Design of Ultra-Compact and Multifunctional Optical Logic Gate Based on Sb2Se3-SOI Hybrid Platform
Abstract
:1. Introduction
2. Inverse Design of the Multifunctional Optical Logic Gate
3. Simulation Results
3.1. OR Logic Gate
3.2. XOR Logic Gate
3.3. NOT Logic Gate
3.4. AND Logic Gate
3.5. Manufacturing Tolerance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parandin, F.; Malmir, M.R.; Naseri, M.; Zahedi, A. Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals. Superlattices Microstruct. 2018, 113, 737–744. [Google Scholar] [CrossRef]
- He, L.; Zhang, W.X.; Zhang, X.D. Topological all-optical logic gates based on two-dimensional photonic crystals. Opt. Express 2019, 27, 25841–25860. [Google Scholar] [CrossRef] [PubMed]
- Masoud, A.M.; Ahmed, I.S.; El-Naggar, S.A.; Asham, M.D. Design and simulation of all-optical logic gates based on two-dimensional photonic crystals. J. Opt. 2021, 51, 343–351. [Google Scholar] [CrossRef]
- Caballero, L.P.; Povinelli, M.L.; Ramirez, J.C.; Guimarães, P.S.S.; Vilela Neto, O.P. Photonic crystal integrated logic gates and circuits. Opt. Express 2022, 30, 1976–1993. [Google Scholar] [CrossRef] [PubMed]
- Anagha, E.G.; Jeyachitra, R.K. Optimized design of an all-optical XOR gate with high contrast ratio and ultra-compact dimensions. Appl. Phys. B Lasers Opt. 2022, 128, 21. [Google Scholar] [CrossRef]
- Soma, S.; Gowre, S.K.C.; Sonth, M.V.; Gadgay, B.; Jyoti, B. Design and simulation of reconfigurable optical logic gates for integrated optical circuits. Opt. Quantum Electron. 2023, 55, 340. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, X.; Lu, C.; Yue, S.; Yang, H.; Gong, Q. All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides. Nano Lett. 2012, 12, 5784–5790. [Google Scholar] [CrossRef] [PubMed]
- Gayen, D.K.; Chattopadhyay, T. Designing of Optimized All-Optical Half Adder Circuit Using Single Quantum-Dot Semiconductor Optical Amplifier Assisted Mach-Zehnder Interferometer. J. Light. Technol. 2013, 31, 2029–2035. [Google Scholar] [CrossRef]
- Singh, P.; Tripathi, D.K.; Jaiswal, S.; Dixit, H.K. Designs of all-optical buffer and OR gate using SOA-MZI. Opt. Quantum Electron. 2013, 46, 1435–1444. [Google Scholar] [CrossRef]
- Chen, X.; Huo, L.; Zhao, Z.; Zhuang, L.; Lou, C. Study on 100-Gb/s reconfigurable all-optical logic gates using a single semiconductor optical amplifier. Opt. Express 2016, 24, 30245–30253. [Google Scholar] [CrossRef]
- Komatsu, K.; Hosoya, G.; Yashima, H. All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter. Opt. Quantum Electron. 2018, 50, 131. [Google Scholar] [CrossRef]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Xie, H.; Zhang, N.; Xu, K.; Yao, Y.; Xiao, S.; Song, Q. Very sharp adiabatic bends based on an inverse design. Opt. Lett. 2018, 43, 2482–2485. [Google Scholar] [CrossRef]
- Yang, S.; Jia, H.; Niu, J.; Fu, X.; Yang, L. CMOS-compatible ultra-compact silicon multimode waveguide bend based on inverse design method. Opt. Commun. 2022, 523, 128733. [Google Scholar] [CrossRef]
- Yu, Z.; Cui, H.; Sun, X. Genetically optimized on-chip wideband ultracompact reflectors and Fabry–Perot cavities. Photonics Res. 2017, 5, B15–B19. [Google Scholar] [CrossRef]
- Lu, L.; Liu, D.; Zhou, F.; Li, D.; Cheng, M.; Deng, L.; Fu, S.; Xia, J.; Zhang, M. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures. Opt. Lett. 2016, 41, 5051–5054. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, H.; Xie, T.; Yang, J.; Zhang, Z. Ultra-Compact Power Splitters with Low Loss in Arbitrary Direction Based on Inverse Design Method. Photonics 2021, 8, 516. [Google Scholar] [CrossRef]
- Xu, K.; Liu, L.; Wen, X.; Sun, W.; Zhang, N.; Yi, N.; Sun, S.; Xiao, S.; Song, Q. Integrated photonic power divider with arbitrary power ratios. Opt. Lett. 2017, 42, 855–858. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Lu, M.; Zhao, Y.; Hu, G.; Yun, B.; Cui, Y. Optimized inverse design of an ultra-compact silicon-based 2 × 2 3 dB optical power splitter. Opt. Commun. 2023, 530, 129141. [Google Scholar] [CrossRef]
- Ma, H.; Huang, J.; Zhang, K.; Yang, J. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method. Opt. Commun. 2020, 462, 125329. [Google Scholar] [CrossRef]
- Lu, Q.; Yan, X.; Wei, W.; Zhang, X.; Zhang, M.; Zheng, J.; Li, B.; Luo, Y.; Lin, Q.; Ren, X. High-speed ultra-compact all-optical NOT and AND logic gates designed by a multi-objective particle swarm optimized method. Opt. Laser Technol. 2019, 116, 322–327. [Google Scholar] [CrossRef]
- Qi, H.; Du, Z.; Hu, X.; Yang, J.; Chu, S.; Gong, Q. High performance integrated photonic circuit based on inverse design method. Opto-Electron. Adv. 2022, 5, 210061. [Google Scholar] [CrossRef]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef]
- Ma, H.; Du, T.; Zhang, Z.; Jiang, X.; Fang, L.; Yang, J. Inverse design of an air-cladding and fully-etched silicon polarization rotator based on a taper-based mode hybridization. Opt. Commun. 2023, 526, 128912. [Google Scholar] [CrossRef]
- Tahersima, M.H.; Kojima, K.; Koike-Akino, T.; Jha, D.; Wang, B.; Lin, C.; Parsons, K. Deep Neural Network Inverse Design of Integrated Photonic Power Splitters. Sci. Rep. 2019, 9, 1368. [Google Scholar] [CrossRef]
- Ma, H.; Yang, J.; Huang, J.; Zhang, Z.; Zhang, K. Inverse-designed single-mode and multi-mode nanophotonic waveguide switches based on hybrid silicon-Ge2Sb2Te5 platform. Results Phys. 2021, 26, 104384. [Google Scholar] [CrossRef]
- Song, C.; Gao, Y.; Wang, G.; Chen, Y.; Xu, P.; Gu, C.; Shi, Y.; Shen, X. Compact nonvolatile 2×2 photonic switch based on two-mode interference. Opt. Express 2022, 30, 30430–30440. [Google Scholar] [CrossRef]
- Quan, Z.; Wan, Y.; Ma, X.; Wang, J. Nonvolatile multi-level adjustable optical switch based on the phase change material. Opt. Express 2022, 30, 36096–36109. [Google Scholar] [CrossRef]
- Yin, K.; Gao, Y.; Shi, H.; Zhu, S. Inverse Design and Numerical Investigations of an Ultra-Compact Integrated Optical Switch Based on Phase Change Material. Nanomaterials 2023, 13, 1643. [Google Scholar] [CrossRef]
- Yuan, H.; Wu, J.; Zhang, J.; Pu, X.; Zhang, Z.; Yu, Y.; Yang, J. Non-Volatile Programmable Ultra-Small Photonic Arbitrary Power Splitters. Nanomaterials 2022, 12, 699. [Google Scholar] [CrossRef]
- Shi, W.; Li, J.; Wang, M.; Chen, L.; Liu, Y.; Ye, H. Topology design of reconfigurable power splitter with pixelated Sb-based phase change materials. Opt. Mater. 2023, 136, 113448. [Google Scholar] [CrossRef]
- Peng, Z.; Feng, J.; Yuan, H.; Cheng, W.; Wang, Y.; Ren, X.; Cheng, H.; Zang, S.; Shuai, Y.; Liu, H.; et al. A Non-Volatile Tunable Ultra-Compact Silicon Photonic Logic Gate. Nanomaterials 2022, 12, 1121. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Z.; Wang, Z.; Wu, Y.; Hu, Y.; Wu, J.; Yang, J. Non-Volatile Reconfigurable Compact Photonic Logic Gates Based on Phase-Change Materials. Nanomaterials 2023, 13, 1375. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jia, H.; Yang, J.; Tian, Y.; Wang, T. Ultra-compact switchable mode converter based on silicon and optical phase change material hybrid metastructure. Opt. Commun. 2020, 473, 125889. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 200447–200456. [Google Scholar] [CrossRef]
- Yang, K.; Li, B.; Zeng, G. Structural, morphological, compositional, optical and electrical properties of Sb2Se3 thin films deposited by pulsed laser deposition. Superlattices Microstruct. 2020, 145, 106618. [Google Scholar] [CrossRef]
- Yang, K.; Li, B.; Zeng, G. Sb2Se3 thin film solar cells prepared by pulsed laser deposition. J. Alloys Compd. 2020, 821, 153505. [Google Scholar] [CrossRef]
- Jain, A.K.; Gopalakrishnan, C.; Malar, P. Study of pulsed laser deposited antimony selenide thin films. J. Mater. Sci. Mater. Electron. 2022, 33, 10430–10438. [Google Scholar] [CrossRef]
- Lei, K.; Wei, M.; Chen, Z.; Wu, J.; Jian, J.; Du, J.; Li, J.; Li, L.; Lin, H. Magnetron-sputtered and thermal-evaporated low-loss Sb-Se phase-change films in non-volatile integrated photonics. Opt. Mater. Express 2022, 12, 2815–2823. [Google Scholar] [CrossRef]
- Turkoglu, F.; Ekren, M.E.; Cantas, A.; Yakinci, K.; Gundogan, H.; Koseoglu, H.; Aygun, G.; Ozyuzer, L. Structural and optical characteristics of antimony selenosulfide thin films prepared by two-step method. J. Korean Phys. Soc. 2022, 81, 278–284. [Google Scholar] [CrossRef]
- Haque, F.; Elumalai, N.K.; Wright, M.; Mahmud, M.A.; Uddin, A.J.M.R.B. Annealing Induced Microstructure Engineering of Antimony Tri-selenide Thin Films. Mater. Res. Bull. 2017, 99, 232–238. [Google Scholar] [CrossRef]
- El Radaf, I.M. Structural, optical, optoelectrical and photovoltaic properties of the thermally evaporated Sb2Se3 thin films. Appl. Phys. A 2019, 125, 832. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Z.; Peng, Z.; Wu, J.; Yang, J. Ultra-Compact and NonVolatile Nanophotonic Neural Networks. Adv. Opt. Mater. 2023, 11, 2300215–2300224. [Google Scholar] [CrossRef]
- Eslami, M.R.; Piran, P.; Bakhtiari, S.; Rezaei, M.H. Implementation of all two-input/one-output logical operations using a simple electro-optical graphene-based plasmonic structure. Opt. Quantum Electron. 2022, 54, 411. [Google Scholar] [CrossRef]
- You, J.; You, G.; Li, S.; Hou, J.; Yang, C.; Chen, S.; Gao, D. Ultra-compact and low loss onchip higher order mode pass filter based on topology optimization. Appl. Phys. Express 2020, 13, 022005. [Google Scholar] [CrossRef]
Input A | Input B | Threshold | Optical Transmittance | