Hydrothermal Synthesis of β-NiS Nanoparticles and Their Applications in High-Performance Hybrid Supercapacitors
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lamba, P.; Singh, P.; Singh, P.; Singh, P.; Bharti; Kumar, A.; Gupta, M.; Kumar, Y. Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. J. Energy Storage 2022, 48, 103871. [Google Scholar] [CrossRef]
- Tan, J.; Li, Z.; Ye, M.; Shen, J. Nanoconfined space: Revisiting the charge storage mechanism of electric double layer capacitors. ACS Appl. Mater. Interfaces 2022, 14, 37259–37269. [Google Scholar] [CrossRef] [PubMed]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.-L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070–16080. [Google Scholar] [CrossRef]
- Palacín, M.R.; De Guibert, A. Why do batteries fail? Science 2016, 351, 1253292. [Google Scholar] [CrossRef] [PubMed]
- Belmesov, A.A.; Glukhov, A.A.; Kayumov, R.R.; Podlesniy, D.N.; Latkovskaya, E.M.; Repina, M.A.; Ivanov, N.P.; Tsvetkov, M.V.; Shichalin, O.O. Using Aquatic Plant-Derived Biochars as Carbon Materials for the Negative Electrodes of Li-Ion Batteries. Coatings 2023, 13, 2075. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854. [Google Scholar] [CrossRef]
- Huang, J.; Xie, Y.; You, Y.; Yuan, J.; Xu, Q.; Xie, H.; Chen, Y. Rational design of electrode materials for advanced supercapacitors: From lab research to commercialization. Adv. Funct. Mater. 2023, 33, 2213095. [Google Scholar] [CrossRef]
- Buravlev, I.Y.; Vornovskikh, A.; Shichalin, O.; Lembikov, A.; Simonenko, T.; Seroshtan, A.; Buravleva, A.; Kosyanov, D.Y.; Papynov, E. Reactive spark plasma synthesis of Mo2C/Mo3Co3C ceramic for heterostructured electrodes used for hydrogen energy technology. Ceram. Int. 2024, 50, 14445–14457. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef]
- Horn, M.; MacLeod, J.; Liu, M.; Webb, J.; Motta, N. Supercapacitors: A new source of power for electric cars? Econ. Anal. Policy 2019, 61, 93–103. [Google Scholar] [CrossRef]
- Wang, T.; Chen, H.C.; Yu, F.; Zhao, X.; Wang, H. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019, 16, 545–573. [Google Scholar] [CrossRef]
- Laheäär, A.; Arenillas, A.; Béguin, F. Change of self-discharge mechanism as a fast tool for estimating long-term stability of ionic liquid based supercapacitors. J. Power Sources 2018, 396, 220–229. [Google Scholar] [CrossRef]
- Gong, S.; Zhao, F.; Xu, H.; Li, M.; Qi, J.; Wang, H.; Wang, Z.; Fan, X.; Li, C.; Liu, J. Iodine-functionalized titanium carbide MXene with ultra-stable pseudocapacitor performance. J. Colloid Interface Sci. 2022, 615, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Bryan, A.M.; Santino, L.M.; Lu, Y.; Acharya, S.; D’arcy, J.M. Conducting polymers for pseudocapacitive energy storage. Chem. Mater. 2016, 28, 5989–5998. [Google Scholar] [CrossRef]
- Qu, C.; Liang, Z.; Jiao, Y.; Zhao, B.; Zhu, B.; Dang, D.; Dai, S.; Chen, Y.; Zou, R.; Liu, M. “One-for-all” strategy in fast energy storage: Production of pillared MOF nanorod-templated positive/negative electrodes for the application of high-performance hybrid supercapacitor. Small 2018, 14, 1800285. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-G.; Liang, Z.; Gao, S.; Qu, C.; Zou, R. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 2020, 404, 213093. [Google Scholar] [CrossRef]
- Liu, H.; Yao, Z.; Liu, Y.; Diao, Y.; Hu, G.; Zhang, Q.; Li, Z. In situ synthesis of nitrogen site activated cobalt sulfide@N, S dual-doped carbon composite for a high-performance asymmetric supercapacitor. J. Colloid Interface Sci. 2020, 585, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-F.; Seo, E.-J.; Klauck, S.M.; Efferth, T. Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells. Phytomedicine 2016, 23, 174–180. [Google Scholar] [CrossRef]
