Enhanced Dye Adsorption on Cold Plasma-Oxidized Multi-Walled Carbon Nanotubes: A Comparative Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Chemical Modification of MWCNTs
2.3. Cold Plasma Experimental Setup and Experimental Conditions for the Modification of MWCNTs
2.4. Physicochemical Characterization of MWCNTs
2.5. Batch Adsorption Study
3. Results and Discussion
3.1. Effect of Treatment Time and Pulse Voltage on the Oxidation Degree of MWCNTs
3.2. Energy Efficiency of the Nanopulsed-DBD
3.3. Physicochemical and Morphological Characterization
3.3.1. XPS Analysis
3.3.2. TEM Analysis
3.3.3. BET Analysis
3.3.4. TGA
3.3.5. Measurement of Zeta Potential
3.4. Adsorption of MB onto Pristine, Chemically Oxidized, and Plasma-Oxidized MWCNTs
3.4.1. Effect of Adsorption Time
3.4.2. Effect of Pollutant Concentration
3.5. Adsorption Kinetics and Isotherm Models
3.6. Analysis of the Adsorption Mechanisms
3.7. Comparison of the Adsorption Capacity with Other Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Review on Recent Advances of Carbon Based Adsorbent for Methylene Blue Removal from Waste Water. Mater. Today Chem. 2020, 16, 100233. [Google Scholar] [CrossRef]
- Rajabi, M.; Mahanpoor, K.; Moradi, O. Removal of Dye Molecules from Aqueous Solution by Carbon Nanotubes and Carbon Nanotube Functional Groups: Critical Review. RSC Adv. 2017, 7, 47083–47090. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater. Sci. Rep. 2020, 10, 15928. [Google Scholar] [CrossRef] [PubMed]
- Stavrinou, A.; Aggelopoulos, C.A.; Tsakiroglou, C.D. Exploring the Adsorption Mechanisms of Cationic and Anionic Dyes onto Agricultural Waste Peels of Banana, Cucumber and Potato: Adsorption Kinetics and Equilibrium Isotherms as a Tool. J. Environ. Chem. Eng. 2018, 6, 6958–6970. [Google Scholar] [CrossRef]
- Stavrinou, A.; Aggelopoulos, C.A.; Tsakiroglou, C.D. A Methodology to Estimate the Sorption Parameters from Batch and Column Tests: The Case Study of Methylene Blue Sorption onto Banana Peels. Processes 2020, 8, 1467. [Google Scholar] [CrossRef]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Sajid, M.; Asif, M.; Baig, N.; Kabeer, M.; Ihsanullah, I.; Mohammad, A.W. Carbon Nanotubes-Based Adsorbents: Properties, Functionalization, Interaction Mechanisms, and Applications in Water Purification. J. Water Process Eng. 2022, 47, 102815. [Google Scholar] [CrossRef]
- Mbarek, W.B.; Escoda, L.; Saurina, J.; Pineda, E.; Alminderej, F.M.; Khitouni, M.; Suñol, J.-J. Nanomaterials as a Sustainable Choice for Treating Wastewater: A Review. Materials 2022, 15, 8576. [Google Scholar] [CrossRef]
- Narei, H.; Ghasempour, R.; Akhavan, O. Toxicity and Safety Issues of Carbon Nanotubes. In Carbon Nanotube-Reinforced Polymers; Elsevier: Amsterdam, The Netherlands, 2018; pp. 145–171. ISBN 978-0-323-48221-9. [Google Scholar]
- Gong, J.; Liu, J.; Jiang, Z.; Wen, X.; Mijowska, E.; Tang, T.; Chen, X. A Facile Approach to Prepare Porous Cup-Stacked Carbon Nanotube with High Performance in Adsorption of Methylene Blue. J. Colloid. Interface Sci. 2015, 445, 195–204. [Google Scholar] [CrossRef]
