute properties of Au–Ag nanoparticles, particularly the effects on these nanostruc-
tures (mono- and bimetallic) when their morphology and composition vary, remains
elusive [49–53]. This gap persists due to the significant changes in their properties under
such alterations, necessitating further investigation.



Nanomaterials 2024, 14, 1290 3 of 20

In this paper, we report the synthesis of Ag/Au alloy NPs via post-laser reirradia-
tion of a mixture of independently generated Ag and Au NPs using the PLAL method.
We investigated the effect of laser irradiation parameters such as laser intensity and ex-
posure time on the alloying process. The Ag/Au alloy NPs were characterized using
UV–Vis spectrophotometry, transmission electron microscopy, and inductively coupled
plasma analysis.

Furthermore, both open-aperture (OA) and closed-aperture (CA) Z-scan techniques
with femtosecond laser pulses were used to experimentally investigate the nonlinear
refractive index (n2) and nonlinear absorption coefficient (γ) of the Ag NPs, Au NPs, and
Ag/Au alloy NPs. Nonlinear optical (NLO) properties of the colloidal Ag/Au alloy have
been studied at different excitation wavelengths between 750 and 850 nm and at different
incident laser powers between 0.6 and 1.2 W. Additionally, we investigated the optical
limiting (OL) consequences of solutions that contained Ag NPs, AuNPs, and Ag/Au alloy
NPs. Particular attention was paid to studying how the excitation wavelength affected the
OL behavior of the Ag/Au alloy NPs.

2. Experimental Setup
2.1. Laser Ablation Setup

Figure 1 displays the layout of the experimental equipment for creating NPs using
PLAL. Ablation was performed using an Nd: YAG laser (Quanta-Ray Pro-350) with a
wavelength of 532 nm, a pulse duration of 10 ns, and a repetition rate of 10 Hz. To obtain
Ag/Au alloy NPs by PLAL, square pieces of target Ag and Au with a high purity of
approximately 99.99% and dimensions of 20 × 20 × 2 mm were exposed individually
to the pulsed laser ablation process. Subsequently, Ag/Au alloy NPs were produced
by reirradiation of a combination of NPs from a colloidal Ag and Au solution using a
pulsed laser.
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The initial step in the production of Ag/Au alloy NPs was to use PLAL to create Ag
and Au NPs. There were a few procedures that had been followed. Before the ablation
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process, the target Ag and Au were polished to remove the oxide layer caused by air
exposure. The bigger surfaces of Ag and Au should be smooth and burr-free. The Ag
and Au were then ultrasonically cleaned for 30 min with ethanol and deionized water
to eliminate any organic residues. Next, 10 mL of distilled water was added to a beaker,
and the Ag or Au target at the bottom was immersed. The beaker was mounted to the
monitoring speed device. To prevent the laser beam from centering on the same spot in
the sample or from etching the sample, this device simultaneously spins the beaker and
the target. Furthermore, the speed was set at 177 RPM, and the target was positioned at
a distance about equivalent to the focusing distance of a 10.5 cm convex lens with a laser
beam diameter of 0.35 cm.

The Ag and Au NPs were prepared by adjusting the exposure time and intensity to
30 min and 71.9 MW/cm2, respectively. The Ag/Au alloy nanoparticles were synthesized
utilizing the same setup as shown in Figure 1, without the convex lens. At this point, a
1:1 mixture of 6 mL of Ag NPs colloid and 6 mL of AuNPs was used. Following that,
the mixture was exposed to another round of pulsed laser radiation for varying exposure
durations (5–30 min) and intensities of 6.3, 8.9, and 11.4 MW/cm2.

The characterization of the formed Ag, Au, and Ag/Au alloy NPs was performed
using an ultraviolet-visible (UV–Vis) spectrophotometer (Model: C-7200) to record the
absorption spectra, and the concentration of colloidal NPs was measured by an inductively
coupled plasma (ICP) (Agilent 5100 Synchronous Vertical Dual View (SVDV) ICP-OES,
Agilent Vapor Generation Accessory VGA 77). Furthermore, the shape and average size
distribution of the Ag/Au alloy NPs were identified using transmission electron microscopy
(HR-TEM, JEM-2100, Joel, Japan, operated at 200 KV).