- Mohan, M.; Shetti, N.P.; Aminabhavi, T.M. Phase dependent performance of MoS2 for supercapacitor applications. J. Energy Storage 2023, 58, 106321. [Google Scholar] [CrossRef]
- Dai, Z.; Zang, X.; Yang, J.; Sun, C.; Si, W.; Huang, W.; Dong, X. Template synthesis of shape-tailorable NiS2 hollow prisms as high-performance supercapacitor materials. ACS Appl. Mater. Interfaces 2015, 7, 25396–25401. [Google Scholar] [CrossRef]
- Zan, G.; Li, S.; Chen, P.; Dong, K.; Wu, Q.; Wu, T. Mesoporous Cubic Nanocages Assembled by Coupled Monolayers With 100% Theoretical Capacity and Robust Cycling. ACS Cent. Sci. 2024, 10, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, Z.; Chen, R.; Wu, Q.; Zan, G. Advanced nickel-based composite materials for supercapacitor electrodes. Ionics 2024, 30, 1833–1855. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Lei, J.; Chen, K.; Wang, H. Electrochemically induced surface reconstruction of Ni-Co oxide nanosheet arrays for hybrid supercapacitors. Exploration 2021, 1, 210178. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Ding, D.; Gao, Y. Controllable synthesis of three-dimensional beta-NiS nanostructured assembly for hybrid-type asymmetric supercapacitors. Nanomaterials 2020, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Xue, W.-D.; Zhang, Y.; He, D.-X.; Wang, W.-J.; Zhao, R. Solvothermal synthesis of hierarchical alpha-NiS particles as battery-type electrode materials for hybrid supercapacitors. J. Alloy Compd. 2019, 806, 1068–1076. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Su, C.-Y.; Chen, J.-L.; Huang, W.-H.; Lou, R. Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor. Rare Met. 2023, 42, 769–796. [Google Scholar] [CrossRef]
- Luo, Q.; Lu, C.; Liu, L.; Zhu, M. Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor. Microstructures 2023, 3, 2023011. [Google Scholar] [CrossRef]
- Huai, X.; Liu, J.; Wu, X. Cobalt-doped NiMoO4 nanosheet for high-performance flexible supercapacitor. Chin. J. Struct. Chem. 2023, 42, 100158. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Karthik, N.; Ganesh, K.; Xiong, D.; Lee, Y.R. A novel binder-free electro-synthesis of hierarchical nickel sulfide nanostructures on nickel foam as a battery-type electrode for hybrid-capacitors. Fuel 2020, 276, 118077. [Google Scholar] [CrossRef]
- Meng, S.; Wang, Y.; He, J.; Quan, W.; Gao, M.; Jiang, D.; Chen, M. Nanowire-assembled Co3O4@NiS core-shell hierarchical with enhanced electrochemical performance for asymmetric supercapacitors. Nanotechnology 2020, 31, 295403. [Google Scholar] [CrossRef]
- Ni, J.; Zhu, X.; Yuan, Y.; Wang, Z.; Li, Y.; Ma, L.; Dai, A.; Li, M.; Wu, T.; Shahbazian-Yassar, R.; et al. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage. Nat. Commun. 2020, 11, 1212–1220. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Gopi, C.V.V.M.; Reddy, A.E.; Kim, H.-J. Facile synthesis of a NiO/NiS hybrid and its use as an efficient electrode material for supercapacitor applications. New J. Chem. 2018, 42, 5309–5313. [Google Scholar] [CrossRef]
- Sun, C.; Ma, M.; Yang, J.; Zhang, Y.; Chen, P.; Huang, W.; Dong, X. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors. Sci. Rep. 2014, 4, 7054. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wei, F.; Sui, Y.; Qi, J.; Zhang, X. Interconnected NiS-nanosheets@porous carbon derived from Zeolitic-imidazolate frameworks (ZIFs) as electrode materials for high-performance hybrid supercapacitors. Int. J. Hydrog. Energy 2020, 45, 19237–19245. [Google Scholar] [CrossRef]
- Peng, Q.; Yang, W.; Li, X.; Yang, H.; Cao, J.; Wang, J.; Zheng, Y.; Pan, J.; Li, C. The NiS/CdS hollow octahedral composites towards enhanced photocatalytic hydrogen evolution and photodegradation via active sites synergism. Int. J. Hydrog. Energy 2023, 48, 36427–36438. [Google Scholar] [CrossRef]
- Issatayev, N.; Adylkhanova, A.; Salah, M.; Bakenov, Z.; Kalimuldina, G. Room temperature growth of NiS hierarchical nanoflowers on the flexible electrode surface as a cathode for lithium-ion batteries. Mater. Lett. 2024, 354, 135341. [Google Scholar] [CrossRef]
- Zhao, J.; Guan, B.; Hu, B.; Xu, Z.; Wang, D.; Zhang, H. Vulcanizing time controlled synthesis of NiS microflowers and its application in asymmetric supercapacitors. Electrochim. Acta 2017, 230, 428–437. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, S.; Zou, X.; Hao, J.; Bai, Y.; Yan, L.; Li, W. Coordination agent-dominated phase control of nickel sulfide for high-performance hybrid supercapacitor. J. Colloid Interface Sci. 2021, 607, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, J.; Zhang, L.; Cheng, B.; Yu, J. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J. Mater. Sci. Technol. 2020, 47, 113–121. [Google Scholar] [CrossRef]
- Xu, X.B.; Zhong, W.; Zhang, X.; Dou, J.; Xiong, Z.G.; Sun, Y.; Wang, T.T.; Du, Y.W. Flexible symmetric supercapacitor with ultrahigh energy density based on NiS/MoS2@N-rGO hybrids electrode. J. Colloid Interface Sci. 2019, 543, 147–155. [Google Scholar] [CrossRef]
- Li, Z.; Wu, R.; Bao, E.; Du, S.; Xu, C.; Zhu, J.; Mao, H.; Chen, H. Assembly of high-performance hybrid supercapacitors using FeCo2O4 microflowers as battery-type cathode materials. Ceram. Int. 2023, 49, 10411–10419. [Google Scholar] [CrossRef]
- Lu, S.; Yang, W.; Zhou, M.; Qiu, L.; Tao, B.; Zhao, Q.; Wang, X.; Zhang, L.; Xie, Q.; Ruan, Y. Nitrogen- and oxygen-doped carbon with abundant micropores derived from biomass waste for all-solid-state flexible supercapacitors. J. Colloid Interface Sci. 2022, 610, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-K.; Mondal, A.; Su, Y.-Z.; Sofer, Z.; Anuratha, K.S.; Lin, J.-Y. Highly hydrophilic electrodeposited NiS/Ni3S2 interlaced nanosheets with surface-enriched Ni3+ sites as binder-free flexible cathodes for high-rate hybrid supercapacitors. Appl. Surf. Sci. 2022, 579, 151923. [Google Scholar] [CrossRef]
- Cao, S.; Li, H.; Zhou, X.; Guo, H.; Chen, Y. NiS/activated carbon composite derived from sodium lignosulfonate for long cycle-life asymmetric supercapacitors. J. Alloy Compd. 2022, 900, 163546. [Google Scholar] [CrossRef]
- Bhagwan, J.; Han, J.I. Promotive effect of MWCNTs on alpha-NiS microstructure and their application in aqueous asymmetric supercapacitor. Energy Fuels 2022, 36, 15210–15220. [Google Scholar] [CrossRef]
- Parveen, N.; Ansari, S.A.; Fouad, H.; El-Salam, N.M.A.; Cho, M.H. Solid-state symmetrical supercapacitor based on hierarchical flower-like nickel sulfide with shape-controlled morphological evolution. Electrochim. Acta 2018, 268, 82–93. [Google Scholar] [CrossRef]
- Huang, L.; Hou, H.; Liu, B.; Zeinu, K.; Yuan, X.; Zhu, X.; He, X.; Wu, L.; Hu, J.; Yang, J. Phase-controlled solvothermal synthesis and morphology evolution of nickel sulfide and its pseudocapacitance performance. Ceram. Int. 2017, 43, 3080–3088. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Xu, G.; Zhang, C.; Song, H.; He, Y.; Zhang, C.; Jia, D. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. Chem. Eng. J. 2017, 320, 22–28. [Google Scholar] [CrossRef]
