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Abstract: Metasurfaces have emerged as a unique group of two-dimensional ultra-compact subwave-
length devices for perfect wave absorption due to their exceptional capabilities of light modulation.
Nonetheless, achieving high absorption, particularly with multi-band broadband scalability for
specialized scenarios, remains a challenge. As an example, the presence of atmospheric windows,
as dictated by special gas molecules in different infrared regions, highly demands such scalable
modulation abilities for multi-band absorption and filtration. Herein, by leveraging the hybrid effect
of Fabry–Perot resonance, magnetic dipole resonance and electric dipole resonance, we achieved
multi-broadband absorptivity in three prominent infrared atmospheric windows concurrently, with
an average absorptivity of 87.6% in the short-wave infrared region (1.4–1.7 µm), 92.7% in the mid-
wave infrared region (3.2–5 µm) and 92.4% in the long-wave infrared region (8–13 µm), respectively.
The well-confirmed absorption spectra along with its adaptation to varied incident angles and po-
larization angles of radiations reveal great potential for fields like infrared imaging, photodetection
and communication.

Keywords: metasurface absorber; tri-broadband; infrared atmospheric windows; multipole resonance

1. Introduction

In recent decades, metasurface absorbers (MSAs) have emerged as ultra-compact
two-dimensional (2D) devices for ideal wave absorption. With significant attention paid to
MSAs, typical architectures such as periodic metal–insulator–metal (MIM) MSAs [1], all
metal MSAs [2], all-dielectric MSAs [3], hybrid MSAs [4] and even disordered MSAs [5,6]
have been proposed, which exhibit great absorptivity performance for potential applica-
tions. Fundamentally, the essential principle of ideal wave absorption design is to probe
the condition of impedance matching. However, the required calculation of the scattering-
parameter-related lumped characteristic impedance is always cumbersome [7,8], thus
limiting the practical implementations of impedance matching. At present, the primary
method of MSA design is to excite different resonance modes by using various types
of nanoresonators [9,10]. Therefore, besides the applications of stealth technologies [11]
and thermal dissipation management [12], the intense local electric field enhancement
by localized resonance can be employed in applications such as lasing [13], hot-electron
engineering [14] and detection enhancement [15]. Furthermore, when considering many
practical scenarios such as photodetectors [16], bolometers [17], energy harvesting [18] and
stealth technologies [19], the absorption bandwidth is an essential factor that is directly re-
lated to other figures of merits such as the responsivity, efficiency and so on, since multiple
wavelength ranges are usually involved instead of a single one. Therefore, there has been
considerable attention and intensive investigations focused on broadband MSAs in recent
years [20].

An intuitive method to expand the absorption bandwidth involves coupling adjacent
resonance absorption peaks induced by nanoresonators with similar sizes and shapes
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arranged either perpendicular [21,22] or parallel [23,24] to the incident wave. However, the
relevant costs to fabricate such multi-level composite structures can be substantial. Instead,
broadband absorption can also be achieved by coupling multiple resonance modes excited
by one single type of structure, such as nichrome crosses [25], ITO grids [26] and titanium
blocks [27]. However, excitation of multiple resonances is not always straightforward,
leading to a delicate complexity trade-off between the process of fabrication and structural
design. On the other hand, by individually taking multiple resonance peaks into different
wavelength ranges, i.e., the so-called multi-band modulation [22,28,29], narrow band
absorption tends to be generated due to the limited quantity of resonance peaks.

In recent years, myriads of studies on multi-band broadband modulation in infrared
atmospheric windows have emerged for infrared camouflage [30,31]. For the sake of low
emissivity, devices are usually required to exhibit minimal absorption in multiple atmo-
spheric windows, according to the Kirchhoff Law. Other related works like absorption
modulations [32] and active switches [33] in both the mid-wave infrared (MWIR, 3–5 µm)
and the long-wave infrared (LWIR, 8–14 µm) atmospheric windows also highlight the po-
tential of multi-broadband absorption modulations. However, to the best of our knowledge,
only a few dual-broadband metasurface absorbers have been reported to operate effectively
across both the MWIR and the LWIR regions [27,34]. Nonetheless, the bandwidth and
absorption efficiency are limited and far from ideal. Further, due to the size constraints,
concurrently achieving absorption in the short-wave infrared (SWIR), MWIR and LWIR
regions remains a challenge.