2.2. Z-Scan Setup

The Z-scan setup employed to investigate the nonlinear optical characteristics of
Ag, Au, and Ag/Au metal alloy NPs is exhibited in Figure 2. In the present study, the
experimental Z-scan setup used the laser pulses system (INSPIRE HF100) from Spectra-
Physics, which was operated by a femtosecond (fs) Ti: sapphire laser (MAI TAI HP) from
Spectra-Physics with a 1.5 W–2.9 W average power, an 80 MHz repetition rate, and a
690 nm–1040 nm range of wavelength [13]. The INSPIRE HF100 operates at IR Ti: sapphire
pump wavelengths and has two additional modes of operation based on NLO phenomena:
(i) a second harmonic generator (SHG) and (ii) an optical parametric oscillator (OPO) [54,55].
These modes of operation produce wavelengths ranging from 345 nm to 2500 nm, which
are covered by four exit apertures. The colloidal solution NPs were exposed to 100 fs
Gaussian laser pulses at various wavelengths ranging from 750 nm to 850 nm, selected
by the aperture of the fundamental IR pump. The INSPIRE laser beam has a profile of a
Gaussian distribution with a TEM00 spatial mode and M2 < 1.1. A 5-centimeter convex
lens is utilized to tightly focus the laser pulses. Metal NP colloids were placed in a quartz
cuvette with a path length of 1 mm, which is less than the Rayleigh length (z0). The sample
was scanned around the focus using a micrometer translation stage. The transmitted
intensity of the colloidal solutions was measured by a power meter (PM1, Newport 843
R) as a function of sample position relative to the focus. In the OA setup, the normalized
transmittance is measured by adjusting the aperture size (S) fully open (S = 1). The change
in OA Z-scan measurement is related to the nonlinear absorption coefficient γ. In the CA
setup, the laser beam that passes through the sample is directed through a closed aperture
just before the power meter (PM2, Newport 843 R). This aperture is designed to ensure
that any nonlinear phase shift in the beam is caused only by the colloidal solution. The
present experimental measurements have a 10% uncertainty, which is mostly due to the
determination of the irradiance distribution employed in the experiment, namely laser
power calibration, pulse width, and beam waist.
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Figure 2. Schematic diagram of the Z-scan experimental setup. A, attenuator; L, convex lens; PM,
power meter; S, sample; BS, beam splitter; I, iris.

3. Results and Discussion
3.1. Synthesis of Ag and Au Nanoparticles

Figure 3 shows the UV-vis absorption spectra measured via spectrophotometry of Ag
and Au NPs synthesized using PLAL at a laser intensity of 71.9 MW/cm2 and an exposure
time of 30 min. The distinct colors observed in the Ag and Au NP colloids are indicative of
their composition and microstructure [56], with each solution exhibiting a characteristic
fingerprint color. According to Mie’s theory [57], surface plasmons—a phenomenon where
oscillating electromagnetic radiation of incident light causes collective oscillations of free
electrons—are responsible for this coloration. The surface plasmon resonance (SPR) of Ag
and Au NPs were observed at 409 and 506 nm, respectively, and are shown in Figure 3. The
spherical shape of the NPs is indicated by the appearance of a single SPR peak [58,59].
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Figure 3. Absorption spectra of Ag and Au NPs after PLAL.

Ag NPs display stronger actual absorbance with higher plasmon energy than those of
AuNPs, as reported in the literature [24].