- Abdullah, T.A.; Juzsakova, T.; Hafad, S.A.; Rasheed, R.T.; Al-Jammal, N.; Mallah, M.A.; Salman, A.D.; Le, P.C.; Domokos, E.; Aldulaimi, M. Functionalized Multi-Walled Carbon Nanotubes for Oil Spill Cleanup from Water. Clean Technol. Environ. Policy 2022, 24, 519–541. [Google Scholar] [CrossRef]
- Aslam, M.M.-A.; Kuo, H.-W.; Den, W.; Usman, M.; Sultan, M.; Ashraf, H. Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability 2021, 13, 5717. [Google Scholar] [CrossRef]
- Gupta, V.K.; Moradi, O.; Tyagi, I.; Agarwal, S.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Makhlouf, A.S.H.; Goodarzi, M.; Garshasbi, A. Study on the Removal of Heavy Metal Ions from Industry Waste by Carbon Nanotubes: Effect of the Surface Modification: A Review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 93–118. [Google Scholar] [CrossRef]
- Krestinin, A.V.; Kharitonov, A.P.; Shul’ga, Y.M.; Zhigalina, O.M.; Knerel’man, E.I.; Dubois, M.; Brzhezinskaya, M.M.; Vinogradov, A.S.; Preobrazhenskii, A.B.; Zvereva, G.I.; et al. Fabrication and Characterization of Fluorinated Single-Walled Carbon Nanotubes. Nanotechnol. Russ. 2009, 4, 60–78. [Google Scholar] [CrossRef]
- Dettlaff, A.; Sawczak, M.; Klugmann-Radziemska, E.; Czylkowski, D.; Miotk, R.; Wilamowska-Zawłocka, M. High-Performance Method of Carbon Nanotubes Modification by Microwave Plasma for Thin Composite Films Preparation. RSC Adv. 2017, 7, 31940–31949. [Google Scholar] [CrossRef]
- Zagoraiou, E.; Paloukis, F.; Daletou, M.K. The Role of Surface Chemistry of Modified MWCNT on the Development and Characteristics of Pt Supported Catalysts. Nano-Struct. Nano-Objects 2020, 24, 100566. [Google Scholar] [CrossRef]
- Zagoraiou, E.; Paloukis, F.; Daletou, M.K. Correlations between Properties and Activity of Platinum Supported on Modified Carbon Nanotubes with Pyridines. Appl. Surf. Sci. 2021, 567, 150749. [Google Scholar] [CrossRef]
- Bernal-Ortega, P.; Bernal, M.M.; Blume, A.; González-Jiménez, A.; Posadas, P.; Navarro, R.; Valentín, J.L. Sulfur-Modified Carbon Nanotubes for the Development of Advanced Elastomeric Materials. Polymers 2021, 13, 821. [Google Scholar] [CrossRef] [PubMed]
- Brzhezinskaya, M.; Shmatko, V.; Yalovega, G.; Krestinin, A.; Bashkin, I.; Bogoslavskaja, E. Electronic Structure of Hydrogenated Carbon Nanotubes Studied by Core Level Spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 2014, 196, 99–103. [Google Scholar] [CrossRef]
- Lavagna, L.; Bartoli, M.; Suarez-Riera, D.; Cagliero, D.; Musso, S.; Pavese, M. Oxidation of Carbon Nanotubes for Improving the Mechanical and Electrical Properties of Oil-Well Cement-Based Composites. ACS Appl. Nano Mater. 2022, 5, 6671–6678. [Google Scholar] [CrossRef]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical Oxidation of Multiwalled Carbon Nanotubes. Carbon 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Ghaedi, M.; Kokhdan, S.N. Oxidized Multiwalled Carbon Nanotubes for the Removal of Methyl Red (MR): Kinetics and Equilibrium Study. Desalination Water Treat. 2012, 49, 317–325. [Google Scholar] [CrossRef]
