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Abstract: This work proposes catalytic systems for fructose dehydration to 5-hydroxymethylfurfural
using a series of functionalized carbon nanofibers. The catalysts were synthesized via finely selected
covalent grafting in order to include a variety of functionalities like pure Bronsted acid, tandem
Brønsted/Lewis acid, and tandem Lewis acid/Lewis base catalysts. After the characterization and
evaluation of acidity strength and the amount of acid centers, the catalyst series was screened and
related to the product distribution. The best-performing catalyst was also used to optimize the
reaction parameters in order to achieve 5-hydroxymethylfurfural yields rounding at 60% without
significant humin formation.

Keywords: HMF production; fructose dehydration; CNF functionalization; tandem Brønsted–Lewis
sites

1. Introduction

Sugars derived from lignocellulose, which have an annual production of 1 × 1011 tons/year,
are currently the most important renewable source used to produce fuels and chemicals
that are able to replace fossil fuels and industrial commodities [1–4]. The hydrolysis
and dehydration of sugars produces, among others, 5-hydroximethylfurfural (HMF), a
bifunctional molecule possessing a furan ring and an aldehyde group, both allowing the
production of a diverse array of chemicals of highly added value [5,6]. Although desirable,
direct cellulose conversion to HMF suffers from reactive insolubility in water or other
solvents, pushing the technology to a two-step process: hydrolysis to glucose followed by
further transformation to HMF [7]. Glucose is abundant in nature and can be transformed
to HMF via a few steps requiring a high energy barrier and distinct active sites [8]. One
of the paths proceeds through glucose isomerization to fructose and subsequent rapid
dehydration to HMF [9,10]. That is why fructose is frequently chosen as the initial substrate
to screen catalysts for dehydration under acidic conditions at low temperatures. Many
considerable efforts have been focused on the production of HMF from fructose with high
yields [11–13]. However, the commercial viability of this approach faces one main challenge:
the minimization of undesired products (humins, levulinic, and formic acid) and the high
cost of their separation [14]. The higher energy barrier and side reactions in aqueous media
necessitate the use of organic solvents, increasing the price of the processes, which now
require a separation procedure, which is a high-energy and time-consuming operation [15].

High HMF production from fructose is usually obtained using Brønsted acidic sites in
the presence of dimethyl sulfoxide (DMSO) or ionic liquids, with the latter being used as
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co-catalysts and/or solvents [16]. DMSO does not seem the perfect choice of solvent due to
its high boiling point and difficult distillation/rectification [17,18]. In this sense, the use of
ionic liquids could solve the problem but, unfortunately, organic salts are expensive and
complex to recycle [19]. The use of biphasic reaction systems that include two solvents,
such as THF/H2O, MIBK/H2O, and butanol/H2O, etc., is an alternative and could improve
the environmental and economic profile since they permit generous HMF production and
immediate isolation in a single step [20–23].

HMF production can also be improved by applying a new class of hybrid materials
with a variety of acidic sites incorporated via covalent functionalization on the surface of
different solids [24–28]. These types of catalysts meet the principles of green chemistry and
allow for control of the fructose reaction to HMF [29]. In our previous work, we have suc-
cessfully used p-toluene sulfonic acid-functionalized carbon materials as catalysts, yielding
significant HMF production [30,31]. Nevertheless, the overall process suffers from leaching
of the non-covalently attached active sites, causing a short life catalyst cycle; therefore, it
has limited application in potential biorefinery reactions [32]. That is why in this study we
opted for a covalent chemical functionalization of stable nanostructures, such as carbon
nanofibers (CNFs) [33]. This functionalization should create a uniform organic–inorganic
structure that inhibits side reactions and minimizes active site leaching [34–37]. As a
functionalizing component, we have chosen ionic liquid phase and organosilane moieties
immobilized on a solid surface. The use of such materials should allow for an increase in
dehydration reaction activity via the generation of particular hydrophilic properties and
tandem sites on the carbon surface. This functionalization was chosen carefully to permit
different functional groups/active species, such as sulfurand nitrogen containing groups of
the corresponding organosilane and imidazolium ILs moieties. A deeper understanding
of the role of the grafted molecule should also permit more successful fine-tuning of the
strength and character of the active sites to effectively limit the side reactions and increase
HMF production.

Hence, the main purpose of this work is to graft some ILs and organosilane moieties
over carbon nanofibers in order to produce hybrid catalysts for fructose dehydration in
biphasic MIBK/H2O media. In addition, a systematic study of the reaction conditions has
been carried out for the estimation of the optimal reaction conditions such as temperature,
time, MIBK/H2O ratio, initial fructose concentration, and catalyst stability. A tentative
mechanism of fructose dehydration over the hybrids is also proposed.