The Ag and Au NPs concentrations were quantified at 15 mg/L ± 1.5 mg/L and
19.2 mg/L ± 1.9 mg/L, respectively, using an inductively coupled plasma (ICP). Further-
more, we used transmission electron microscopy (TEM) to identify the NPs’ shape and
characterize their size distribution. At room temperature, the colloidal samples were spread
out on copper grids coated with carbon and left to air dry. Particle sizes of both Ag and
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Au NPs were determined using ImageJ software, with diameters measured from multi-
ple distributed particles in TEM images [60]. Additionally, the software was employed
to generate histograms and calculate the average nanoparticle size. Figure 4a,b depict
histograms showing the Ag and Au NPs size distribution, respectively, with TEM images
inset, confirming the spherical shape of the NPs. The Ag and Au NPs were found to have
average sizes of 17.9 nm ± 1.8 nm and 5.1 nm ± 0.5 nm, respectively. The TEM images
show that Au NPs have an average size of less than 10 nm, which is within the range of
quantum dots.
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Remarkably, Ag and Au NPs show slightly distinct average and size distributions
despite being produced under the same conditions. This variation may be attributed to
inherent physical characteristics of the materials, such as differences in melting points,
absorption of laser light, thermal conductivity, and boiling points.

3.2. Synthesis of Ag/Au Alloy NPs
3.2.1. Linear Optical Properties

After completing the first step, which produced Ag and Au NPs, attention turned to
the creation of Ag/Au alloy NPs, or the second stage. This stage involved studying the
interactions between Ag and Au NPs using a 1:1 volume ratio of colloidal Ag and Au NPs.
Furthermore, the combination’s absorption spectra were recorded before reirradiation with
a pulsed laser. Figure 5 depicts the absorption spectra of colloidal Au, Ag, and Ag/Au
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alloy NPs in the wavelength range of 200 nm–1100 nm. Notably, there are clear peaks in the
spectra that represent the Ag NPs, Au NPs, and the combined colloids Ag/Au NPs. These
peaks coincide with the Ag and Au NP SPR absorption peaks, confirming the bimodal
nature of the spectrum. Figure 5 displays a decrease in the absorption spectrum of the
combined colloids (Ag/Au NPs), attributable to the differential volumes of NPs utilized in
the UV-Vis absorption spectrophotometer. For each measurement, each Ag and Au NPs
UV–Vis absorption spectrum was measured using a 2 mL colloidal solution. Thus, 1 mL
of Ag NPs solution and 1 mL of Au NPs solution were added to the colloid mixture to
maintain a constant total volume. As a result, half the volume of each type of NPs colloidal
solution reduced the overall absorption.
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Figure 5. The UV-Vis absorption spectra of Ag and Au NPs prepared by PLAL and a combination of
Ag/Au NPs before reirradiation.

After combining Ag and Au NPs with a volume ratio of 1:1, experiments were under-
taken to explore the effects of changing laser intensity and exposure time on the formation
of Ag/Au NPs; however, this is not an alloy yet.

The effect of reirradiating a combination of Ag/Au NPs at various laser intensities, 6.3,
8.9, and 11.4 MW/cm2, for a constant exposure time of 15 min was initially investigated.
Figure 6a illustrates the Ag/Au NPs alloy’s UV–Vis absorption spectrum with various
laser intensities.

At a laser intensity of 6.3 MW/cm2, separate peaks were observed representing Ag
and Au NPs with a bandwidth (∆λ) of 0.18 µm ± 0.02 µm. Additionally, a slight redshift
was noted in the SPR for the Ag NPs, while a blueshift was observed for the Au NPs.
This shift showed that the optical qualities of the colloidal solution NPs were changed,
illustrating how differences in the optical or morphological properties of the colloidal
solution NPs may affect the UV absorption spectrum [37].

At a laser intensity of 8.9 MW/cm2, the two plasmon peaks of the Ag and Au NPs
were found to shift, and the bandwidth dropped to 0.14 µm ± 0.01 µm, which was sim-
ilar to that at 6.3 MW/cm2. Furthermore, as the laser intensity of reirradiation of the
Ag/Au NPs combination increased to 11.4 MW/cm2, the bandwidth reduced further to
0.13 µm ± 0.01 µm from values shown at 6.3 to 8.9 MW/cm2. Remarkably, at 441 nm, a
quite narrow single peak appeared. This gradual transition from a bimodal colloidal peak
to a narrow single SPR absorption peak validated the formation of Ag/Au alloy NPs. The
Ag/Au alloy was identified by a single SPR peak, which is consistent with the results of
other studies [37,42,60,61].
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In the second phase, as shown in Figure 6b, we studied the impact of different exposure
times (from 5 to 30 min) on the reirradiation of Ag/Au alloy NPs at a constant laser
intensity of 8.9 MW/cm2. At 5 min, there was a broader absorption peak with a ∆λ