- Naseh, M.V.; Khodadadi, A.A.; Mortazavi, Y.; Pourfayaz, F.; Alizadeh, O.; Maghrebi, M. Fast and Clean Functionalization of Carbon Nanotubes by Dielectric Barrier Discharge Plasma in Air Compared to Acid Treatment. Carbon 2010, 48, 1369–1379. [Google Scholar] [CrossRef]
- Atif, M.; Afzaal, I.; Naseer, H.; Abrar, M.; Bongiovanni, R. Review—Surface Modification of Carbon Nanotubes: A Tool to Control Electrochemical Performance. ECS J. Solid. State Sci. Technol. 2020, 9, 041009. [Google Scholar] [CrossRef]
- Daletou, M.K.; Aggelopoulos, C.A. Highly-Energy Efficient Oxidation of MWCNT with Nanosecond Pulsed Dielectric Barrier Discharge Plasma. Appl. Surf. Sci. 2021, 563, 150139. [Google Scholar] [CrossRef]
- Hosseini, H.; Ghaffarzadeh, M. Surface Functionalization of Carbon Nanotubes via Plasma Discharge: A Review. Inorg. Chem. Commun. 2022, 138, 109276. [Google Scholar] [CrossRef]
- Nehra, V.; Kumar, A.; Dwivedi, H.K. Atmospheric Non-Thermal Plasma Sources. Int. J. Eng. 2008, 2, 53–68. [Google Scholar]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on Electrical Discharge Plasma Technology for Wastewater Remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Keener, K.M. Cold Plasma: Background, Applications and Current Trends. Curr. Opin. Food Sci. 2017, 16, 49–52. [Google Scholar] [CrossRef]
- Aggelopoulos, C.A. Recent Advances of Cold Plasma Technology for Water and Soil Remediation: A Critical Review. Chem. Eng. J. 2022, 428, 131657. [Google Scholar] [CrossRef]
- Aggelopoulos, C.A. Atmospheric Pressure Dielectric Barrier Discharge for the Remediation of Soil Contaminated by Organic Pollutants. Int. J. Environ. Sci. Technol. 2016, 13, 1731–1740. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Men, Y.; Liu, P.; Meng, X.; Pan, Y. Recent Progresses in Material Fabrication and Modification by Cold Plasma Technique. FirePhysChem 2022, 2, 214–220. [Google Scholar] [CrossRef]
- Meyer-Plath, A.A.; Finke, B.; Schröder, K.; Ohl, A. Pulsed and Cw Microwave Plasma Excitation for Surface Functionalization in Nitrogen-Containing Gases. Surf. Coat. Technol. 2003, 174–175, 877–881. [Google Scholar] [CrossRef]
- Duan, S.; Liu, X.; Wang, Y.; Meng, Y.; Alsaedi, A.; Hayat, T.; Li, J. Plasma Surface Modification of Materials and Their Entrapment of Water Contaminant: A Review. Plasma Process Polym. 2017, 14, 1600218. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Luo, T.; Zhang, Y.-X.; Jia, Y.; Zhu, B.-J.; Fu, X.-C.; Liu, J.-H.; Huang, X.-J. Adsorption of Lead(II) on O2-Plasma-Oxidized Multiwalled Carbon Nanotubes: Thermodynamics, Kinetics, and Desorption. ACS Appl. Mater. Interfaces 2011, 3, 2585–2593. [Google Scholar] [CrossRef] [PubMed]
- Charalampopoulos, G.; Meropoulis, S.; Aggelopoulos, C.A.; Daletou, M.K. Comparative Study of Chemical Oxidation, Nanopulsed Plasma and Calcination on the Properties of Carbon Black. Mater. Chem. Phys. 2024, 317, 129175. [Google Scholar] [CrossRef]
- Giannoulia, S.; Tekerlekopoulou, A.G.; Aggelopoulos, C.A. Exploration of Cephalexin Adsorption Mechanisms onto Bauxite and Palygorskite and Regeneration of Spent Adsorbents with Cold Plasma Bubbling. Appl. Water Sci. 2024, 14, 51. [Google Scholar] [CrossRef]
- Niemantsverdriet, J.W. Spectroscopy in Catalysis: An Introduction, Third, Completely Revised and Enlarged; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-3-527-31651-9. [Google Scholar]
- Brzhezinskaya, M.; Belenkov, E.A.; Greshnyakov, V.A.; Yalovega, G.E.; Bashkin, I.O. New Aspects in the Study of Carbon-Hydrogen Interaction in Hydrogenated Carbon Nanotubes for Energy Storage Applications. J. Alloys Compd. 2019, 792, 713–720. [Google Scholar] [CrossRef]
- Susi, T.; Pichler, T.; Ayala, P. X-ray Photoelectron Spectroscopy of Graphitic Carbon Nanomaterials Doped with Heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177–192. [Google Scholar] [CrossRef]
- Fagerlund, G. Determination of Specific Surface by the BET Method. Matér. Constr. 1973, 6, 239–245. [Google Scholar] [CrossRef]
- Lunardi, C.N.; Gomes, A.J.; Rocha, F.S.; De Tommaso, J.; Patience, G.S. Experimental Methods in Chemical Engineering: Zeta Potential. Can. J. Chem. Eng. 2021, 99, 627–639. [Google Scholar] [CrossRef]
- Takamasa, S.; Katsumi, N. Surface Processes and Adsorption States of Methylene Blue at Graphite Electrode Surfaces in an Acidic Medium: An Electroreflectranca Study. Langmuir 1993, 9, 831–838. [Google Scholar]
- Chen, C.; Liang, B.; Ogino, A.; Wang, X.; Nagatsu, M. Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave Plasma Treatment. J. Phys. Chem. C 2009, 113, 7659–7665. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, Y.; Liu, P.; Men, Y.-L.; Pan, Y.-X. Boosting the Adsorption and Removal of Dye from Water by COOH-Functionalized Carbon Nanotubes. Green Chem. Eng. 2022, 4, 88–98. [Google Scholar] [CrossRef]
- Guo, L.L.; Luo, Z.H.; Zhao, Y.Z.; Guo, J.; Zhu, M.; Luo, K.; Huang, A.Z. Functionalization of Multiwalled Carbon Nanotubes Using Cold Plasma Treatment and Their Electrochemical Performances. Int. J. Electrochem. Sci. 2019, 14, 11081–11091. [Google Scholar] [CrossRef]
- Merenda, A.; des Ligneris, E.; Sears, K.; Chaffraix, T.; Magniez, K.; Cornu, D.; Schütz, J.A.; Dumée, L.F. Assessing the Temporal Stability of Surface Functional Groups Introduced by Plasma Treatments on the Outer Shells of Carbon Nanotubes. Sci. Rep. 2016, 6, 31565. [Google Scholar] [CrossRef]
- Chen, C.; Ogino, A.; Wang, X.; Nagatsu, M. Plasma Treatment of Multiwall Carbon Nanotubes for Dispersion Improvement in Water. Appl. Phys. Lett. 2010, 96, 131504. [Google Scholar] [CrossRef]
- Wang, W.-H.; Huang, B.-C.; Wang, L.-S.; Ye, D.-Q. Oxidative Treatment of Multi-Wall Carbon Nanotubes with Oxygen Dielectric Barrier Discharge Plasma. Surf. Coat. Technol. 2011, 205, 4896–4901. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Agnello, S.; Glisenti, A. Plasma Functionalization of Multiwalled Carbon Nanotubes and Their Use in the Preparation of Nylon 6-Based Nanohybrids: Plasma Modified CNTs in Ny6 Composites. Plasma Process. Polym. 2012, 9, 503–512. [Google Scholar] [CrossRef]
- Steffen, T.T.; Fontana, L.C.; Nahorny, J.; Becker, D. Role of Nitrogen–Oxygen Plasma Functionalization of Carbon Nanotubes in Epoxy Nanocomposites. Polym. Compos. 2019, 40, E1162–E1171. [Google Scholar] [CrossRef]
- Sobaszek, M.; Brzhezinskaya, M.; Olejnik, A.; Mortet, V.; Alam, M.; Sawczak, M.; Ficek, M.; Gazda, M.; Weiss, Z.; Bogdanowicz, R. Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry. Small 2023, 19, 2208265. [Google Scholar] [CrossRef] [PubMed]
- Gengenbach, T.R.; Major, G.H.; Linford, M.R.; Easton, C.D. Practical Guides for X-Ray Photoelectron Spectroscopy (XPS): Interpreting the Carbon 1s Spectrum. J. Vac. Sci. Technol. A Vac. Surf. Film 2021, 39, 013204. [Google Scholar] [CrossRef]
- Kovtun, A.; Jones, D.; Dell’Elce, S.; Treossi, E.; Liscio, A.; Palermo, V. Accurate Chemical Analysis of Oxygenated Graphene-Based Materials Using X-Ray Photoelectron Spectroscopy. Carbon 2019, 143, 268–275. [Google Scholar] [CrossRef]
- Tamargo-Martínez, K.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Surface Modification of High-Surface Area Graphites by Oxygen Plasma Treatments. Appl. Surf. Sci. 2022, 575, 151675. [Google Scholar] [CrossRef]
- Haubner, K.; Murawski, J.; Olk, P.; Eng, L.M.; Ziegler, C.; Adolphi, B.; Jaehne, E. The Route to Functional Graphene Oxide. ChemPhysChem 2010, 11, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Brzhezinskaya, M.; Mishakov, I.V.; Bauman, Y.I.; Shubin, Y.V.; Maksimova, T.A.; Stoyanovskii, V.O.; Gerasimov, E.Y.; Vedyagin, A.A. One-Pot Functionalization of Catalytically Derived Carbon Nanostructures with Heteroatoms for Toxic-Free Environment. Appl. Surf. Sci. 2022, 590, 153055. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Kapitanova, O.O.; Kononenko, O.V.; Koveshnikov, S.; Korepanov, V.; Roshchupkin, D. Large-Scalable Graphene Oxide Films with Resistive Switching for Non-Volatile Memory Applications. J. Alloys Compd. 2020, 849, 156699. [Google Scholar] [CrossRef]
- White, C.T.; Todorov, T.N. Carbon Nanotubes as Long Ballistic Conductors. Nature 1998, 393, 240–242. [Google Scholar] [CrossRef]
- Serp, P. Carbon Nanotubes and Nanofibers in Catalysis. Appl. Catal. A Gen. General 2003, 253, 337–358. [Google Scholar] [CrossRef]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of Linear and Nonlinear Equations of Pseudo-First Order and Pseudo-Second Order Kinetic Models. Karbala Int. J. Mod. Sci. 2018, 4, 244–254. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Bergmann, C.P.; Machado, F.M. (Eds.) Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Carbon Nanostructures; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-18874-4. [Google Scholar]
- Alaqarbeh, M. Adsorption Phenomena: Definition, Mechanisms, and Adsorption Types: Short Review. RHAZES Green Appl. Chem. 2021, 13, 43–51. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Konicki, W.; Pełech, I. Removing Cationic Dye from Aqueous SolutionsUsing As-Grown and Modified Multi-WalledCarbon Nanotubes. Pol. J. Environ. Stud. 2018, 28, 717–727. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A. Adsorptive Removal of Dyes from Aqueous Solution onto Carbon Nanotubes: A Review. Adv. Colloid. Interface Sci. 2013, 193–194, 24–34. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Liao, F.; Wang, Y.; Li, M.; Meng, L.; Jiang, J. Removal of Methylene Blue from Aqueous Solution with Magnetite Loaded Multi-Wall Carbon Nanotube: Kinetic, Isotherm and Mechanism Analysis. J. Hazard. Mater. 2011, 198, 282–290. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption Behavior of Methylene Blue on Carbon Nanotubes. Bioresour. Technol. 2010, 101, 3040–3046. [Google Scholar] [CrossRef]
- Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; et al. Comparative Study of Methylene Blue Dye Adsorption onto Activated Carbon, Graphene Oxide, and Carbon Nanotubes. Chem. Eng. Res. Des. 2013, 91, 361–368. [Google Scholar] [CrossRef]
- Şahin, Ö.; Kaya, M.; Saka, C. Plasma-Surface Modification on Bentonite Clay to Improve the Performance of Adsorption of Methylene Blue. Appl. Clay Sci. 2015, 116–117, 46–53. [Google Scholar] [CrossRef]
- Gong, J.-L.; Wang, B.; Zeng, G.-M.; Yang, C.-P.; Niu, C.-G.; Niu, Q.-Y.; Zhou, W.-J.; Liang, Y. Removal of Cationic Dyes from Aqueous Solution Using Magnetic Multi-Wall Carbon Nanotube Nanocomposite as Adsorbent. J. Hazard. Mater. 2009, 164, 1517–1522. [Google Scholar] [CrossRef]
Sample | Treatment Time (min) | Pulse Voltage (kV) | O/C |
---|---|---|---|
Pristine | - | - | 0.020 |
Chem | - | - | 0.051 |
Pl 23_10 | 10 | 23 | 0.055 |
Pl 31_10 | 10 | 31 | 0.063 |
Pl 23_20 | 20 | 23 | 0.054 |
Pl 31_20 | 20 | 31 | 0.072 |
Pl 31_30 | 30 | 31 | 0.073 |
Pl 31_60 | 60 | 31 | 0.090 |
Plasma System | Gas | Treatment Time (min) | Initial O/C | Final O/C | Power (W) | Ref. |
---|---|---|---|---|---|---|
Nanopulsed Dielectric Barrier Discharge | Air | 10 | 0.020 | 0.063 | ~0.95 | Present study |
Nanopulsed Dielectric Barrier Discharge | Air | 60 | 0.020 | 0.090 | ~0.95 | Present study |
Microwave-Excited Surface Wave) | Ar/O2 | 15 | 0.127 | 0.701 | 700 | [46] |
Microwave-Excited Surface Wave | O2 | 15 | 0.127 | 0.509 | 700 | [46] |
Radio Frequencies | O2 | 30 | 0.009 | 0.13 | 50 | [37] |
Dielectric Barrier Discharge | O2 | 30 | 0.011 | 0.025 | - | [47] |
Corona Discharge | Air | 30 | 0.010 | 0.038 | 21 | [48] |
High Frequency Generator | O2/Ar | 5 | 0.017 | 0.148 | 80 | [49] |
Microwave-Excited Surface Wave | Ar/Ar-H2O | Ar (5 min)/ Ar-H2O (10 min) | 0.127 | 0.449 | 700 | [50] |
Dielectric Barrier Discharge | O2 | 40 | 0.019 | 0.081 | 15 | [51] |
Radio Frequencies | O2 | 10 | 0.013 | 0.103 | - | [52] |
Radio Frequencies | Air | 10 | 0.013 | 0.063 | - | [52] |
Radio Frequencies | Ar-O2 | 60 | 0.031 | 0.138 | 40 | [53] |
Sample | Surface Area BET (m2/g) | Pore Volume (cm3/g) |
---|---|---|
Pristine | 107 | 0.302 |
Chem | 116 | 0.340 |
Pl 31_20 | 118 | 0.345 |
Pl 31_60 | 124 | 0.359 |
Adsorbent | Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|---|
(mg/g) | (min) | (mg/g) | (g/mg min) | (mg/g) | |||
Pristine | 27.79 | 0.011 | 7.52 | 0.647 | 0.006 | 27.89 | 0.999 |
Chem | 46.37 | 0.014 | 21.00 | 0.930 | 0.002 | 46.66 | 0.999 |
Pl 31_60 | 52.13 | 0.012 | 11.36 | 0.749 | 0.004 | 52.27 | 0.999 |
Adsorbent | Langmuir Model | Freundlich Model | |||||||
---|---|---|---|---|---|---|---|---|---|
(mg/g) | (mg/g) | (L/mg) | (mg/g) (L/mg) 1/n | ||||||
Pristine | 35.20 | 35.52 | 0.001 | 0.97–0.76 | 0.996 | 5.76 | 16.490 | 0.173 | 0.638 |
Chem | 50.82 | 50.60 | 0.000 | 0.99–0.92 | 0.999 | 4.35 | 21.135 | 0.229 | 0.748 |
Pl 31_60 | 54.60 | 54.67 | 0.000 | 0.99–0.95 | 0.999 | 4.42 | 23.962 | 0.225 | 0.651 |
Adsorbent | Treatment Oxidation | Dye | pH | Concentration of Dye (mg/L) | Adsorption Capacity, Q (mg/g) | Adsorption Time (h) | Reference |
---|---|---|---|---|---|---|---|
Pristine | - | MB | ~6 | 120 | 35.52 | 24 | This study |
Chem | chemical | MB | ~6 | 120 | 50.82 | 24 | This study |
Pl 31_60 | plasma | MB | ~6 | 120 | 54.60 | 24 | This study |
CNT0 | - | MR | 6 | 35 | 68.44 | 1 | [47] |
CNT60 | plasma | MR | 6 | 35 | 80.33 | 1 | [47] |
MWCNT-COOH | chemical | MR | 4 | 20 | 108.69 | 0.42 | [23] |
AC | chemical | MB | 6 | 100 | 270.27 | 5 | [72] |
GO | chemical | MB | 6 | 100 | 243.90 | 5 | [72] |
CNTs | chemical | MB | 6 | 100 | 188.68 | 5 | [72] |
Magnetite -MWCNTs | chemical | MB | 6.5 | 30 | 48.06 | 2 | [70] |
CNTs | chemical | MB | 7 | 20 | 46.20 | 1 | [71] |
Plasma-treated bentonite | plasma | MB | - | 200 | 303 | - | [73] |
MWCNTs | - | MB | 7 | 1.4–37.4 | 15.87 | 24 | [74] |
MMWCNTs | magnetic | MB | 7 | 1.4–37.4 | 15.74 | 24 | [74] |
CSCNT | - | MB | 6 | 25 | 50.5 | 3 | [11] |
P-CSCNT | chemical | MB | 6 | 150 | 319.1 | 3 | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skourti, A.; Giannoulia, S.; Daletou, M.K.; Aggelopoulos, C.A. Enhanced Dye Adsorption on Cold Plasma-Oxidized Multi-Walled Carbon Nanotubes: A Comparative Study. Nanomaterials 2024, 14, 1298. https://doi.org/10.3390/nano14151298
Skourti A, Giannoulia S, Daletou MK, Aggelopoulos CA. Enhanced Dye Adsorption on Cold Plasma-Oxidized Multi-Walled Carbon Nanotubes: A Comparative Study. Nanomaterials. 2024; 14(15):1298. https://doi.org/10.3390/nano14151298
Chicago/Turabian StyleSkourti, Anastasia, Stefania Giannoulia, Maria K. Daletou, and Christos A. Aggelopoulos. 2024. "Enhanced Dye Adsorption on Cold Plasma-Oxidized Multi-Walled Carbon Nanotubes: A Comparative Study" Nanomaterials 14, no. 15: 1298. https://doi.org/10.3390/nano14151298
APA StyleSkourti, A., Giannoulia, S., Daletou, M. K., & Aggelopoulos, C. A. (2024). Enhanced Dye Adsorption on Cold Plasma-Oxidized Multi-Walled Carbon Nanotubes: A Comparative Study. Nanomaterials, 14(15), 1298. https://doi.org/10.3390/nano14151298