2. Experimental

For the preparation of the samples, commercially available carbon nanofibers (CNFs)
(GANF13, Grupo Antolin Ingeniería, Burgos, Spain) were used after pretreatment with
concentrated nitric HNO3 (37%) or sulfuric acid H2SO4 (96%) at 60 ◦C or 150 ◦C, respec-
tively, for 18 h in a round-bottomed flask equipped with reflux and magnetic agitation. The
resulting solids were washed abundantly with water until reaching a neutral pH and dried
overnight at 60 ◦C. The final CNF-O (nitric acid) and CNF-S (sulfuric acid) catalysts were
ground in a mortar and used directly.

For the grafting of organosilanes with amino or mercapto functionalities, 2 g of the
above-described CNF-O sample was suspended in 50 mL of toluene and reacted with
1.5 mL of amino- or mercapto-propyltrimethoxysilane (APTMS or MPTMS) at 70 ◦C under
a nitrogen atmosphere using standard Schlenk-type techniques, overnight. The obtained
solids were filtered, washed three times with toluene, and dried at 100 ◦C overnight. The
samples received the labels CNF-APTMS and CNF-MPTMS for amino- and mercaptosilane
functionalization, respectively.

2.1. Preparation of CNF-SO3HPTMS

Further, the CNF-MPTMS hybrid was contacted with 40 mL of hydrogen peroxide
solution (3/1 v/v H2O2/H2O) for 12 h at room temperature to transform the mercapto
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functionality in a sulfonic one. The obtained sample (CNF-SO3HPTMS) was filtered,
washed with ethanol, and dried overnight at 60 ◦C.

For the immobilization of the ionic liquid onto the CNF surface, the oxidized CNF-O
sample (2 g) was reacted with thionyl chloride (SOCl2) under nitrogen at 70 ◦C during
24 h. The excess of SOCl2 was removed by washing with anhydrous tetrahydrofuran
(THF) and after drying, the solid was reacted with 3-chloro-1-propanol at 120 ◦C for 24 h
under reflux in nitrogen. The excess of 3-chloro-1-propanol was removed by washing with
dichloromethane and reacted after drying with 1-methyl imidazole under reflux at 95 ◦C
during 24 h to form the final immobilized ionic liquid CNF catalyst, labeled as CNF-ILs.

2.2. Catalytic Tests

In total, 40 mg of catalyst was placed into a 50 mL Schlenk reactor equipped with
a Young valve and magnetic stirrer and dispersed in a solution of 180 mg of fructose in
12 mL MIBK/H2O (1/5 v/v) mixture. After a nitrogen purge, the mixture was reacted at
the desired temperature and time under continuous stirring of 600 rpm. After reaction,
the liquid suspension was quenched in an ice bath, microfiltered with a 0.45 µm Nylon
membrane, and analyzed by HPLC using 0.005 M H2SO4 as the mobile phase and a
HiPlex-H column at 40 ◦C.

The catalytic activity results were expressed in terms of fructose conversion, HMF
yield, and product selectivity, defined as follows:

Fructose conversion (%) =
moles of reacted fructose
moles of initial fructose

× 100% (1)

Product yield (%) =
moles of formed product
moles of initial fructose

× 100% (2)

Product selectivity (%) =
moles of formed product

moles of fructose converted
× 100% (3)

All insoluble and non-detected soluble products were considered as humins, i.e.,
they correspond to the detected C balance loss after carbon fraction distribution analysis
and calculations.

2.3. Recycling

For the recycling experiment, the reacted catalyst was recovered by filtration after
each reaction cycle, washed with ethanol, and dried at 110 ◦C overnight before the next
run. The reactive/catalyst ratio was maintained as constant in every run, according to the
recovered catalyst mass.

2.4. Characterization Techniques

The textural properties of the samples were evaluated by nitrogen physisorption
measurements in the Micromeritics TRISTAR II equipment. The material was degassed
under vacuum at 150 ◦C for 12 h before analysis.

X-ray diffraction measurements were performed using a Panalitycal X’Pert Pro diffrac-
tometer, with a Cu anode (Cu-Kα 40 mA, 45 kV), using a step size of 0.05◦ and 300 s of step
acquisition time within the 10–90◦ 2θ range. The Scherrer equation (Equations (4) and (5))
was applied to estimate the size of the carbon crystallites over the diffractions corresponding
to the (002) and (100) family of planes:

Lc =
Kcλ

β002cosθ002
(4)

La =
Kaλ

β100cosθ100
(5)

where Lc is the crystallite height, La is the crystallite diameter, K is the shape factor and
depends on the crystal structure (0.9 for Kc and 1.84 for Ka), λ is the wavelength of the used
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X-rays (1.1584 Å for Cu anode), β is the full width at half maximum (FWHM), and θ is the
position of the peak maximum.

Raman spectra of the different catalysts were recorded using a dispersive Horiba
Jobin Yvon LabRam HR800 Confocal Raman Microscope equipped with a green laser
(λ = 532.14 nm) and working at 5 mV power using a 600 grooves/mm grating and 50×
objective with a confocal pinhole of 1000 µm.

The samples’ acidity was estimated over 100 mg of solid dispersed in 100 mL of
distilled water using a pH-electrode (Metrohm, Oviedo, Spain). The pH values were
collected after reaching a constant value.