In this paper, we propose a scheme for a tri-band broadband MSA that targets the
infrared atmospheric windows. In the SWIR (1.4–1.7 µm) region, the average absorption
reaches 87.6% due to a high order Fabry–Perot (F-P) resonance mode. In the MWIR
(3.2–5 µm) region, an average absorption of 93.2% is achieved by resorting to the low-order
FP resonance, the magnetic dipole (MD) resonance and the electric dipole (ED) resonance. In
the LWIR (8–13 µm) region, an average power absorption of 92.6% is obtained by coupling
four independent ED resonance modes across different wavelengths. Each resonance
mode is deliberately leveraged and adjusted in as-required wavelength regions though
the numerically calculated electric field profiles and optimized process of parametric
sweeping. Finally, our scheme prominently features the excellent performance of multi-
band absorption with its large bandwidth, high absorption efficiency and relative simplicity
of structure design as well as its insensitivity to the variations of polarization angle and
incident angle, which well confirms the feasibility and adaptability of our scheme for
potential applications in imaging, detection and communication.

2. Scheme and Analysis
2.1. Quality Factor of Nanoresonators

Essentially, to realize broadband absorption though couplings of multiple resonance
modes, two preconditions must be satisfied: multiple resonance modes coexisting concur-
rently and a low quality (Q) factor. High-Q resonances tend to exhibit absorption peaks
that are hardly intercoupled, causing an absorption spectrum with significant variance [35]
compared with their low-Q counterparts [25]. Intrinsically, the Q factor relates to the loss
and leakage rates within the resonance system. In general, it can be defined as Q = ω0

W
PLoss

,
where ω0 is the angular frequency of incident light, W denotes the stored energy and PLoss
denotes energy loss due to scattering and resistive effects [36]. In the design of MSAs, the
scattering power should be particularly low. As a result, as the resistive loss mainly results
from the ohmic loss, the material property of as-selected meta-units or nanoresonators for
constructing the MSA is a crucial factor.

As illustrated in Figure 1a–c, three different MSAs were constructed according to the
resonator–insulator–metal architecture customized with distinctly different nanoresonators,
i.e., the Cr nanopatches, Au nanopatches and Ge nanocubes. As shown in Figure 1d
for the absorption spectra, the dielectric MSA (green line) clearly exhibits the largest Q
factor at the resonance wavelength due to its lossless dielectric nature, which indicates
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the limitation of such simple dielectric nanoresonators as broadband absorbers. However,
higher conductivity is not always advantageous for MSA design because the skin depth
(σ = λ

2πIm(n) ) is inversely proportional to the imaginary part of the refractive index [37].
Thus, electromagnetic waves cannot penetrate deeply into novel metals like gold, resulting
in significant reflection and limited absorption. As depicted in Figure 1d, despite a higher
imaginary part of the refractive index due to its higher conductivity, an MSA composed of
Au patches demonstrates the lowest absorption (blue line) due to the largest reflective loss,
which indicates that the novel metal is not an ideal candidate for constructing broadband
metasurface absorbers. However, the metal Cr has a moderate complex refractive index
between the lossless dielectric and the novel metal. As a result, the Cr-based MSA assumes
a moderately low-Q resonance mode for broadband and high absorption, indicating that
Cr could be an ideal candidate resonant material for the construction of MSAs.
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Figure 1. Schematic of metasurface absorbers constructed using three different types of nanores-
onators: (a) a Cr patch, with period of p = 1.8 µm, length of patch l = 1.6 µm, thickness of tm = 200 nm,
on a dielectric spacer with thickness td = 600 nm and a bottom metal substrate thickness of ts = 100 nm;
(b) a Au patch with the same as that in the (a); (c) Ge Cube, with a period of 2.8 µm and length and
thicknesses of l = 2.1 µm, ti = 2.1 µm, td = 2.4 µm, ts = 100 nm. (d) Calculated infrared absorption
spectra (left axis) of the MSA with a Cr patch, Au patch and Ge cube. The extinction coefficient
of Au and Cr are cited from [38,39] (right axis). Intrinsic Ge is lossless with a negligible extinction
coefficient [40].

2.2. Multiple Resonance Excitations

Based on the analyses above, multiple absorption peaks can be intentionally leveraged
and coupled to generate the required multi-broadband spectra by resorting to various
resonance mechanisms. As illustrated in Figure 2a, an FP resonance mode can be readily
generated by the destructive interference of reflected waves from the top and bottom
interfaces [37]. Additionally, it is known that metal strips aligned perpendicular to the
direction of the electric field in a typical MIM architecture can induce an electric dipole
resonance mode [41], and magnetic dipole (MD) resonance modes can be induced due
to the reverse currents induced in the top and bottom metal layers above and below the
middle dielectric spacer layer [42]. As indicated in Figure 1, Cr is selected for constructing
the MIM-based MSA for optimized multi-broadband absorption.