of 0.22 µm ± 0.02 µm, accompanied by two distinct SPR peaks attributed to Ag and Au
NPs. With an increase in irradiation time to 15 min, the bandwidth of the peak decreased
to a value comparable to that at 5 min, reaching 0.14 µm ± 0.01 µm. Furthermore, the
presence of two peaks related to Ag and Au NPs was noted. Subsequently, when the
reirradiation time was extended to 30 min, there was a broadening of the bandwidth to
0.13 µm ± 0.01 µm, accompanied by a decrease in peak intensity to a level comparable to
that at 15 min. Additionally, a relatively single peak emerged at 454 nm. This progressive
transition from a bimodal colloidal peak to a single SPR absorption peak confirmed the
formation of Ag/Au alloy NPs [37,42,60,61].
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Figure 6. UV-Vis absorption spectra of Ag/Au alloy NPs: (a) changing the laser intensity at a
constant exposure time of 15 min and (b) varying the exposure time at a constant laser intensity of
8.9 MW/cm2.

3.2.2. Characterization of the Average Size and Structure

The average size and structure of the Ag and Au NPs colloidal mixture were assessed
using transmission electron microscopy (TEM). Figure 7 illustrates the size distribution
histogram generated from laser-induced irradiation of a combination of colloidal Ag and
Au NPs at various laser intensities while maintaining a constant exposure time of 15 min.
Additionally, the TEM image is presented in the insets of Figure 7a–c, demonstrating the
spherical structure of the mixture.
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Through the reirradiation of a mixture of colloidal Ag and Au NPs, the effects of varied
laser intensities at constant exposure times and different exposure times at a constant laser
intensity were investigated and shown in Figures 7 and 8, respectively. As shown in
Figure 7, after reirradiation of the mixture with laser pulses at laser intensities of 6.3, 8.9,
and 11.4 MW/cm2, the average sizes observed were 10.1 ± 1, 8.9 ± 0.8, and 8.5 ± 0.8 nm,
respectively. During this stage, Ag/Au alloy NPs were formed with a laser intensity of
11.4 MW/cm2, as previously observed. As shown from these results for the average sizes
of Ag, Au, and Ag–Au NPs 17.9, 5.1, and 8.5 nm, respectively, average sizes of Ag–Au alloy
are typically produced among their metals. Qayyum et al. [37] determined the average
diameter of Ag and Au NPs is 25 nm and 18 nm, and Ag–Au alloy NPs with a mean
diameter of 24 nm. Mamta et al. [62] reported average sizes of NPs obtained to be 15 nm,
3 nm, and 6 nm for AgNPs, CuNPs, and Ag@Cualloy NPs, respectively.
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Figure 7. Histogram of the size distribution for a combination of colloidal Ag and Au NPs at different
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15 min. The insets are TEM images of the colloidal mixture.

Figure 8 shows the size distribution histogram and the structure of the Ag/Au alloy
NPs. Figure 8a–c depict changes in the average sizes at 11.1 ± 1, 8.9 ± 0.8, and 8 ± 0.8 nm,
respectively, with varying exposure times of 5, 15, and 30 min at the same laser intensity of
8.9 MW/cm2. As evident from these figures, the average size reduced as the exposure time
increased to 30 min. This is consistent with previous observations, at an exposure time of
30 min, Ag/Au alloy NPs were formed during this stage.
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3.3. Studying the Nonlinear Optical Properties of Ag/Au Alloy NPs
3.3.1. Studying the Nonlinear Absorption Coefficient β of Ag/Au Alloy NPs

The nonlinear optical properties of Ag/Au alloy solutions, prepared via laser ablation
and irradiated with laser intensity of 11.4 MW/cm2, a 532 nm incident wavelength, and
15 min of exposure time, were investigated. Figure 9 illustrates the experimental OA Z-scan
measurements of Ag/Au alloy NPs in the colloidal state, conducted using femtosecond (fs)
pulses and a high repetition rate (HRR) laser at 80 MHz.