SEM/EDX analysis of catalyst’ morphology and elemental composition was performed
using a Hitachi S4800 SEM-FEG high resolution scanning electron microscope (Hitachi,
Tokyo, Japan) provided with SE and BSE detectors and a Bruker X Flash Detector 4010 EDX
analyzer (Bruker, Ettlingen, Germany) with a resolution of 133 eV for the Mn Kα line.

The determination of nitrogen content was carried out using the elementary analyzer
TRUSPEC CHNS Micro (Leco, St. Joseph, MI, USA), over 2 mg of sample at 1300 ◦C.

Temperature-programmed desorption of NH3 was used to estimate the acidity sites’
strength and quantity. For analysis, 100 mg of sample was placed in a quartz reactor and
submitted to a 50 mL/min He flow at 200 ◦C. After pretreatment, the sample was contacted
with NH3 at 100 ◦C. The NH3 excess was evacuated in He at room temperature and
subsequently heated to 500 ◦C with a 10 ◦C/min heating rate. The adsorption–desorption
processes were followed by mass spectrometry using a Pfeiffer Vacuum (Aßlar, Germany)
Prisma Plus Mass analyzer. Values of m/z = 16, 17, and 18 were registered and the ammonia
evolution was considered as m/z = 17 minus the water contribution (corresponding to 26%
of the m/z = 18 signal).

For the thermogravimetric analysis (TGA-DTG), the samples were dried at 110 ◦C
overnight and analyzed from room temperature to 1000 ◦C (10 ◦C/min heating rate) under
nitrogen flow (100 mL/min).

3. Results and Discussions

Table 1 summarizes the textural parameters of all samples. The observed hysteresis in
N2 adsorption–desorption (Figure S1) indicate an IV H3 type isotherm, which according to
the IUPAC suggests the presence of an important fraction of mesopores for all samples. In
addition, the trend of the curve to infinity suggests also the presence of macropores.

Table 1. Textural analysis of the prepared catalysts.

Sample BET Area
(m2/g)

Pore Size
(nm)

Pore Volume
(cm3/g)

Surface Micro
(m2/g)

Surface Meso
(m2/g)

CNF 160 15.5 0.621 9.2 161
CNF-O 178 15.4 1.188 9.6 215
CNF-S 178 13.0 0.780 18.7 180

CNF-Ils 152 12.0 0.606 7.7 158
CNF-APTMS 133 16.9 0.687 0 172
CNF-MPTMS 101 17.3 0.555 0 128

CNF-SO3HPTMS 131 14.4 0.561 0 172

The commercial CNF sample shows a BET specific surface area of 160 m2/g and an
average pore size of 15.5 nm. CNF treatment with sulfuric and nitric acid increases the
specific area while all other functionalizations decrease it. In general, treatment with acids
generates micropore and mesopore enlargement that accommodates the functional groups
in the pores [38]; while the introduction of voluminous groups, such as organosilanes and
ILs, causes the reverse effect and blocks access to the pores. The important decrease in
BET surface area after the organosilane treatment is accompanied with an increase in pores
size indicating a possible internal surface occupation with bulky molecules, responsible for
micropore and low-diameter mesopore blocking. The latter is also justified by the complete
absence of micropores for these samples and reduced single-layer adsorption quantities
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in comparison to those estimated for a mesoporous surface (Table 1). The oxidation of
CNF-MPTMS to CNF-SO3HPTMS causes an increase in the BET area. This effect can be
ascribed tentatively to the increase in the oxygen-containing groups, considering the SO3H
groups formed by oxidation and all the newly formed hydroxylic and carboxylic groups
and their active participation in nitrogen adsorption.

CNF functionalization also affects the initial nanofiber structure (Figure 1). The XRD
patterns present a sharp asymmetric main diffraction at around 2θ = 26.5◦ ascribed to the
(002) planes of the multilayered nanographitic carbon crystalline domain with 3D graphite
structure organization. This diffraction is accompanied by a broad signal in the 43–45◦ 2θ
region related to the (100) and (101) family planes and two more diffractions observed at
54◦ and 78◦ 2θ corresponding to the rhombohedral graphitic structure.
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As a general trend, the 002 planes’ diffraction increases after functionalization, sug-
gesting higher graphitization, and the treated CNF samples gain a short-range order and
become slightly more crystalline. Nevertheless, this order is not expanded to the long
range and periodically repeated structures are not formed. This effect is more noticeable
for acid- and ILs-treated samples. On the other hand, diffractions due to incorporated
functional groups remain undetected, more probably due to the low initial loading of
organic precursors onto the CNF surface. The average in-plane crystallite size (La) decreases
for the acid-treated catalysts but increases after organosilane and ILs deposition (Table 2).
Such an increase is due to the resulting larger carbon chains after covalent functionalization
with organic precursors. On the contrary, the strong mineral acid treatments provoke
carbon chain interruption, which results in a lower La parameter. The Lc parameters are
very similar between the samples (Table 2).



Nanomaterials 2024, 14, 1293 6 of 20

Table 2. Structural parameters of the catalyst series and pH of the suspended CNF-based catalysts.

Catalyst La
(Å)

Lc
(Å)

I(D)/I(G)
(a.u.) pH TPD-NH3 Area

(×1010 a.u.)
Normalized TPD-NH3 Area/BET

(×1012 (a.u.)·g−1·m2)

CNF 87 90 0.88 7.03 0.07 0.04375
CNF-O 60 88 1.23 4.8 1.68 0.94382
CNF-S 79 88 1.05 3.75 1.92 1.07865

CNF-Ils 98 86 0.98 7.87 1.02 0.67105
CNF-APTMS 115 90 0.95 8.52 3.98 5.48872
CNF-MPTMS 103 84 1.21 5.05 5.34 3.94059

CNF-SO3HPTMS 63 88 1.25 4.84 7.3 4.07634

The defect site population (analyzed by Raman spectroscopy and displayed in Figure 2)
shows some changes after functionalization. The two intense bands at 1330 and 1590 cm−1,
corresponding to D and G carbon vibration modes, dominate the spectra where the less
intense 2D (G′) band at 2670 cm−1 is also visible. The untreated CNF sample shows a higher
intensity G than D band and its calculated I(D)/I(G) ratio is much lower in comparison to
the other samples, indicating a higher number of repeated sp2 hybridized graphene sheets
(Table 2). During functionalization, the D band—and as a consequence, the calculated
I(D)/I(G) ratio—increases, indicating a long-range order loss for the functionalized sam-
ples. It is worth mentioning the decrease in that ratio for CNF-APTMS and CNF-ILs, in
comparison to their parent CNF-O sample, indicating a partial carbon sheets exfoliation
(most probably the intersheet-stacking intercalation of the bulky molecules) and a possible
sp2-structure re-ordering.
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The morphological changes after functionalization are shown in Figure 3. One of the
most apparent changes among the samples is CNF’s loss of packing after the treatments.
The original fibers become shorter after the initial acid treatment (CNF-O or CNF-S) and
maintain this distribution during the successive functionalization. The shortening of the
fibers also reflects the increase in the specific surface area after the initial acid treatment.
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Figure 3. SEM images of the prepared samples.

SEM-EDS and CNH elemental analysis help us to acquire the chemical composition
of the catalysts (Table 3). The initial CNF sample contains sulfur (S), silicium (Si), and
nickel (Ni) and presents a low degree of oxidation (O content). Silicium and sulfur are
natural components of the CNF, but Ni is a possible residue from the catalyst used for
nanofiber synthesis.

Table 3. SEM-EDS chemical composition of the prepared CNF-based catalysts.

Sample C O Si S Cl Ni N *

CNF 94.99 3.6 0.09 0.41 0.1 0.16
CNF-O 87.45 11.78 0.06 0.09 0.1 0.36
CNF-S 88.47 10.32 0.06 0.59 0.1

CNF-ILs 88.98 9.61 0.03 0.11 1.18 0.1 4.62
CNF-APTMS 87.24 11.50 1.04 0.09 0.1 1.40
CNF-MPTMS 80.39 15.15 2.19 2.18 0.1

CNF-SO3HPTMS 80.33 15.97 1.59 1.99 0.12
* Calculated from CNH elemental analysis.
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The composition changes correlate fairly well with the treatments. The CNF-O sample
shows a higher oxygen content while CNF-S presents higher oxygen and sulfur contents.
The incorporation of nitrogen, sulfur, and/or Si is indicative of the successful grafting of
ILs or organo/mercaptosilanes. The organosilanes increase the total Si content, while the N
and Cl contents rise with the introduction of ILs, with the parallel formation of BmimCl
reported during the functionalization [39]. The lowest nitrogen and sulfur introduction
observed for CNF-O and CNF-S in comparison to all other treatments indicates less carbon
surface-functionalization agent interaction for these two samples. The latter is expected,
as the obtained interaction does not proceed via covalent bonding. On the other hand,
the covalent functionalization results in higher N and S loadings and therefore a higher
population of different Brønsted/Lewis acid centers on the CNF surface. After thiol-to-
sulfonic groups’ oxidation treatment (CNF-MPTMS to CNF-SO3HPTMS), the composition
remains practically unaltered, with a slight increase in oxygen content due to the oxidation
of thiol groups. Pertaining to Si content, the mercaptosilane functionalization seems more
efficient than the aminosilane modification.

The presence of all these superficial groups with different functionalities changes the
comportment of the material in the aqueous phase, as confirmed by pH measurements.
The introduction of amine groups, like in CNF-APTMS and CNF-ILs samples, shifts the
pH to higher values, indicating a fast protonation of the superficial groups while the acid
treatments decrease the pH to 4.84 for the CNF-SO3HPTMS sample (Table 2), suggesting
the deprotonation of these Brønsted sites in water.

