A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability
Abstract
:1. Introduction
2. Scheme and Analysis
2.1. Quality Factor of Nanoresonators
2.2. Multiple Resonance Excitations
3. Results and Discussion
3.1. Model and Absorption Optimization
3.2. Resonance Mode Tuning
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Khan, A.D.; Noman, M.; Rehman, A.U. Novel Multi-Broadband Plasmonic Absorber Based on a Metal-Dielectric-Metal Square Ring Array. Plasmonics 2018, 13, 591–597. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Jiang, Z.; Shen, C.; Zhang, Y.; Zhong, F.; Chen, L.; Zhu, S.; Liu, H. Large-Area Long-Wave Infrared Broadband All-Dielectric Metasurface Absorber Based on Maskless Laser Direct Writing Lithography. Opt. Express 2022, 30, 13391. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L.; Piramidowicz, R. Hybrid Metasurface Perfect Absorbers for Temperature and Biosensing Applications. Opt. Mater. 2022, 123, 111906. [Google Scholar] [CrossRef]
- Mao, P.; Liu, C.; Song, F.; Han, M.; Maier, S.A.; Zhang, S. Manipulating Disordered Plasmonic Systems by External Cavity with Transition from Broadband Absorption to Reconfigurable Reflection. Nat. Commun. 2020, 11, 1538. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.W.; Vella, J.H.; Li, W.; Fan, S.; Mikkelsen, M.H. Ultrafast Pyroelectric Photodetection with On-Chip Spectral Filters. Nat. Mater. 2020, 19, 158–162. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Nirantar, S.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S.; Al-Sarawi, S.F.; Abbott, D. Second-Order Terahertz Bandpass Frequency Selective Surface With Miniaturized Elements. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 761–769. [Google Scholar] [CrossRef]
- Langley, R.J.; Parker, E.A. Double-Square Frequency-Selective Surfaces and Their Equivalent Circuit. Electron. Lett. 1983, 19, 675. [Google Scholar] [CrossRef]
- Berka, M.; Fellah, B.; Das, S.; Islam, T.; Asha, S.; Mahdjoub, Z. Nano-Resonator Based Broadband Metamaterial Absorber with Angular Stability Operating in Visible Light Spectrum for Solar Energy Harvesting Applications. Opt. Mater. 2024, 149, 115043. [Google Scholar] [CrossRef]
- Cummins, C.; Flamant, Q.; Dwivedi, R.; Alvarez-Fernandez, A.; Demazy, N.; Bentaleb, A.; Pound-Lana, G.; Zelsmann, M.; Barois, P.; Hadziioannou, G.; et al. An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces. J. Colloid Interface Sci. 2022, 609, 375–383. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, L.; Li, Z.; Zhang, C.; Zhu, W. Graphene-Based Optically Transparent Metasurface Capable of Dual-Polarized Modulation for Electromagnetic Stealth. ACS Appl. Mater. Interfaces 2022, 14, 31075–31084. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Lu, H.; Song, D.; Wu, H. Self-Adaptive Photonic Thermal Management Based on a Flexible Metasurface. Opt. Laser Technol. 2023, 167, 109690. [Google Scholar] [CrossRef]
- Guan, J.; Li, R.; Juarez, X.G.; Sample, A.D.; Wang, Y.; Schatz, G.C.; Odom, T.W. Plasmonic Nanoparticle Lattice Devices for White-Light Lasing. Adv. Mater. 2023, 35, 2103262. [Google Scholar] [CrossRef]
- Lin, C.; Liu, C.; Yang, J.; Kim, J.; Hu, L.; Huang, C.; Zhang, S.; Chen, F.; Mishra, R.; Shahrokhi, S.; et al. Regulating the Phase and Optical Properties of Mixed-Halide Perovskites via Hot-Electron Engineering. Adv. Funct. Mater. 2024, 2402935. [Google Scholar] [CrossRef]
- Suen, J.Y.; Fan, K.; Montoya, J.; Bingham, C.; Stenger, V.; Sriram, S.; Padilla, W.J. Multifunctional Metamaterial Pyroelectric Infrared Detectors. Optica 2017, 4, 276. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, J.; Que, L.; Mi, G.; Zhou, Y.; Jiang, Y. A Visible-Infrared Double Band Photodetector Absorber. Results Phys. 2020, 18, 103283. [Google Scholar] [CrossRef]
- Ma, W.; Jia, D.; Wen, Y.; Yu, X.; Feng, Y.; Zhao, Y. Diode-Based Microbolometer with Performance Enhanced by Broadband Metamaterial Absorber. Opt. Lett. 2016, 41, 2974. [Google Scholar] [CrossRef]
- Sekhi, S.Z.; Shokooh-Saremi, M.; Mirsalehi, M.M. Ultra-Broadband, Wide-Angle, and Polarization-Insensitive Metamaterial Perfect Absorber for Solar Energy Harvesting. JNP 2020, 14, 046014. [Google Scholar] [CrossRef]
- Wen, K.; Han, T.; Lu, H.; Luo, W.; Zhang, L.; Chen, H.; Liang, D.; Deng, L. Experimental Demonstration of an Ultra-Thin Radar-Infrared Bi-Stealth Rasorber. Opt. Express 2021, 29, 8872. [Google Scholar] [CrossRef]
- Wang, B.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of Broadband Metamaterial Absorbers: From Principles, Design Strategies, and Tunable Properties to Functional Applications. Adv. Funct. Mater. 2023, 33, 2213818. [Google Scholar] [CrossRef]
- Ye, Y.Q.; Jin, Y.; He, S. Omnidirectional, Polarization-Insensitive and Broadband Thin Absorber in the Terahertz Regime. J. Opt. Soc. Am. B 2010, 27, 498. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, R.; Huang, J.; Lv, Y.; Han, C.; Liu, S. Independently Tunable Multi-Band and Ultra-Wide-Band Absorbers Based on Multilayer Metal-Graphene Metamaterials. Opt. Express 2019, 27, 7393. [Google Scholar] [CrossRef]
- De Araujo, J.B.O.; Siqueira, G.L.; Kemptner, E.; Weber, M.; Junqueira, C.; Mosso, M.M. An Ultrathin and Ultrawideband Metamaterial Absorber and an Equivalent-Circuit Parameter Retrieval Method. IEEE Trans. Antennas Propagat. 2020, 68, 3739–3746. [Google Scholar] [CrossRef]
- Guo, W.; Liu, Y.; Han, T. Ultra-Broadband Infrared Metasurface Absorber. Opt. Express 2016, 24, 20586–20592. [Google Scholar] [CrossRef]
- Feng, Q.; Pu, M.; Hu, C.; Luo, X. Engineering the Dispersion of Metamaterial Surface for Broadband Infrared Absorption. Opt. Lett. 2012, 37, 2133. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, L.; Ding, J.; Liu, W.; Sun, B.; Xie, C.; Yang, H.; Wu, J. Flexible and Transparent Broadband Microwave Metasurface Absorber Based on Multipolar Interference Engineering. Opt. Express 2022, 30, 7694. [Google Scholar] [CrossRef]
- Shi, X.; Hou, E.; Liang, Z.; Zhang, S.; Dai, R.; Xin, W.; Meng, D.; Liu, H.; Xu, H.; Liu, Y. Broadband Metamaterial Absorber Based on Hybrid Multi-Mode Resonance in Mid-Wave and Long-Wave Infrared Region. Results Phys. 2022, 42, 105972. [Google Scholar] [CrossRef]
- Rong, C.; Cai, B.; Cheng, Y.; Chen, F.; Luo, H.; Li, X. Dual-Band Terahertz Chiral Metasurface Absorber with Enhanced Circular Dichroism Based on Temperature-Tunable InSb for Sensing Applications. Phys. Chem. Chem. Phys. 2024, 26, 5579–5588. [Google Scholar] [CrossRef]
- Hou, E.; Qin, Z.; Liang, Z.; Meng, D.; Shi, X.; Yang, F.; Liu, W.; Liu, H.; Xu, H.; Smith, D.R.; et al. Dual-Band Metamaterial Absorber with a Low-Coherence Composite Cross Structure in Mid-Wave and Long-Wave Infrared Bands. Opt. Express 2021, 29, 36145. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Tao, C.; Hong, Y.; Xu, Z.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral Camouflage for Infrared, Visible, Lasers and Microwave with Radiative Cooling. Nat. Commun. 2021, 12, 1805. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, W.; Qian, M.; Shen, P.; Liu, Y. Multiband Metamaterial Emitters for Infrared and Laser Compatible Stealth with Thermal Management Based on Dissipative Dielectrics. Photon. Res. 2023, 11, 290. [Google Scholar] [CrossRef]
- Sun, K.; Vassos, E.; Yan, X.; Wheeler, C.; Churm, J.; Wiecha, P.R.; Gregory, S.A.; Feresidis, A.; De Groot, C.H.; Muskens, O.L. Wafer-Scale 200 Mm Metal Oxide Infrared Metasurface with Tailored Differential Emissivity Response in the Atmospheric Windows. Adv. Opt. Mater. 2022, 10, 2200452. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, X.; Nong, J.; Zhu, G.; He, X.; Du, T.; Ma, H.; Zhang, Z.; Chen, H.; Yu, Y.; et al. Bicolor Regulation of an Ultrathin Absorber in the Mid-Wave Infrared and Long-Wave Infrared Regimes. ACS Photonics 2024, 11, 218–229. [Google Scholar] [CrossRef]
- Li, Y.; An, B.; Li, L.; Gao, J. Broadband LWIR and MWIR Absorber by Trapezoid Multilayered Grating and SiO2 Hybrid Structures. Opt. Quant. Electron. 2018, 50, 459. [Google Scholar] [CrossRef]
- Bouchon, P.; Koechlin, C.; Pardo, F.; Haïdar, R.; Pelouard, J.-L. Wideband Omnidirectional Infrared Absorber with a Patchwork of Plasmonic Nanoantennas. Opt. Lett. 2012, 37, 1038. [Google Scholar] [CrossRef]
- Christopoulos, T.; Tsilipakos, O.; Sinatkas, G.; Kriezis, E.E. On the Calculation of the Quality Factor in Contemporary Photonic Resonant Structures. Opt. Express 2019, 27, 14505. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, Y.; Overvig, A.C.; Lu, M.; Stein, A.; Negro, L.D.; Yu, N. Indium Tin Oxide Broadband Metasurface Absorber. ACS Photonics 2018, 5, 3526–3533. [Google Scholar] [CrossRef]
- Babar, S.; Weaver, J.H. Optical Constants of Cu, Ag, and Au Revisited. Appl. Opt. 2015, 54, 477. [Google Scholar] [CrossRef]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl. Opt. 1998, 37, 5271. [Google Scholar] [CrossRef]
- Amotchkina, T.; Trubetskov, M.; Hahner, D.; Pervak, V. Characterization of E-Beam Evaporated Ge, YbF3, ZnS, and LaF3 Thin Films for Laser-Oriented Coatings. Appl. Opt. AO 2020, 59, A40–A47. [Google Scholar] [CrossRef]
- Wu, P.C.; Liao, C.Y.; Savinov, V.; Chung, T.L.; Chen, W.T.; Huang, Y.-W.; Wu, P.R.; Chen, Y.-H.; Liu, A.-Q.; Zheludev, N.I.; et al. Optical Anapole Metamaterial. ACS Nano 2018, 12, 1920–1927. [Google Scholar] [CrossRef]
- Li, M.; Liu, S.; Guo, L.; Lin, H.; Yang, H.; Xiao, B. Influence of the Dielectric-Spacer Thickness on the Dual-Band Metamaterial Absorber. Opt. Commun. 2013, 295, 262–267. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, S.; Sun, J.; Zhou, S. Mid-Infrared Pyroelectric Detector with Metasurface Electrode for Broadband Enhanced Absorption. J. Phys. D Appl. Phys. 2023, 56, 445105. [Google Scholar] [CrossRef]
- Li, H.H. Refractive Index of Alkaline Earth Halides and Its Wavelength and Temperature Derivatives. J. Phys. Chem. Ref. Data 1980, 9, 161–290. [Google Scholar] [CrossRef]
- Ghaderi, M.; Shahmarvandi, E.K.; Wolffenbuttel, R.F. CMOS-Compatible Mid-IR Metamaterial Absorbers for out-of-Band Suppression in Optical MEMS. Opt. Mater. Express 2018, 8, 1696. [Google Scholar] [CrossRef]
- Cao, T.; Lian, M.; Liu, K.; Lou, X.; Guo, Y.; Guo, D. Wideband Mid-Infrared Thermal Emitter Based on Stacked Nanocavity Metasurfaces. Int. J. Extrem. Manuf. 2022, 4, 015402. [Google Scholar] [CrossRef]
- Xiong, Q.; Yu, H.; Zhang, Y.; Gao, X.; Chen, C. Broadband near Infrared All-Dielectric Metasurface Absorber. Results Phys. 2021, 30, 104813. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Z.; Xu, Y.; Zhang, H.; Wang, Q.; Qiao, H.; Shang, W.; Deng, T.; Cui, K. Scalable-Manufactured Plasmonic Metamaterial with Omnidirectional Absorption Bandwidth across Visible to Far-Infrared. Adv. Funct. Mater. 2022, 32, 2207239. [Google Scholar] [CrossRef]
Ref. | Material | Operating Wavelength (μm)/Absorption | ||
---|---|---|---|---|
SWIR | MWIR | LWIR | ||
[29] | Gold | - | 4.28/98.2% | 8.23/99.5% |
[45] | Aluminum | - | 3.5–4.1/>90% | - |
[22] | Gold | - | - | 7.8–11.9/84.7% |
[46] | Gold/Si3N4 | - | - | 8–14/~80% |
[3] | Silicon | - | - | 8–14/90.36% |
[47] | Silicon/Silica | 1.54–1.57/~70% | - | - |
[37] | ITO | 4–16/>80% | ||
[48] | Titanium nitride | 0.25–20/>90% | ||
[34] | Silica/Germanium | - | 4–6.3/>80% | 8.7–9.6/>80% |
[27] | Titanium | - | 3.3–4.4/52% | 8.5–12.5/86% |
This work | Chromium | 1.4–1.7/87.6% | 3.2–5/92.7% | 8–13/92.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Zhou, S.; Li, J.; Chen, S.; Chen, Z. A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability. Nanomaterials 2024, 14, 1316. https://doi.org/10.3390/nano14151316
Zou Y, Zhou S, Li J, Chen S, Chen Z. A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability. Nanomaterials. 2024; 14(15):1316. https://doi.org/10.3390/nano14151316
Chicago/Turabian StyleZou, Yongtu, Shaolin Zhou, Jingxi Li, Shanri Chen, and Zhijian Chen. 2024. "A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability" Nanomaterials 14, no. 15: 1316. https://doi.org/10.3390/nano14151316
APA StyleZou, Y., Zhou, S., Li, J., Chen, S., & Chen, Z. (2024). A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability. Nanomaterials, 14(15), 1316. https://doi.org/10.3390/nano14151316