The NLO properties of the Ag/Au colloidal solution were explored at different incident
fs laser powers ranging from 0.6 to 1.2 W and excitation wavelengths spanning from 750 to
850 nm. All curves displayed in Figure 9a demonstrate reverse saturable absorption (RSA),
which indicates an intensity-dependent absorption effect with the lowest transmission
at the focus (valley). This symmetric transmission around the focus (Z = 0) signifies the
distinctive signature of RSA, characterized by a decrease in transmittance with increasing
input intensity. Various processes, including transient absorption, nonlinear absorption
(NLA) due to interband transition, photoejection of electrons, and nonlinear scattering, are
typically cited as influencing the effects of metallic NPs on RSA. The observed RSA behavior
may stem from three-photon absorption (3PA), free carrier absorption (FCA), excited-state
absorption (ESA), nonlinear scattering (NLS), or a combination of these processes. Given
the bandgap of 3.49 eV for the Ag/Au alloy colloid, it is plausible to infer the occurrence of
3PA, thereby inducing a nonlinear absorption process.
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To determine the nonlinear absorption coefficient, the OA Z-scan measurements were
simulated using the NLO absorption model expressed by the following [63,64]:

TOA = 1 ±

 γ I0
2Le f f

(m + 1)(
3
2 )
(

1 + Z2

Z0
2

)2

 (1)

where γ represents the 3PA coefficient, I0 represents the peak intensity at the focus (Z = 0),

Z0 is the Rayleigh length; Z0 = πω0
2

λ , (Z0 > L), where λ is the excitation wavelength and
ωo is the beam waist at the focus 19 µm ± 2 µm; and Le f f =

(
1 − e−mαL)/m α, where α is

the linear absorption, m = 1 for two-photon nonlinear absorption (2PA) and m = 2 for 3PA,
and L is the thickness of the sample. The normalized transmittance (TOA) decreases when
the incident power increases. Figure 9b depicts the effect of the laser incident power on
the γ of the Ag/Au colloidal solution at an 800 nm excitation wavelength. As the incident
power increases, γ decreases.

As the incident power rises, the population of free carriers also increases. This elevated
concentration of electrons in the conduction band and holes in the valence band intensifies
their interactions. Consequently, the frequency of collisions among free carriers escalates,
leading to heightened scattering of photons and phonons, thereby causing a reduction in
the NLA coefficient (γ).

NLS is most typically caused by the creation of two distinct types of scattering centers
subsequent to the photoexcitation of NPs. Firstly, the excitation energy absorbed by
the nanoparticle prompts rapid expansion, effectively creating the nanoparticle itself as
a scattering center. Secondly, this absorbed energy is subsequently transferred to the
surrounding solvent, inducing its heating and potentially forming bubbles, which act as
secondary scattering centers.

Figure 10a depicts the variation of the nonlinear absorption coefficient with the ex-
citation wavelength, ranging from 750 to 850 nm, for the Ag/Au alloy solution at a 1 W
constant excitation power. The absorbance demonstrates an increasing trend as the exci-
tation wavelength rises, indicating a concurrent increase in reverse saturable absorption
(RSA). Furthermore, as the photon energy rises with increasing excitation wavelength,
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the likelihood of NLS augmentation increases, leading to a reduction in NLA [65]. The
NLO properties of bimetallic NPs are notably influenced by their size and morphology.
Figure 10b illustrates the nonlinear absorption coefficient plotted against the excitation
wavelength. Remarkably, a linear increase in γ is observed with increasing excitation
wavelength. This observation underscores the strong dependence of the NLA response
on the excitation wavelength, suggesting a sensitivity of the NLA to both the excitation
wavelength and incident intensity.
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Figure 10. (a) Show the OA z-scan transmission for Ag/Au alloy solutions in water at various
excitation wavelengths from 750 to 850 and a constant power of 1 W. The solid curves were fit using
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for the Ag/Au colloid solution at a constant incident power. The dots represent the experimental
data, while the solid line represents the linear fit.

3.3.2. Investigating the Nonlinear Refractive Index n2 of Ag/Au Alloy NPs

Figures 11a and 12a display the experimental CA Z-scan measurements of the non-
linear refractive index (n2) for the Ag/Au alloy colloid. The findings revealed that the
samples exhibited characteristics of self-defocusing materials, as evidenced by a negative
n2. In the CA behaviors, it was observed that the peak-valley difference ∆Tp−v increases
with increasing the incident power, as illustrated in Figure 11a.

The CA measurements of the Ag/Au colloidal solution were studied using fs laser
pulses. It is noteworthy that the utilization of an HRR laser could potentially induce the
creation of a thermal lens within the sample due to thermal effects, resulting in cumulative
heating. This heating phenomenon can lead to a temperature distribution within the sample,
subsequently altering the spatial distribution of the refractive index. Consequently, such
changes could distort the CA Z-scan experimental data, leading to potential inaccuracies in
the determination of the n2.

The separation time between laser pulses of 12.5 ns is less than the thermal character-
istic time (tc = ω2

4D ), where D is the thermal diffusion coefficient of the sample and ω is the
laser beam waist. tc for liquids is ≥40 µs [66]. The number of laser pulses incident on the
sample is the important factor affecting the accumulative thermal lens through the scan
and can be expressed as follows:

1
f(Z)

=
a L EpFl

3
2

ω(z)2

(
1 − 1√

Np

)
(2)
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where a is the fitting parameter, a = α (dn/dT)/2κ (π3D)1/2, dn/dT represents the temper-
ature derivative of the refractive index, κ represents the thermal conductivity, Ep represents
the energy per laser pulse, ω(z) is the radius of the laser beam at the sample, Fl is the repe-
tition rate, L is the sample thickness, and Np is the number of laser pulses incident on the
sample. Np = t × Fl, where t represents the exposure time for the Ag/Au solution during
the scan. In CA Z-scan measurements, the normalized transmittance (∆TCA) depends on
the focal length of the induced lensing, which is given by the following [67,68]:

∆TCA = 1 +
2Z

f(Z)
(3)
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Figure 11. (a) The CA z-scan measurements of the Ag/Au NP sample at various incident powers
ranged from 0.6 to 1.2 mW at a constant excitation wavelength of 800 nm. The symbols correspond to
the experimental data, and the solid curves represent the fits obtained using Equations (2) and (3).
(b) The deduced n2 values of the Ag/Au NPs sample as a function of incident laser power at an
excitation wavelength of 800 nm. The dots represent the experimental data, and the solid line
represents the linear fit.
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Figures 11a and 12a show the experimental results at various excitation wavelengths
and incident powers, which are simulated by theoretical fitting, as depicted by the solid
lines using Equations (2) and (3). The nonlinear phase shift ∆φ can be obtained by the
following [69]:

∆φ =
Z0

2f(0)
(4)

where f(0) represents the focal length of the induced thermal lens when the sample is placed
at the focal point (Z = 0). The nonlinear refractive index n2 can be deduced by knowing the
nonlinear phase, which can be expressed by [69] as follows:

n2 =
λ ω0

2∆φ(
2Pp × Leff

) (5)

where Pp is the peak power. The nonlinear refractive index of the colloidal solution as a
function of incident power was determined using the best fit of the experimental CA data
presented in Figure 11a, using Equations (2)–(5). Figure 11b shows the influence of the
incident laser power on the n2 of the Ag/Au alloy at an 800 nm excitation wavelength.
As the incident power increases, so does the number of free carriers in the Ag/Au alloy,
resulting in the electronic Kerr effect and thermal accumulative effects, which cause thermal
expansion and variations in the polarizability of the Ag/Au alloy.