The total acidity of the samples, calculated by the integration of the NH3 desorption
curves, is directly proportional to the amount of total acid sites, while the temperature of
NH3 desorption indicates their strength (Table 2 and Figure 4).

Nanomaterials 2024, 14, 1293 9 of 20 
 

 

200 300 400

In
te

ns
ity

 (u
.a

.)

Temperature (°C)

 CNF-SO3HPTMS
 CNF-MPTMS
 CNF-APTMS
 CNF-ILs
 CNF-S
 CNF-O
 CNF

 
Figure 4. NH3-TPD profile for the CNF-based catalysts. 

The NH3 desorption areas normalized by the BET surface of the samples show a sim-
ilar trend and can be related to the easy mesoporous surface access of all CNF-based cat-
alysts. 

The thermal stability of some catalysts in air is analyzed by TGA-DTG as summarized 
in Figure 5. 

100 200 300 400 500 600 700 800
0

20

40

60

80

100

W
ei

gh
t (

%
)

Temperature (°C)

 CNF-SO3HPTMS
 CNF-ILs
 CNF-S
 CNF-O
 CNF

(A)

 

Figure 4. NH3-TPD profile for the CNF-based catalysts.

The CNF sample presents a very low number of acid sites with a practically unaffected
capacity to adsorb NH3 after nitric acid (CNF-O) treatment. On the contrary, all other
functionalizations provoke a significant growth of the acid sites. The CNF-MPTMS and
CNF-SO3HPTMS samples present two type of sites; (i) weak sites with a broad ammonia
desorption in the 150–275 ◦C temperature range and (ii) stronger acid sites, with a des-
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orption in the 275–500 ◦C region. Apparently, the functionalization of CNF with organic
acids increases the fraction of stronger acid sites, while the treatment with sulfuric acid
affects only the weak sites. On the other hand, the CNF-ILs and CNF-APTMS samples
show the presence of a third type of site, although in a much lower amount for the former
sample. A detailed analysis of the CNF-MPTMS and CNF-ILs broad contribution centered
at 280 ◦C (Tmax) suggests the presence of medium-to-strong acidity centers. The highest
proportion of sites for CNF-SO3HPTMS indicates that the post-oxidation process of the
mercapto groups produces sulfonic entities of a much stronger acidity.

Sulfuric acid and sulfur-containing organic functionalizations differ clearly in Brønsted
acid site strength. The presence of Si and the propyl chain (for the organic functionalization)
increases the strength of the sites, resulting in a higher contribution of moderate and
strong acid sites. As a consequence, the hybrid CNF catalyst shows variable acidity sites
associated either with a Lewis center (Si) as an electron pair acceptor or with pure Brønsted
acid centers generated from the protons on the available surface groups.

The case of CNF-APTMS is somewhat surprising due to the important ammonia
desorption observed at high temperatures. This contribution is understandable consider-
ing the amine–ammonia interaction of the amine group acting as a Brønsted center. This
behavior can also be imagined as a consequence of the neighboring Si sites and HNHNH3
adduct formation, suggested by the protonation of the sample in water resulting in ba-
sic pH. We can also imagine the formation of a highly nucleophilic hydrazine radical
(-NH2 + NH3 → N2H4 + H) in which the strong chemical bond formed is reflected in the
higher desorption temperature [40–42].

The NH3 desorption areas normalized by the BET surface of the samples show a similar
trend and can be related to the easy mesoporous surface access of all CNF-based catalysts.

The thermal stability of some catalysts in air is analyzed by TGA-DTG as summarized
in Figure 5.
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All samples show three temperature regions of weight loss, with the CNF-ILs sample
being very different from the others. The first weight loss (below 200 ◦C) is usually ascribed
to physically adsorbed water release and BmimCl melting (present in CNF-ILs). The (DTG)
profile for CNF-ILs of this region (100–200 ◦C) shows two transitions, both assigned to
adsorbed water and the second being delayed due to the difficulty of water discharge
caused by the viscous character generated from the ionic liquid layer at 150 ◦C [43]. With
the temperature increase, all functionalized samples show a slow weight loss in the region
of 200–400 ◦C, more noticeable for CNF-ILs, due to the decomposition of functional groups
bonded to the carbon skeleton. The sulfonated (oxygenated) samples show only one loss
assigned to Brønsted groups’ decomposition and shifted to higher temperatures for the
samples containing organosilanes. This step starts with the initiation of simultaneous
graphitization of the samples according to the trend found in the literature [44]. From the
final weight, it is possible to estimate the total weight loss and the percentage of mineral
content and ashes. The nitric acid-treated sample shows almost complete weight loss, while
the total mass present for SO3H-PTMS-CNF corresponds to the mineral content of the SiO2
component of the organosilane functionality. All catalysts present a good thermal stability
to be used in dehydration reactions at temperatures below 200 ◦C.

3.1. Biphasic Fructose Dehydration to HMF

The fructose dehydration reaction scheme over tandem (Brønsted–Lewis) acid catalysts
is shown in Scheme 1. The release of three water molecules to form HMF is mainly catalyzed
by Brønsted acid sites, which are also responsible, at an excess Brønsted acid charge, for
HMF rehydration to levulinic (LA) and formic acid (FA). At the same time, the presence of
Lewis sites provokes fructose isomerization and undesirable condensation/oligomerization
of hexoses to insoluble and soluble humins (also catalyzed by Brønsted sites). The lack of
control on the strength and concentration of all incorporated Lewis/Brønsted sites could
result in a catalyst being able to convert fructose rapidly to undesired products.
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Scheme 1. Side reactions for fructose dehydration to HMF.

The catalysts’ screening is presented in Figure 6. The analyzed products are glucose,
HMF, and levulinic and formic acid (lev + for), while the non-identified soluble or insoluble
products are listed as humins. The biphasic MIBK/H2O system consists of two immiscible
phases, allowing fast distribution of the formed HMF between the organic and aqueous
phase, while all other products (acids or sugars) remain in the aqueous phase. The partition
coefficient (organic/water) for HMF is 1.19 for an MIBK/H2O ratio of 5/1.

The use of a biphasic system seems to prevent HMF rehydration to levulinic and formic
acids with their fraction being below 6% in all cases. One can imagine that MIBK partic-
ipates indirectly by suppressing the side reaction of HMF rehydration. The appearance
of glucose, as a product, indicates fructose isomerization reactions. The CNF-ILs catalyst
shows the highest activity in this reaction followed by CNF-MPTS and the unmodified
CNF structure. This activity can be tentatively attributed to the presence of heteroatoms
within the sp2 aromatic sheets like in imidazolium, chromenes, and pyrones [45,46].

The higher hydrophobicity and lower oxygen content and acidity of the CNF sample
can explain its low conversion (23%). Upon functionalization, no matter the treatment,
fructose conversion increases. In general, the N-containing functional groups allow for
higher conversion than for S-containing samples. Within the N-containing group, the
stronger acidity of the CNF-ILs and CNF-APTMS functionalized catalysts is reflected in a
higher fructose conversion (73% and 90%, respectively), while the weak sites of the CNF-O
sample result in a lower conversion (46%).

The HMF yield seems to be influenced by catalysts’ structural and textural properties.
The CNF-O sample shows a very low HMF production (6%) in comparison to unmodi-
fied CNF (17%). The slight increase in acidity and the pore volume increase for CNF-O
potentiates the cross-polymerization of hexose’s tautomers, leading to significant humin
formation in detriment to HMF.
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Figure 6. Fructose dehydration over CNF-based catalysts: (A) fructose conversion and HMF
yield, (B) product selectivity (mcatalyst = 40 mg, mfructose = 180 mg, time = 4 h, V(H2O) = 2 mL,
temperature = 165 ◦C, MIBK/H2O, 5/1 v/v).

Apparently, the stronger acidity of CNF-APTMS and CNF-ILs samples causes impor-
tant byproducts’ generation either by HMF or glucose polymerization reactions. While
the base groups of CNF-APTMS (NH2 groups) coupled with Lewis sites increase the di-
rect HMF polymerization, CNF-ILs is more selective to Lobry De Bruyn Van Ekeinstein
fructose-to-glucose isomerization and subsequent participation in glucose self- or cross-
polymerization to humins [10,47]. The grafted imidazolium plays a dual acid/base role,
participating in both isomerization and dehydration, whereas the compensating chlorine
ions act as nucleophiles that bind fructose through H-bonds, thus stabilizing the intermedi-
ates and transition states to finally minimize HMF and humin production [48].

On the other hand, sulfur-containing samples significantly improve the HMF produc-
tion with a 62% HMF yield in the best case (CNF-SO3HPTMS). The HMF yield appears to
be related to the presence of Brønsted sites like -SH and -SO3H groups (CNF-SO3HPTMS,
CNF-SO3HPTMS and CNF-S) and fructose/functionalized CNF surface interaction. The
presence of bulky grafted molecules (CNF-SO3HPTMS, CNF-SO3HPTMS) introduces a
certain hydrophobicity, pushing the solids to the biphasic interface and weakening the
interfacial tension. The latter facilitates the protonation of furanose and faster produc-
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tion/extraction of HMF. The combination of both the higher acidity of the moderate type
and faster HMF transfer makes the CNF-SO3HTPMS sample the best catalyst for this
reaction in terms of conversion and selectivity.

The correlation between the reaction parameters (fructose conversion, HMF yield and
selectivity, and humin selectivity) are plotted as a function of catalyst acidity in Figure S2.
Within the series, the fructose conversion seems to follow the order of acidity. The higher
the overall acidity, the greater the conversion. The HMF yield and selectivity show the
same behavior, with the CNF-APTMS sample out of range due to the important parallel
undesired reactions. Excluding this sample, we can conclude that in general, the increase in
the acid fraction improves HMF selectivity and production. The distribution of humins and
its relationship with samples’ acidity appears random (Figure S2D). While CNF-APTMS
presents the highest humin production (and high acidity), the CNF-SO3HPTMS sample
shows the inverse trend. It seems that the high acidity of the CNF-SO3HPTMS does not
result in high humin production, probably caused by the presence of Si as a modulator of
the strength of the Brønsted sites.

