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Abstract: Solution-based inorganic–organic halide perovskites are of great interest to researchers
because of their unique optoelectronic properties and easy processing. However, polycrystalline
perovskite films often show inhomogeneity due to residual strain induced during the film’s post-
processing phase. In turn, these strains can impact both their stability and performance. An exhaustive
study of residual strains can provide a better understanding and control of how they affect the
performance and stability of perovskite films. In this work, we explore this complex interrelationship
between residual strains and electrical properties for methylammonium CH3NH3PbI3−xClx films
using grazing incidence X-ray diffraction (GIXRD). We correlate their resistivity and carrier mobility
using the Hall effect. The sin2(ψ) technique is used to optimize the annealing parameters for the
perovskite films. We also establish that temperature-induced relaxation can yield a significant
enhancement of the charge carrier transports in perovskite films. Finally, we also use Raman micro-
spectroscopy to assess the degradation of perovskite films as a function of their residual strains.

Keywords: perovskite; Williamson Hall; GIXRD; CH3NH3PbI3−xClx; Hall effect; raman

1. Introduction

Perovskite is a promising material with unique optical and electrical properties [1].
However, it can be very sensitive to environmental factors, including humidity, oxygen,
and heat [2,3]. These can make the perovskites unstable and limit their integration into
commercial devices. Recently, reports have suggested that stability enhancement could be
achieved by the release of residual strains [4]. Although residual strains are well known,
the first studies on strains in perovskites were reported less than a decade ago [5]. The
problems associated with residual strains and their impact on material and device stability
remain an active research field [6]. In time, this deeper understanding could translate into
a significant improvement in perovskite devices. In this work, we use thermally-induced
strain release to explore the origin of residual strains in perovskite films and their impact
on their electrical and optical properties, as well as their stability.

1.1. Stress Origin in Perovskite Films

Generally, stresses in perovskite films mainly have three origins: intrinsic, mechan-
ical, and thermal [7]. Because of the polycrystalline and heterogeneous nature of per-
ovskite films, residual strains can stem from macroscopic, mesoscopic, or microscopic
deformations [8,9]. Residual strains in thin films are usually the consequence of thermal
stresses or other external conditions occurring during grain coalescence or growth [4,10].
Indeed, it is largely due to the coefficient of thermal expansion (CTE) and lattice offset
between the film and substrate [5,11]. These stresses can modify the structure of the crystal
lattice and consequently impact the mobility of charge carriers, the band gap, and the
stability of the film [12,13].
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1.2. Impact on Electrical, Optical Properties and Stability

Recently, perovskite-based solar cells (PSCs) have achieved a certified efficiency
of 26.1% [14]. However, instability remains the main factor limiting their large-scale com-
mercialization [15]. Efforts were made to reduce the moisture sensitivity of perovskite
materials and improve the chemical stability of the electron and hole transport layers [16,17].
Strains can cause distortion of the crystal structure of perovskite materials [4,18]. Band
structure calculations suggest that the band gap increases as the strain changes from
compressive to tensile [19]. Small lattice strains in perovskite thin films can have major
consequences for carrier recombination, electronic band structure, crystallinity, and crystal
phase stability [20–22]. The bandgap variations due to strains can result in a change in the
absorption spectrum of the perovskite film [5]. The presence of surface defects and grain
boundaries in perovskite films also creates trap states, impacting their stability [23]. It is
also well known that strains can weaken the bonds and increase the defect density and
degradation in perovskite films [12,24,25].