Figure 12a illustrates the impact of different excitation wavelengths on the n2 of the
Ag/Au alloy NP sample at a 1 W incident power. Higher excitation wavelengths lead to in-
creased peak-to-valley transmission difference (∆Tp−v). Subsequently, Figure 12b presents
the values of n2 obtained from Figure 12a plotted against the excitation wavelength for the
Ag/Au sample. Notably, Figure 12b demonstrates a linear relationship between the excita-
tion wavelength and the nonlinear refractive index. As the excitation wavelength increases,
n2 also increases, as corroborated by the data presented in Table 1. This behavior can be
attributed to the concurrent increase in nonlinear absorption with increasing wavelength,
as previously elucidated, given that absorptive processes contribute to nonlinear refraction.

Table 1. Shows the NLO parameters of metal NPs at an 800 nm excitation wavelength and an incident
average power of 1 W. The n2 represents the nonlinear refractive index of NPs colloids, n0 is the
linear refractive index, and γ is the 3PA coefficient.

Metal NPs n0
n2 × 10−15

(cm2/W)
γ × 10−19

(cm3/W2)

Ag 2.06 5.82 0.72

Au 4.69 6.19 1.42

Ag–Au 1.96 6.43 1.71

3.4. Comparison of the Nonlinear Optical Characteristics of Monometallic (Ag, Au) and Bimetallic
(Ag/Au) NPs

Both CA and OA Z-scan measurements were conducted on the Ag, Au, and Ag/Au
NPs solutions to calculate the nonlinear refractive index n2 and nonlinear absorption
coefficient γ. In the OA Z-scan, the transmittance decreased (indicating reverse saturable
absorption, RSA) as the samples traversed along the beam axis.

Figure 13a portrays the OA Z-scan curves of the Ag, Au, and Ag/Au alloy samples
at 800 nm excitation and 1 W incident power. It is evident that the nonlinear absorption
coefficient of the Ag/Au alloy sample surpassed that of the Ag and Au NPs samples, as
corroborated by Table 1. This variation in the NLO properties of the alloy solution compared
to the monometallic Ag and Au NPs can be attributed to bimetallic Ag/Au nanoclusters,
which have been demonstrated to possess distinctive characteristics in contrast to their
monometallic counterparts.
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at a 1 W incident power and an 800 nm excitation wavelength, respectively.

Figure 13b depicts the CA Z-scan experimental data of the Ag, Au, and Ag/Au
alloy NPs colloidal solutions. Notably, the monometallic materials (Ag and Au) exhibited
marginally lower nonlinear refraction compared to the Ag/Au alloy sample, as summarized
in Table 1.

3.5. Optical Limiting Effect of Ag, Au, and Bimetallic Ag/Au NPs

The optical limiting effect of Ag, Au, and Ag/Au alloy NP colloids was systematically
investigated by varying the input power at an 800 nm excitation wavelength. Figure 14
illustrates the optical limiting effect observed for the Ag/Au alloy sample across different
excitation wavelengths (780, 800, and 820 nm).
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During experimentation, the alloy colloid was positioned at the focal point of a 5 cm
convex lens, enabling the measurement of output power at various input power levels. The
results of optical limiting (OL) analysis revealed a linear relationship between output power
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and input power until reaching saturation at higher input power levels, a characteristic
hallmark of the OL phenomenon.

It is noteworthy that the optical limiting action of the alloy sample exhibited sensitivity
to the excitation wavelength, which correlates with nonlinear absorption processes, as
discussed previously.

The optical limiting performances of both monometallic and bimetallic nanoparticle
samples composed of Au and Ag are illustrated in Figure 15. Notably, the Ag/Au alloy
sample demonstrates a notably superior optical limiting effect compared to both Ag and
Au individually. This enhancement in optical limiting efficacy is attributed to the higher
reverse saturable absorption (RSA) exhibited by the alloy compared to its monometallic
counterparts.
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Figure 15 also highlights that while the Ag and Au NPs display higher optical limiting
saturations compared to the Ag/Au alloy sample, lower values of optical limiting saturation
are preferable for effective optical-limiting applications. Consequently, the optical limiting
properties of the Ag/Au bimetallic NPs were notably enhanced, characterized by lower
optical limiting saturation values relative to both Au and Ag NPs.