As shown in Figure 2b, by deliberately adjusting the geometries of the Cr patch
(Figure 1a) in the MIM-based MSA architecture, three distinct absorption peaks (λ1 to λ3)
can be distinctly extracted and distinguished in the mid-infrared region. To reveal the
mechanisms behind those resonant peaks, the extracted electric intensity distributions
in the YOZ plane for the three peaks are also presented in Figure 2c–e. As denoted in
Figure 2b and shown in Figure 2c–e, the electric field distribution at λ1 is obviously uniform
and less fluctuant compared with that at λ2 and λ3. In Figure 2d, the electric field mainly
concentrates inside the dielectric layer, where the electric vector (indicated by blue arrows)
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forms a half-ring with adjacent units. In contrast, Figure 2e exhibits the most intense
localized electric field enhancement at the edge of the Cr patch, with the electric vector
pointing from one side to the other (see red arrows). As confirmed by our previous
work [43], the results in Figure 2c–e distinctly indicate the characteristics of electric field
profiles corresponding to the FP mode, MD mode and ED mode, respectively.
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Figure 2. (a) The schematic of multi-mode coupling for broadband modulations of multi-band
absorption. (b) The absorption spectrum of the MSA in Figure 1 with parameters of p = 3 µm,
l = 2 µm, tm = 300 nm, td = 0.9 µm, and ts = 100 nm and electric intensity profiles in the YOZ plane at
wavelengths of (c) λ1 = 3.26 µm, (d) λ2 = 3.95 µm, and (e) λ3 = 8.97 µm.

As a result, such MIM-based MSAs constructed with a Cr-patch nanoresonator can
effectively excite at least three distinct resonance modes for as-required broadband modula-
tion of the absorptive spectrum. Considering the intrinsic property of the low Q factor of the
Cr nanoresonator, it is reasonable and highly promising to achieve as-required multi-band
modulation of broadband absorption spectrum by coupling the multiple modes with such
resonant absorption peaks.

3. Results and Discussion
3.1. Model and Absorption Optimization

To further confirm the mechanism of multi-mode coupling for broadband modulation,
the mid-infrared absorption spectrum is numerically calculated by the finite element
method (FEM) using the commercial tool CST. A TE plane wave is incident with its electric
field along the Y direction. The lateral boundary conditions of our MIM-based MSA are
set as periodic boundaries. Based on the idea of coupling multi-mode resonant peaks for
broadband absorption, the ultimate meta-unit of our MSA is optimally selected, as shown
in Figure 3a,b. Specifically, the nanoresonator in the top layer consists of Cr grids and four
Cr patches of varying sizes positioned in a four-quadrant manner.

The thickness of the grid and patches are tgrid = 5 nm and tpatch = 15 nm, respectively.
The material comprising the dielectric layer is CaF2, with a thickness of tCF = 0.9 µm, and
a 100 nm metal copper layer is chosen as the substrate. The width of the Cr grid w is
0.4 µm, and the lengths of the patches are customized as l1 = 3 µm, l2 = 2.5 µm, l3 = 2.1 µm
and l4 = 1.7 µm. The period of a unit cell is p = 8 µm. The refractive indices of Cr and
CaF2 are referenced from [39,44]. The complex permittivity of copper is cited from the
material library.
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The absorption spectra are extracted as A = 1 − R, where R is the reflectivity given
the negligible transmittance due to the almost fully reflective copper substrate. As shown
in Figure 3c, the absorption spectrum optimally covers the entire infrared atmospheric
window with distinctly enhanced multi-band broadband absorption. In the SWIR region, a
low-Q resonance mode can be achieved at 1.83 µm with a power absorption approaching
88% and an average absorption of 87.6% from 1.4 µm to 1.7 µm. In the MWIR region,
two major resonances are induced at 3.68 µm (A = 99.3%) and 4.64 µm (A = 99.6%). In
a wavelength range (3.2–5 µm) nearly covering the entire MWIR, the average power
absorption is up to 92.7%. Furthermore, our scheme realizes four absorption peaks in
the LWIR region: 8.39 µm, 9.22 µm, 10.61 µm and 11.94 µm, with absorptions of 91%,
96.9%, 93.3% and 97.7%, respectively. In most of the LWIR regions (8–13 µm), the average
absorption reaches 92.4%.