The catalytic performance in fructose dehydration in a biphasic system is not defined
only by the nature of the catalyst but also by other parameters like the solvent ratio,
temperature and time of reaction, and initial fructose concentration. All catalytic parameters
are optimized toward the maximum HMF yield using the best catalyst, CNF-SO3HPTMS.
The results, summarized in Figure 7, suggest that the MIBK/H2O ratio does not affect
the fructose conversion but the HMF production. The highest yield (64%) is obtained for
an MIBK/H2O ratio of 5/1. At higher ratios, a slight HMF yield decrease is observed
due to the higher formation of humins. Nevertheless, this decrease is as significant as the
decrease observed at low MIBK/H2O ratios (3/1). In general, MIBK also participates in
the reaction acting as a furanose tautomer stabilizer, which is more favorable for HMF
production [49]. However, a continuous increase in solvent quantity leads to a weaker
polarity of the solvation system and to a general decrease in the proton concentration
available in the reaction media and needed for fructose dehydration to HMF. Therefore, an
optimal ratio of 5/1 is observed for a maximal HMF yield.
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Figure 7. MIBK/H2O ratio effect for catalytic fructose dehydration over the CNF-SO3HMPMTS
catalyst, (mcatalyst = 40 mg, mfructose = 180 mg, time = 240 min, temperature = 165 ◦C, V(H2O) = 2 mL).

The effect of the reaction time on catalysts’ dehydration behavior was measured at a
constant temperature of 165 ◦C using a 5/1 solvent ratio (Figure 8). In the first 30 min, the
fructose conversion and HMF yield reached 21% and 13%, respectively. Fructose conversion
increases with time, while the HMF yield shows a maximum at 240 min and then drops. At
longer reaction times, it is difficult to improve the HMF yield as the condensation reaction
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occurs and humins start to appear. Therefore, the reaction time of 240 min is selected as the
optimal time of reaction.
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Figure 8. Time effect on fructose conversion and HMF yield over the CNF-SO3HMPMTS catalyst,
(mcatalyst = 40 mg, mfructose = 180 mg, temperature = 165 ◦C, V(H2O) = 2 mL, MIBK/H2O, 5/1 v/v).

Figure 9 shows the results obtained as a function of temperature at 240 min of reaction
and a solvent ratio of 5/1. Fructose conversion increases continuously with the temperature
up to 89% at 185 ◦C. The HMF yield shows a maximum of 62% at 165 ◦C, and afterwards a
higher tendency to self-condensation and polymerization appears.
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Figure 9. Temperature effect on fructose conversion and HMF yield over the CNF-SO3HMPMTS
catalyst, (mcatalyst = 40 mg, mfructose = 180 mg, time = 4 h, V(H2O) = 2 mL, MIBK/H2O, 5/1 v/v).

Thus, the effect of initial fructose loading is evaluated at 165 ◦C as the optimal tem-
perature. Changing the initial fructose loading from 90 mg to 360 mg negatively affects
the conversion, indicating an insufficient number of available active sites (Figure 10) at
higher substrate loading. The maximum HMF yield and selectivity is obtained at 180 mg
of substrate (72% conversion and 62% HMF yield).
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Figure 10. Substrate effect on fructose conversion and HMF yield over the CNF-SO3HMPMTS
catalyst, (mcatalyst = 40 mg, mfructose = 180 mg, time = 4 h, V(H2O) = 2 mL, MIBK/H2O, 5/1 v/v).

A higher substrate/catalyst ratio decreases the HMF yield. In fact, it decreases the
accessibility to the active sites, increases the residence time on the sites, and increases the
probability of secondary reactions, thus diminishing the HMF yield.

3.2. Catalyst Reuse

The recyclability is an important advantage of the solid catalyst over its homogeneous
analogs. CNF-SO3HPTMS catalyst is used in five reaction cycles and the corresponding
results are included in Figure 11. The catalytic performance remain stable in five consecutive
cycles. This behavior is expected in view of the adequate covalent functionalization of the
CNF surface and optimal reaction conditions. The leaching is virtually impossible and the
used catalyst appears as an excellent candidate to be used as heterogeneous catalysts for
efficient HMF production from fructose.
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ratio = 4.5 (180/40), time = 4 h, V(H2O) = 2 mL MIBK/H2O, 5/1, v/v).

3.3. Catalyst Kinetics and Tentative Reaction Mechanism on Functionalized CNF

In accordance with the experimental results and the literature [16,29,50–53], we fit the
kinetics of HMF production to a first-order reaction of fructose transformation to HMF and
humins proceeding via common intermediates.
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The results of kinetic model for fructose conversion, calculated by Equation (6) are
plotted in Figure S3.