- Guan, B.; Li, Y.; Yin, B.; Liu, K.; Wang, D.; Zhang, H.; Cheng, C. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem. Eng. J. 2017, 308, 1165–1173. [Google Scholar] [CrossRef]
- Bhagwan, J.; Hussain, S.K.; Krishna, B.N.V.; Yu, J.S. β-NiS 3D micro-flower-based electrode for aqueous asymmetric supercapacitors. Sustain. Energy Fuels 2020, 4, 5550–5559. [Google Scholar] [CrossRef]
- Lu, M.; Yuan, X.-P.; Guan, X.-H.; Wang, G.-S. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J. Mater. Chem. A 2017, 5, 3621–3627. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, X.; Zhan, J.; Sui, Y.; Qi, J.; Wei, F.; Meng, Q.; He, Y.; Ren, Y.; Zhan, Z.; et al. Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. Adv. Mater. Interfaces 2020, 7, 1901618. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Qiao, Y. NiS/Cu7S4 composites as high-performance supercapacitor electrodes. J. Solid State Electrochem. 2023, 27, 25–36. [Google Scholar] [CrossRef]
- Ansari, S.A.; Kotb, H.M.; Ahmad, M.M. Wrinkle-shaped nickel sulfide grown on three-dimensional nickel foam: A binder-free electrode designed for high-performance electrochemical supercapacitor applications. Crystals 2022, 12, 757. [Google Scholar] [CrossRef]
- Yan, H.; Zhu, K.; Liu, X.; Wang, Y.; Wang, Y.; Zhang, D.; Lu, Y.; Peng, T.; Liu, Y.; Luo, Y. Ultra-thin NiS nanosheets as advanced electrode for high energy density supercapacitors. RSC Adv. 2020, 10, 8760–8765. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.R.; Sandhyarani, N. SILAR deposited nickel sulphide-nickel hydroxide nanocomposite for high performance asymmetric supercapacitor. Electrochim. Acta 2020, 356, 136844. [Google Scholar] [CrossRef]
- Wu, J.; Ouyang, C.; Dou, S.; Wang, S. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors. Nanotechnology 2015, 26, 325401. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shi, Y.; Sun, L.; Xie, F.; Gao, K.; Qu, Y.; Tan, H.; Zhang, Y. MOF-derived spherical NixSy/carbon with B-doping enabling high supercapacitive performance. J. Mater. Sci. Technol. 2023, 153, 219–227. [Google Scholar] [CrossRef]
- Mishra, D.; Kumar, N.; Kumar, A.; Seo, S.G.; Jin, S.H. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors. J. Mater. Sci. Technol. 2022, 113, 217–228. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Li, S.; Sun, J.; Zhang, Y.; Chen, H.; Xu, C. Facile solvothermal synthesis of novel MgCo2O4 twinned-hemispheres for high performance asymmetric supercapacitors. J. Alloy Compd. 2020, 818, 152905. [Google Scholar] [CrossRef]
- Sun, J.; Du, X.; Wu, R.; Mao, H.; Xu, C.; Chen, H. Simple synthesis of honeysuckle-like CuCo2O4/CuO composites as a battery type electrode material for high-performance hybrid supercapacitors. Int. J. Hydrog. Energy 2021, 46, 66–79. [Google Scholar] [CrossRef]
- Haripriya, M.; Manimekala, T.; Dharmalingam, G.; Minakshi, M.; Sivasubramanian, R. Asymmetric Supercapacitors Based on ZnCo2O4 Nanohexagons and Orange Peel Derived Activated Carbon Electrodes. Chem.-Asian J. 2024, 19, e202400202. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yu, M.; Feng, X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.S.; Liu, Y.F.; Liu, X.H.; Xu, C.J.; Zhu, J.; Chen, H.Y. Growth of uniform CuCo2O4 porous nanosheets and nanowires for high-performance hybrid supercapacitors. J. Energy Storage 2022, 52, 105048. [Google Scholar] [CrossRef]