Finally, by leveraging seven resonant absorption modes, our scheme achieves broad-
band perfect absorption within three infrared atmospheric windows, with an average
absorption of around 90%. As summarized in Table 1, our work demonstrates distinct
advantages over other MSAs working in a similar infrared band in terms of the absorption
bandwidth, efficiency and multi-band tunability.

Table 1. Infrared metasurface absorber.

Ref. Material
Operating Wavelength (µm)/Absorption

SWIR MWIR LWIR

[29] Gold - 4.28/98.2% 8.23/99.5%

[45] Aluminum - 3.5–4.1/>90% -

[22] Gold - - 7.8–11.9/84.7%

[46] Gold/Si3N4 - - 8–14/~80%

[3] Silicon - - 8–14/90.36%

[47] Silicon/Silica 1.54–1.57/~70% - -

[37] ITO 4–16/>80%



Nanomaterials 2024, 14, 1316 6 of 12

Table 1. Cont.

Ref. Material
Operating Wavelength (µm)/Absorption

SWIR MWIR LWIR

[48] Titanium nitride 0.25–20/>90%

[34] Silica/Germanium - 4–6.3/>80% 8.7–9.6/>80%

[27] Titanium - 3.3–4.4/52% 8.5–12.5/86%

This work Chromium 1.4–1.7/87.6% 3.2–5/92.7% 8–13/92.4%

3.2. Resonance Mode Tuning

To verify the feasibility of our MSA scheme as proposed in Section 2, the electric field
intensity profiles in the XOY plane are also extracted. In the ranges of SWIR and MWIR,
as shown in Figure 4a,b, the electric field profiles extracted at 1.57 µm and 3.68 µm both
demonstrate the weak electric field characteristics of an FP cavity. In detail, the secondary
and basic mode of FP resonance dominate these two resonant absorption peaks respectively
(please refer to Figure A1 for more information). The first two resonant absorption peaks are
thus achieved by utilizing vertical FP resonance, thereby avoiding the undesired complexity
in designing the nanoresonator structures of the top Cr metasurface layer. In contrast, for
the MWIR range, Figure 4c shows the electric field mainly confined beneath the largest Cr
patch and along the edge of the Cr grid. Obviously, a similar electric field characteristic
as seen in Figure 2d can be identified, i.e., an MD resonance mode. While the resonance
mechanism seems a bit complex: the grids can intrinsically induce both ED and MD
resonance, jointly contributing to the absorption at λ3 = 4.64 µm [36]. Overall, the combined
resonance effects of EDs and MDs generated by Cr patches and grids coordinately produce
the absorption peak at 4.64 µm (see Figure A2 for more information).

Finally, in the LWIR range, the electric field distributions are more straightforwardly
evident. As shown in Figure 4d–g, the electric fields are intensely localized in a prominent
manner centered at different patches. Moreover, the electric field profiles of the four ab-
sorption peaks in the LWIR region are respectively concentrated around four patches of
different sizes, in perfect agreement with the YOZ profiles in Figure 2c. Herein, the resonant
wavelength is clearly linearly proportional to the patch size. Four successively increasing
resonant wavelengths in the LWIR range correspond to the four Cr patches, with sizes that
increase sequentially. As indicated by the analyses in Section 2, these four LWIR resonant
modes are induced by the ED resonance of patches closely coupled with each other to
generate the expanded broadband absorption.