Table 2 summarizes the findings from previous studies on the NLO properties of
Ag/Au alloy NPs solutions [49–53,70–72], alongside the results obtained from the current
experimental study. Through our investigation, we deduced that the nonlinear optical
behavior and third-order NLO parameters of our Ag/Au NPs samples were significantly
impacted by two primary factors: the characteristics of the NPs sample (encompassing
nanoparticle shape, size, concentration, and preparation method) and the laser parameters
(including excitation wavelength, repetition rate, incident power, and pulse duration). The
nonlinear absorption coefficient in this study is three-photon absorption, as in contrast to
previous studies that employed two-photon absorption. The aforementioned factors are
the causes of the discrepancy.
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Table 2. Comparison between the extracted nonlinear optical properties of Ag/Au bimetallic NPs
from this work and previous studies.

Au@Ag
Bimetallic

NPs

Preparation
Method

Wavelength
(nm)

Pulse
Duration

Repetition
Rate (Hz)

Au–Ag Avg.
Size (nm) n2 (cm2/W) Ref.

Au–Ag in
water

Laser
ablation

532 10 ns 10

14.8 −0.5 × 10−12

[51]16.3 −0.521 × 10−12

11.6 −0.892 × 10−12

Au@Ag in
water Chemical 632.8 - - 20 81.6× 10−6 [73]

Au@Ag in
water Chemical 1040 357 fs 1000 73 4.41 × 10−16 [71]

Au@Ag in
water

Laser
ablation 800 50 fs 1000 19.8 1.6 × 10−12 [72]

Au–Ag in
water

Laser
ablation

From 750
to 850 100 fs 80 × 106 8.5 From 6.26 × 10−15

to 6.45 × 10−15 This work

4. Conclusions

In this study, colloidal solutions of Ag, Au, and Ag/Au NPs alloys were created
in distilled water, and their linear and nonlinear optical properties were investigated.
The synthesis of Ag/Au alloy NPs occurred in two sequential steps. Initially, Ag and
Au NPs were colloidalized using a pulsed laser ablation technique at a laser intensity of
71.9 MW/cm2 and an exposure time of 30 min. Subsequently, a mixture (1:1) of colloidal
Ag/Au NPs underwent irradiation by a pulsed laser. The influence of various laser
parameters, encompassing different laser intensities of 6.3, 8.9, and 11.4 MW/cm2, as well
as different exposure times of 5, 15, and 30 min, on a mixture of colloidal Ag/Au NPs, was
meticulously studied.

The formation of Ag/Au alloy NPs was indicated by the emergence of a single peak
between Ag and Au NPs at a laser intensity of 11.4 MW/cm2 and an exposure duration
of 15 min, according to UV–Vis absorption spectroscopy. The combination’s average size
dropped to 8.5 nm as the laser intensity reached 11.4 MW/cm2, and further diminished to
8 nm with an increase in exposure time to 30 min. Moreover, the average size of a combi-
nation of Ag/Au NPs was equivalent to a quantum dot (<10 nm) with heightened laser
intensity and exposure time. Furthermore, it was observed that n2 and γ were reliant on
wavelength and power. Both monometallic (Ag and Au) and bimetallic (Ag/Au) solutions
exhibited reverse saturable absorption (RSA) due to their nonlinear absorption behavior.
Additionally, the optical limiting impacts of colloidal solutions of Ag, Au, and Ag/Au were
studied, with alloy colloids exhibiting a superior limiting effect compared to monometallic
NPs, thus suggesting their potential utility as protectors against undesired laser illumi-
nation. These findings underscore the promising applications of these nanostructures in
photothermal and nonlinear optics.
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