1.3. Regulation of Strain in Perovskite Films

Residual strains in perovskite films can affect their physical, optical, and electrical
properties and impact their stability [26]. In turn, releasing residual strains in perovskite
films could potentially be used to controllably improve their properties or stability. Sev-
eral techniques can be used to release strains, including (1) regulation of local strains
through synthesis, (2) stress release by thermal expansion, or (3) adjusting the lattice off-
set between film and substrate [5]. It has been established that the intrinsic instability
of perovskite films can result from annealing-induced residual strain accelerating their
degradation [12,27]. This work will focus exclusively on the temperature-induced strain
relaxation of methylammonium lead halide perovskite films in order to improve their
optical and electrical properties and increase their stability. A comprehensive study of
how residual strain impacts the electrical properties of perovskite films can be conducted
using the Williamson-Hall plot, Grazing Incidence X-ray Diffraction (GIXRD), Hall effect
measurements, and Raman spectroscopy. The Williamson-Hall plot quantifies strain by
analyzing the broadening of X-ray diffraction peaks. GIXRD provides detailed structural
information about surface layers, phase analysis, degree of crystallinity, texture, and depth
profiling, revealing the strain distribution [28]. Hall effect measurements determine carrier
concentration and mobility, showing how strain affects electrical conductivity. Raman
spectroscopy detects changes in lattice vibrations due to strain, offering insights into the
correlation between lattice dynamics and electronic structure. Together, these techniques
elucidate the influence of residual strain on both the structural and electrical properties
of perovskite films, guiding their optimization for enhanced performance. Our findings
indicate that achieving temperature-induced relaxation requires annealing within the tem-
perature range of 75 to 85 ◦C to achieve a high carrier mobility, low activation energy, high
mean free path, and improved stability. We also find that this optimized annealing process
reduces defect density.

2. Experimental Section

Glass substrates (25 mm × 25 mm) were cleaned sequentially with acetone, iso-
propanol, and DI solution for 15 min each. Perovskite layers were prepared with com-
mercial CH3NH3PbI3−xClx ink from Ossila, Sheffield, UK (used as received). The films
were deposited on the substrates by spin-coating at 2000 rpm for 30 s (the ink quantity
used per film is 70 µL). The resulting films are annealed on a hot plate for 2 h at different
temperatures, ranging from 50 ◦C to 110 ◦C. The residual strains are characterized using
XRD. Hall-effect measurements are used for carrier mobility. Finally, UV-Vis absorption and
Raman micro-spectroscopy are used to assess perovskite film degradation. Raman charac-
terization was done using a WITec Alpha 300 confocal Raman microscope (Ulm, Germany).
equipped with a continuous-wave 60 mW laser emitting at 532 nm whose power output
was attenuated mechanically. XRD was done using a Bruker D8 Advance (Billerica, MA,
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USA), equipped with a Cu source. SEM imaging was done using a SU8230 from Hitachi
(Tokyo, Japan). Optical absorbance was done using a UV-Vis-NIR spectrophotometer by
Perkin Elmer (Waltham, MA, USA), model Lambda 750, with an integrating sphere. The
Hall effect measurement was done using a Room-Temperature Hall Effect system fabricated
by TeachSpin (Buffalo, NY, USA), which uses a permanent magnet that generates fields of
about 0.7 T to create the Hall effect. The system is designed to accommodate TeachSpin
sample holders, which are printed circuit boards. The perovskite film was deposited on
the sample board, which was then mounted on the device chassis and connected to a DC
power source, allowing current to flow along the perovskite sample under the effect of the
permanent magnetic field, enabling Hall voltage measurement.

3. Results and Discussion

In Figure 1, characterization of the films by X-ray diffraction (XRD) confirms the
crystallization of a sample in a perovskite structure, with the presence of the standard
peaks associated with the (110), (220), and (330) reflection planes, respectively. The peak
intensity at 14° suggests that the main orientation of the perovskite film is (110) [29]. XRD
is also useful to characterize the residual strains through the lattice parameters. Indeed, the
tensile or compressive strains can be respectively associated with the shift of the peaks to
lower or higher diffraction angles. Residual strains are often non-uniform and complex to
analyze from the peak position alone. Another indicator of strain is the broadening of the
XRD peaks compared to the fully relaxed state [19,30].
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Figure 1. XRD spectra of perovskite film annealed at 80 °C.

3.1. Williamson Hall Characterization

The Williamson Hall (W-H) analysis, described by Equation (1) can be used to quantify
the strain-induced broadening of the XRD peaks resulting from crystal imperfections [31–33],
and the structural imperfections such as dislocations, vacancies and stacking defects [34,35]:

βhkl · cosΘhkl = k
λ

D
+ 4ε · sinΘhkl (1)

where βhkl is full width at half maximum (FWHM) of the XRD peak, k is the Scherrer
constant equal to 0.94, λ is the X-ray source wavelength, D is the crystallite size, θhkl is the
peak position (◦) and ϵ is the strain. The fundamental difference between W-H’s method
and Scherrer’s method is that W-H considers both the crystallite size and microstrains
which are often interrelated.