Based on the absorption mechanisms mentioned above, the scaling impact of the
geometric dimensions to the absorption performance of our MSA is also investigated.
As analyzed before, the resonance wavelength is in direct proportion to the size of the
multipoles. And the thickness of dielectric layer directly determines the condition of phase
matching of reflected waves for the FP mode. As shown in Figure 5a,b, the variation in
the patch lengths only leads to the corresponding resonant wavelength shift in the LWIR
range. For example, as shown in Figure 5b, when increasing the length l4 of the smallest
patch, only the leftmost absorption peak in the LWIR region shows a significant redshift
and eventually merges with the adjacent absorption peak. In contrast, other resonant peaks
exhibit strong robustness against changes in the patch length, which also indicates that
the four resonant peaks are independently attributed to the ED resonance of an individual
Cr patch alone. Similarly, when increasing the width of the Cr grid, the increasing ED
size of the grid results in a notably redshift of the second peaks in the MWIR region,
as shown in Figure 5c. Notably, the redshift of λ7 in the LWIR region may also result
from the coordinately enhanced coupling effect between the largest patch and its adjacent
grids. Finally, the thickness of the CaF2 dielectric layer exhibits a significant impact on the
absorption spectrum across the entire infrared region, as determined by the condition of
impedance matching. However, only the resonant wavelengths of the first two peaks are
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prominently affected, indicating the dominant existence of a FP cavity mode. Spectral split
is also observable in the first absorption peak of the MWIR region, which might be caused
by the weak MD resonance of small patches.
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Practical applications usually require insensitivity or robustness to variations in the
incident angle and polarization angle of incident radiations. Here, we also probe the
absorption spectra by varying the incident and polarization angles. As shown in Figure 6a,c,
despite the structure of our MSA not being omni-directionally symmetric or isotropic, our
scheme still exhibits excellent polarization angle insensitivity in both the TE and TM
polarization mode. Across the polarization angle range from 0 to 90 degrees, the broadband
absorption spectrum remains nearly unchanged. Regarding the insensitivity to incident
angle variations, in TE mode, as shown in Figure 6b, the power absorption is maintained at
above 80% when the incident angle is varied within 60 degrees in both the SWIR and the
MWIR regions and within 45 degrees in the LWIR region. In the TM mode, as shown in
Figure 6d, the high absorption in the SWIR region still holds at around 50 degrees, and the
absorption bandwidth in the MWIR region even increases with a larger incident angle. In
the LWIR region, the device possesses good absorption and large bandwidth at an incident
angle varied within 40 degrees. It is notable that other resonance modes are seen because of
the z-component electric field (6–7 µm), which does not affect the overall absorption effect
in atmospheric windows. Overall, our scheme demonstrates high robustness against angle
variations in the incident radiation, along with its promising performance in multi-band
broadband absorption for potential applications.
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4. Conclusions

In summary, we have proposed a scheme to construct a multi-band metasurface
absorber with broadband performance for three infrared atmospheric windows. By de-
liberately choosing the geometric dimensions and materials of nanoresonators, we have
successfully combined and coupled seven independent and low-Q resonance modes for
multi-band broadband absorption control for multiple atmospheric windows. As a re-
sult, our scheme achieves multiband and broadband high absorption in the SWIR region
(1.4–1.7 µm), the MWIR region (3.2–5 µm) and the LWIR region (8–13 µm) respectively, with
an average absorption of approximately 90%. The electric field profiles in each resonance
peak well confirm the characteristics of the second-order FP mode (λ1, SWIR), the basic
FP mode (λ2, MWIR), the hybrid mode of ED and MD resonance (λ3, MWIR) and four
ED resonances with distinctly different wavelengths (λ3 − λ7, LWIR) as defined. In such a
manner, each absorption peak can be independently modulated by individually adjusting
the corresponding geometric parameters due to independent resonance modes, ensuring
the scalability and versatility of our scheme for potential applications. Finally, numerical
results also confirm the robustness of our scheme in the face of variations in the polarization
angle and incident angle. Such merits explicitly indicate the adaptability of our scheme
for practical deployment in myriads of potential applications, including infrared imaging,
photodetection, communication and so on.

Author Contributions: Conceptualization, S.Z. and Y.Z.; methodology, Y.Z.; software, Y.Z. and J.L.;
validation, Y.Z. and S.Z.; formal analysis, J.L. and S.C.; investigation, S.C.; resources, S.Z.; data cura-
tion, S.Z.; writing—original draft preparation, Y.Z.; writing—review and editing, S.Z.; visualization,
J.L.; supervision, Z.C. and S.Z.; project administration, S.Z. and Z.C.; funding acquisition, Z.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Guangdong Provincial Natural Science Foundation (grant
number: 2022A1515010872).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

When adjusting the length of the patch in Figure A1a, two absorption peaks in the
SWIR and MWIR regions are hardly affected. When l = 3.6 µm is equal to the inner
diameter of the grid, there are no longer any nanoresonators existing in the top Cr layer,
which means that the remaining two absorption peaks can only generated from the FP
cavity. Furthermore, the phase change in the Cr layer is negligible due to its extremely
small thickness compared with the wavelength. The wavelength in the basic mode (3 µm)
is nearly twice as much as in the second mode (1.6 µm).
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Figure A1. (a) The schematic of a single patch–grid structure. The structural parameters are as
follows: p = 4 µm, l = 1.7 µm, tm = 300 nm, td = 0.9 µm, tm = 150 nm, w = 0.4 µm. (b) The absorption
spectrum with different patch lengths.

Appendix B

As we can see from Figure A2, both a grid (blue line) and patches can produce
absorption peaks in the MWIR region due to the FP and multipole resonances but with a
quite limited absorption rate and bandwidth, in particular. However, when the grid and
patches work together, the overall absorption efficiency is significantly improved.
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