−ln (1 − x) = k × t (6)

where x: fructose conversion, k: rate constant (min−1), and t: reaction time (min).
The first linear approximation with fixed first order shows a very high concordance with

the experimental data with a calculated constant rate value of 0.00213 min−1 at 165 ◦C and a
great correlation coefficient factor (R2 = 0.9924), suggesting plausible initial assumptions.

Thus, the validated equation was used further for the determination of the rate
constant at different temperatures (Table S1) and apparent activation energy Ea calculation
for fructose dehydration to HMF in the presence of the CNF-SO3HPTMS catalyst. A five-
fold increase in the constant is found within the studied range of temperatures indicating a
reaction acceleration at higher temperatures. The activation energy Ea is calculated from
the slope of the plot (Figure S4 and Table S1).

−ln (k) = ln A − Ea
R

1
T

with k: rate constant (min−1), A: pre-exponential factor (min−1) R = 8.314 × 10−3 (KJ mol K−1),
T: reaction temperature (◦K), and Ea apparent activation energy (KJ mol−1).

The calculated Ea shows that the amount of adsorbed fructose is not exactly correlated
with the temperature change, and therefore the activation energy should have been higher
than the heat of adsorption. The Ea for the CNF-SO3HPTMS catalyst (21.8 KJ/mol) is much
lower than other studied catalysts, like niobium and zirconium phosphates in water (65 and
186 KJ/mol respectively) [54,55], bi-functionalized mesoporous silica (67.5 KJ/mol) [56],
and halloysite-supported silicotungstic acid (85 KJ/mol) in DMSO [57].

These catalytic results and kinetics over the CNF-SO3HPTMS catalyst indicate very
good behavior in HMF production from highly concentrated fructose solutions, converting
the process to be more environmentally friendly with a low energy consumption suitable
for industrial applications.

As for the mechanistic behavior, clearly the dehydration of fructose to HMF is related
to the Lewis /Brønsted acidity strength and ratio [58–61]. Both type of sites participate in
fructose conversion. While Lewis sites catalyze the tautomerization of the enol intermediate
to aldehyde (Step 2 in Scheme 2), the Brønsted sites are majorly involved in the decrease
in the HMF production energy barrier. On the other hand, both centers catalyze the
protonation of OH groups, with Brønsted sites providing the protons and Lewis centers
participating in the lone-pair electron OH groups’ attack using their empty metal orbital
(Steps 1, 3, and 4).

After adsorption and protonation, the fructose cannot dehydrate in the presence of
Brønsted sites only (like in the case of CNF-O and CNF-S) and the hexose tautomer remains
in the pores of the catalysts to further oligomerize to humins. The presence of a nucleophile
such as a Lewis base (CNF-ILs) is needed to prevent the humin formation. On the other
side, the presence of a Lewis acid coupled with a Lewis base, as in the case of CNF-ILs and
CNF-APTMS, leads to low HMF production but high glucose production.

To improve the HMF production and to inhibit humin formation, the presence of
Lewis acid sites and weak to medium Brønsted acid sites (as in the case of sulfur organic
acid containing CNF, CNF-SO3HPTMS, and CNF-MPTMS) is desirable. It must be under-
lined that an optimum amount and ratio of acid sites are required for successful fructose
dehydration over CNF-based catalysts. Contrasting with the NH3-TPD analysis, we can
conclude that an important number of acid sites with moderate strength is required to
improve HMF production and inhibit secondary reactions.
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4. Conclusions

Novel carbonaceous hybrid catalysts, based on functionalized nanostructured CNF
with amino- and sulfur-containing organosilane and ionic liquids entities, have been
successfully prepared by covalent grafting. The latter allows the introduction of tandem
Bronsted/Lewis acid sites of a different nature, strength, and number. The type of acid
centers affects the catalytic properties of the functionalized materials to a great extent.
The best catalyst, CNF-SO3HPTMS, presents a fine balance between weak and moderate
Brønsted sites coupled to Lewis sites, resulting in an excellent catalytic choice in terms of
fructose conversion and HMF yield. Further, the fructose dehydration can be tuned by
changing some reaction variables, with a higher MIBK/H2O ratio being more beneficial
than an increase in time or temperature. The outperforming CNF-SO3HPTMS catalyst is
also stable under various reaction cycles, allowing us to conclude that a significant advance
in the preparation of novel bi-functional hybrid organic–inorganic material by the covalent
grafting method is achieved and opens the possibility to produce a new generation of
multifunctional solids for biomass valorization.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/nano14151293/s1, Figure S1: N2 physisorption isotherms of the CNF-
based catalysts; Figure S2: Calculated reaction parameters vs. NH3 area plot. (A) Fructose conversion,
(B) HMF yield, (C) HMF selectivity, (D) humin selectivity; Figure S3: The kinetics profile of fructose
dehydration (fitted by first-order assumption) over the SO3HPTMS catalyst; Figure S4: Arrhenius
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parameters for the global reaction of dehydration of fructose and Ea for fructose dehydration over
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