The Williamson-Hall plot in Figure 2a show the cos θhkl vs. 4 sin θhkl evolution mea-
sured from CH3NH3PbI3−xClx films annealed at 25, 50, 70, 80, 90 and 110 ◦C. The residual
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strain can be calculated directly from the slope for each curve fitting. In Figure 2b, the
strain values calculated reveal an interesting trend. It starts with a relatively high com-
pressive strain at low annealing temperatures, below 40 ◦C. The residual strains decrease
as the annealing temperature increases to 70 ◦C. Over 90 ◦C, the residual strains become
increasingly tensile. We can conclude from this first test that the annealing temperature can
generate three types of strain: compressive, tensile, and a relaxed strain at a temperature
around 80 ◦C. Based on our observations, we can expect improved performance from the
perovskite film.
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Figure 2. (a) Williamson-Hall plot results from which the value of micro-strain was estimated for
perovskite films annealed at 50, 70, 80, 90, and 110 °C, (b) Residual strain extracted from the slope of
the plots in (a) using Equation (1).

It is important to note that a full profile analysis, which involves a comprehensive
examination of all aspects of the diffraction data, including peak shapes, positions, and
asymmetry factors, is a more robust approach than the Williamson-Hall method presented
in this manuscript. The Williamson-Hall method often simplifies certain aspects of the
analysis by focusing on the broadening of diffraction peaks to estimate deformations and
crystallite sizes. For this reason, we will be combining GIXRD analysis with Williamson-
Hall analysis to confirm residual strain trends in perovskite films, validate the results
obtained, and overcome the limitations and potential inconsistencies of the Williamson-
Hall method.

3.2. Gixrd Characterization

Grazing incidence XRD is a very useful technique to characterize the structure of
thin films. It can also directly probe the strain distribution in perovskite films [5]. As
such, we can use GIXRD to analyze the variations in the in-plane residual strains for the
perovskite films annealed at different temperatures. The measurements shown in Figure 3a
are performed in the ω-mode [5,36], by fixing the angle θhkl and varying the instrument’s
tilt angle ψ.

In Figure 3b,c, we analyze the strains in perovskite films annealed at 50, 70, 80, 90,
and 110 ◦C using GIXRD. Figure 3b illustrates the plot of 2θ vs. sin2(ϕ), where the slope
of the fitted curves yields the strain coefficients. A negative slope suggests tensile strains,
while a positive slope suggests compressive strains. Figure 3d–h clearly illustrates the
distribution of compressive and tensile strain gradients for annealing temperatures from
50 to 110 °C, respectively. While thermal energy can cause significant strain levels in the
crystal lattice, it should be noted that the perovskite crystal structure still remains thermally
stable between 50 ◦C and 110 ◦C [37]. These GIXRD strain measurements are consistent and
strongly support the W-H results presented in Figure 2. In Figure 3, residual strains appear
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compressive at temperatures below 70 ◦C and tensile at temperatures above 90 ◦C. We can
infer that strain relaxation can be achieved between 75 and 85 ◦C. Based on the W-H, XRD
and GIXRD analysis, we concur that CH3NH3PbI3−xClx has a relaxed cubic structure when
annelaed at 80 ± 5 ◦C (At 80 ◦C and up, the mixed crystals of perovskite transform from
tetragonal to cubic phase), and this relaxed symmetrical structure is favorable to improved
electrical properties [37,38].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

sin2(φ) 

Ψ=4.08°

Ψ=2.88°

Ψ=4.08°

Ψ=2.88°

Figure 3. (a) Schematic of the strain measurement using GIXRD in the ω-mode, where Z3 is normal to
the diffraction plane, S3 is normal to the sample surface and ψ is the instrument’s tilt angle. (b) 2θ vs.
sin2(ϕ) from which the value of micro-strain was estimated of the perovskite films annealed at 50, 70,
80, 90 and 110 ◦C. (c) Strain coefficients extracted from the GIXRD slope. (d,e) Compressively-strained
films annealed below 80 ◦C. (f) strain-free film (g,h) Tensile-strained films annealed above 80 ◦C.
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3.3. SEM Characterization

SEM analysis can be used to examine the change in granularity and microstructure
caused by the residual strains. Distortions and internal strains can arise from the growth of
superstructures and nanostructures, as well as from substitutions with elements of different
sizes [6]. Figure 4a–e show SEM micrographs of the perovskite films after annealing at 50,
70, 80, 90, and 110 ◦C, respectively. The grain size evolution indicates that grains appear at
50 ◦C (Figure 4a). The presence of solvents in the precursor leads to high pinhole densities
due to minimal evaporation. Increasing the annealing temperature reduces pinhole density
and increases the average grain size [39]. The maximum average size of 795 nm is achieved
with 80 ◦C annealing (Figure 4h). At 90 ◦C and above , microstructural changes (grain
size and surface filing) start to appear (Figure 4d,i). These strain-induced alterations in the
perovskite film’s granularity and microstructure could potentially compromise its stability
and accelerate its degradation.

(a)                    (b)                 (c)                      (d)                     (e)

(f)                    (g)                       (h)                   (i)                     (j)

50 °C               70 °C                 80 °C               90 °C                110 °C  

Figure 4. SEM micrographs for the perovskite films annealed at (a) 50 ◦C, (b) 70 ◦C, (c) 80 ◦C,
(d) 90 ◦C, and (e) 110 ◦C. The scale bars correspond to 3 µm. (f–j) Grain size distributions extracted
from the SEM images using ImageJ (V1.53). The blue lines show the Gaussian distribution that
describes the data.

3.4. Hall Effect Characterization

Carrier mobility can be directly measured using the Hall-effect technique represented
in Figure 5a. Here, a transverse magnetic field of 0.7 T is applied to all samples. The applied
magnetic field will induce a Lorentz force opposing the movement of charge carriers,
separating holes from electrons and creating a potential difference, the Hall voltage (VH).
From this measurement, we can deduce the carrier density (n), Hall constant (RH), charge
carrier mobility (µ), resistivity (ρ), and charge carrier mobility (µ) using the following
expressions [40,41]:

VH =
B · I

q · n · d
(2)

RH =
1

q · n
(3)

µ =
VH · L

W · B · Vr
(4)

ρ =
1

n · e · µ
(5)

with B: magnetic induction, I: injected current, n: carrier concentration, q: carrier charge, W:
perovskite sample width, L: its lengthand d: its thickness.
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Figure 5. (a) Schematic of the Hall effect measurement setup. (b) Hall-voltage measured as a function
of the current flowing through the device. (c) Resistivity and mobility values extracted from the Hall
measurements for different annealing temperatures.

In Figure 5b, all samples display a p-type behavior indicated by the positive Hall
voltage. This expected result can be explained by the large amounts of Pb, CH3NH3I,
Cl vacancies and I present in the film [42,43]. Due to their lower formation energies, Pb
and CH3NH3 vacancies are known to play a significant role in the p-type behavior of
CH3NH3PbI3−xClx thin films [44–47]. Figure 5c shows the Hall effect results, illustrating
the corresponding change in carrier mobility and resistivity with increasing annealing tem-
peratures. The carrier mobility reaches its highest value of 10 cm2 V−1 s−1 at 80 ◦C, which
is consistent with previous reports [48,49]. We already established that CH3NH3PbI3−xClx
films annealed at this temperature are strain-relaxed. Above 75 ◦C (relaxation zone), the
structure adopts cubic symmetry and can achieve high stability since the entropy reduction
in the inorganic cage compensates for the high dynamic disorder of the organic cations
in methylammonium [38,50]. This cubic phase is also known to offer better electronic
properties than the orthorhombic and tetragonal phases for symmetry reasons [51–53].

The thermal behavior of Hall mobility can be described by the expression [54]:

µT(T) = µ0(T) · exp
(

Ea

kB · T

)
(6)

where µ0 is the exponential prefactor, kB is the Boltzmann constant, and Ea is the activation
energy. Figure 6a shows ln(µH) as a function of 1000/T measured between 25 and 110 ◦C.
The activation energy Ea corresponds to the potential energy barrier height [54], and it can
be directly extracted from the slope of the linear fit. From Figure 6a, the activation energy
for perovskite films with compressive strains is found to be 400 meV, while tensile strain
reduces the activation energy to 50 meV. These results are also consistent with previous
reports [55]. This change in activation energy originates from the slope at approximately
80 ◦C, suggesting significantly reduced activation energy due to film relaxation. It has been
previously reported that CH3NH3

+ and I− vacancies can easily migrate to a neighboring
site due to their low activation energy [56]. This variation of the activation energy with
temperature can be directly associated with the film’s residual strains [57].

Using the Hall mobility measurements from Figure 6a, it becomes possible to access
the mean carrier path length Lm and the mean free time τm, both represented in Figure 6b,
in the CH3NH3PbI3−xClx thin films using the conventional Drude-Sommerfeld model [45]:

µT(T) = µ0(T) · exp
(

Ea

kB · T

)
(7)

Lm = µH

(
(3m∗

h · kB · T)2

e

)
(8)

where m∗
h is the effective mass of the hole given by the expression:
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Ea =
e4 · m∗

h
2(2ε0 · εr · h)2 (9)

where ϵ0 is the permittivity of free space, and ϵr is the relative dielectric constant used
between 5.6 (high frequency) and 25.7 (low frequency) [45]. For the calculation of m∗

h we
assumed ϵr = 9 based on the hydrogen model [58]. The values of m∗

h are estimated at
0.3 meV and 2.4 meV for the tensile and compressive films, respectively [45,59,60], where
me represents the rest mass of the electron.
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Figure 6. (a) Activation energy (Ea) and (b) Mean free path (Lm) and mean free time (τm) for the
CH3NH3PbI3−xClx films as a function of their annealing temperature.

Results from Figure 6b suggest that films subjected to compressive and tensile strains
respectively have lower Lm and τm, respectively. Both parameters peak at 80 ◦C, which
corresponds to the relaxation region (strain-free) regime. At this temperature, mixed halide
perovskites make the transition from the tetragonal to the cubic phase due to the tilt of the
inorganic PbI6 octahedron and the rotational shift of the organic CH3NH3

+, resulting in
increased average mobility [53]. Consequently, these results confirm reports that phase
shift can change the physical properties of mixed halide perovskites films and positively
influence their electrical properties [45].

Figure 7a,b displays the absorption spectrum for samples annealed at 60 ◦C, 80 ◦C,
and 110 ◦C exhibiting compressive, relaxed, and tensile residual strains, respectively. The
spectra in Figure 7a show stronger UV absorption for the tensile-strained and relaxed
samples. When the residual strains transition from compressive to tensile, the bandgap of
the film in Figure 7c show a slight increase from 1.56 eV to 1.57 eV. After four days of storage
in an ambient environment, the absorption spectra in Figure 7b is significantly reduced
for both tensile and compressive-strained samples, compared to the sample annealed
at 80 ◦C. Moreover, as the strained samples become transparent, this degradation also
translates in a significant bandgap increase from 1.59 eV to 2.34 eV seen in Figure 7d–f.
The low absorption of these samples can be attributed to incomplete crystallization during
annealing at 60 ◦C. Poor-quality perovskite films often result from incomplete DMF solvent
evaporation. Conversely, high-temperature annealing at 100 ◦C promotes rapid solvent
evaporation, preventing uniform surface filling and poor film quality as shown in Figure 4d.
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Energy (eV) Energy (eV) Energy (eV)

Energy (eV)

Figure 7. Absorption spectra for perovskite films annealed at 60, 80, and 110 °C. (a) Pristine films
following fabrication (b) After 4 days of degradation in ambient conditions. (c) Tauc plot showing
the bandgap evolution under temperature-induced strain variation. (d–f) Tauc plots measured after
4 days in ambient environment.

3.5. Raman Characterization

Raman micro-spectroscopy measurements from Figure 8a,b are performed with a very
low laser power of 0.5 mW at 532 nm wavelength, using a 10× objective, to avoid any
laser-induced damage. All measurements are done under ambient conditions. To perform
the Raman measurements, we slowly increase the laser power until the main perovskite
peaks are visible. Then the laser is shifted to a new position to record the Raman spectrum
of a pristine perovskite. To avoid the laser intensity from impacting the perovskite film’s
crystallization, we utilized Equation (10) to estimate the sample’s temperature based on the
intensity ratio between Stokes/Anti-Stokes peaks [61,62] as shown in Figure 8b:

Is

Ias
=
(

ϑ0 + ϑv

ϑ0 − ϑv

)4
e
( Ep

kB ·T

)
(10)

where kB is the Boltzmann constant, ν0 is the frequency of the excitation source, and T is
the sample’s temperature.

The inorganic-organic sublattices of the perovskite have different vibrational fre-
quencies covering the range from 50 to 150 cm−1 with phonon energies of 6–11 meV
(50–90 cm−1) and 11–20 meV (90–150 cm−1) [63]. Figure 8c–e display the statistical temper-
ature graphics calculated using Equation (10), for samples with residual tensile strains, no
strains, and compressive strains for a phonon energy of 12 meV at a peak Raman shift of
100 cm−1 [63]. The maximum temperature reached by the samples due to laser-induced
heating is 324 °K. This value remains lower than the lowest annealing temperatures, ensur-
ing that the 532 nm laser-induced heating does not impact the crystalline structure of the
different perovskite samples.
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Figure 8. (a) Raman peaks shifting of the thermally relaxed sample during 4 days of analysis. Each
color corresponds to a spectrum taken after 30 min, (b) Stokes/ani-Stokes for samples without
strain. Each line corresponds to a spectrum taken after 30 min. Evaluation of the samples based on
Stokes/anti-Stokes intensity ratios. Calculated temperature of the (c) compressively-strained sample
annealed at 60 ◦C, (d) thermally-relaxed sample annealed at 80 ◦C, and (e) tensile-strained sample
annealed at 110 ◦C.

Finally, we can also evaluate the impact of different strain levels on the film degra-
dation using Raman micro-spectroscopy. To do so, measurements are performed every
30 min for 4 days at a sufficiently low excitation power to prevent laser-induced heating.
The Raman spectrum in Figure 8a clearly indicates the presence of vibrational peaks at 53,
65, 92, and 100 cm−1 with a broader Raman band at 170 cm−1, which can be attributed to
the Pb-I and Pb-Cl perovskite layers [64]. The sharp peaks between 53 cm−1 and 92 cm−1

are attributed to the bending and stretching of Pb-I bonds, which are modes of inorganic
cages [65]. Meanwhile, the bands at 100 cm−1 can be attributed to the vibrations of the
organic CH3NH3

+ cations [66]. After 24 h, the peak intensity decreases, and no new vibra-
tional bands are observed, implying the structure remained unaltered. It is known that
the incorporation of H2O into the crystal lattice is measured by the solvating of MA+ and
the dissolving of the cations [67,68]. The absence of MA+ can increase defect density and
cause a slight displacement of atoms in the crystalline structure, leading to fluctuations
in vibrational bands [68,69]. Figure 8a shows a redshift for all bands, suggesting an in-
creased length of the chemical bond. Previous research confirms that the redshift in these
bands results from stress exerted by the H2O molecule on the atomic bond related to this
vibrational mode and the shift induced by the MA+ vacancies [68]. However, the observed
shift is not consistent, as the penetration of moisture in the film is not uniform due to the
heterogeneity of the microstructural morphology, defects, and internal stresses.

In Figure 9a–c, we compare the degradation of the strained films. As expected, results
from Figure 9d–f clearly suggest that thermally-relaxed films show lower degradation
compared with tensile- or compressively-strained films. Indeed, the average peak intensity
decrease for the thermally-relaxed film never exceeds 10%. In contrast, films with residual
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tensile and compressive strains, respectively, show a decrease in peak intensity of more
than 20% and 45%. This is consistent with previous observations that strained films
degrade more rapidly due to their crystal structure, which enables easier incorporation
of H2O molecules. Surface defects and strain-induced distortions in the crystal lattice
weaken the structure, rendering it less resilient to external factors and thus accelerating its
degradation [70,71].

(a) (b)  (c)

(d) (e)   (f)

Figure 9. Raman spectra of film degradation at different times from 0 to 4 days. (a) With residual
compressive strains, (b) Thermally relaxed, (c) tensile-strained film. (d–f) Degradation measured
from Raman peaks evolutions at 53, 65, and 100 cm−1.

4. Conclusions

This study shows a clear relationship between temperature-induced strains, charge
carrier mobility, and the long-term stability of solution-based perovskite films. Our findings
show that these factors are interrelated and must be carefully considered to optimize the
performance of perovskite materials. Our findings indicate that achieving temperature-
induced relaxation requires annealing within the temperature range of 75 to 85 ◦C for this
specific precursor formulation. As a result, the CH3NH3PbI3−xClx films annealed at 80 ◦C
demonstrate optimal performance, as shown by higher carrier mobility, lower activation
energy, a high mean free path, and improved stability. We find that these annealing
temperatures reduce defect density and promote strain relaxation. These results could
potentially minimize the impact of residual strain on optoelectronic properties and offer
an alternative approach to optimize the performance of perovskite solar cells and other
perovskite-based optoelectronic devices.
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