- Sun, H.; Miao, Y.; Wang, G.; Ren, X.; Bao, E.; Han, X.; Wang, Y.; Ma, X.; Xu, C.; Chen, H. Flower-like ZnCo2O4 microstructures with large specific surface area serve as battery-type cathode for high-performance supercapacitors. J. Energy Storage 2023, 72, 108502. [Google Scholar] [CrossRef]
- Sun, H.; Miao, Y.; Wang, G.; Han, X.; Wang, Y.; Zhang, Z.; Luo, C.; Liu, X.; Xu, C.; Chen, H. Sonochemical synthesis of battery-type ZnCo2O4 electrode material with huge specific surface area for advanced hybrid supercapacitors. J. Energy Storage 2024, 76, 109780. [Google Scholar] [CrossRef]
Materials | Specific Surface Area (m2 g−1) | Average Pore Size (nm) |
---|---|---|
NiS-5 | 20.25 | 19.7 |
NiS-15 | 4.46 | 10.1 |
Materials | Methods | Electrolyte (KOH) | Potential Window (V) | Specific Capacity (C g−1) | Refs. |
---|---|---|---|---|---|
Flower-like NiS | Solvothermal | 6 M | 0–0.45 | 271.79 @ 1 A g−1 (603.97 F g−1) | [46] |
α-NiS nanoparticles | Solvothermal | 6 M | 0–0.5 | 400 @ 0.5 A g−1 (800 F g−1) | [47] |
NiS hierarchical hollow cubes | Anion exchange and calcination | 2 M | 0–0.55 | 480.98 @ 1 A g−1 (874.5 F g−1) | [48] |
NiS microflowers | Sacrificial template | 3 M | 0–0.45 | 505.22 @ 1 A g−1 (1122.7 F g−1) | [49] |
NiS microflowers | Sacrificial template | 3 M | 0–0.45 | 591.93 @ 1 A g−1 (1315.4 F g−1) | [37] |
β-NiS 3D microflowers | Hydrothermal | 1 M | 0–0.45 | 688.05 @ 2 A g−1 (1529 F g−1) | [50] |
NiS hollow spheres | Hydrothermal and annealing | 2 M | 0–0.7 | 753.2 @ 1 A g−1 (1076 F g−1) | [51] |
Cabbage-like α-NiS | Solvothermal and annealing | 6 M | 0–0.45 | 849.17 @ 1 A g−1 (235.88 mA h g−1) | [25] |
NiS@CoS | Hydrothermal and electrodeposited | 2 M | 0–0.5 | 605 @ 1 A g−1 (1210 F g−1) | [52] |
NiS@Cu7S4 | Solvothermal | 6 M | 0–0.5 | 837 @ 1 A g−1 (1674 F g−1) | [53] |
Wrinkle-shaped NiS/NF | Solvothermal | 2 M | −0.1–0.4 | 385 @ 1 A g−1 (770 F g−1) | [54] |
NiS/NF | Solvothermal | 3 M | 0–0.45 | 1164.15 @ 0.2 A g−1 (2587 F g−1) | [55] |
NiS@Ni(OH)2/NF | Ionic layer adsorption and reaction | 3 M | 0–0.65 | 108 @ 3 A g−1 | [56] |
NiS@CoO/NF | Electrodeposition and annealing | 3 M | −0.05–0.45 | 527 @ 6 A g−1 (1054 F g−1) | [57] |
Co3O4@NiS/NF | Hydrothermal, annealing, and hydrothermal | 6 M | 0–0.5 | 697.65 @ 1 A g−1 (1395.3 F g−1) | [30] |
B-NixSy/C | Pyrolysis, hydrothermal vulcanization | 3 M | 0–0.43 | 1250.4 @ 1 A g−1 | [58] |
Flower-like Ni3S2/NiO | Hydrothermal, successive ionic layer adsorption reaction | 1 M | 0–0.7 | 1453.98@ 1 A g−1 (2077.12 F g−1) | [59] |
NiS-15 | Hydrothermal | 2 M | 0–0.45 | 638.34 @ 1 A g−1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, Y.; Luo, C.; Zhang, Z.; Sun, H.; Xu, C.; Chen, H. Hydrothermal Synthesis of β-NiS Nanoparticles and Their Applications in High-Performance Hybrid Supercapacitors. Nanomaterials 2024, 14, 1299. https://doi.org/10.3390/nano14151299
Liu X, Wang Y, Luo C, Zhang Z, Sun H, Xu C, Chen H. Hydrothermal Synthesis of β-NiS Nanoparticles and Their Applications in High-Performance Hybrid Supercapacitors. Nanomaterials. 2024; 14(15):1299. https://doi.org/10.3390/nano14151299
Chicago/Turabian StyleLiu, Xiaohong, Yulin Wang, Chunwang Luo, Zheyu Zhang, Hongyan Sun, Chunju Xu, and Huiyu Chen. 2024. "Hydrothermal Synthesis of β-NiS Nanoparticles and Their Applications in High-Performance Hybrid Supercapacitors" Nanomaterials 14, no. 15: 1299. https://doi.org/10.3390/nano14151299
APA StyleLiu, X., Wang, Y., Luo, C., Zhang, Z., Sun, H., Xu, C., & Chen, H. (2024). Hydrothermal Synthesis of β-NiS Nanoparticles and Their Applications in High-Performance Hybrid Supercapacitors. Nanomaterials, 14(15), 1299. https://doi.org/10.3390/nano14151299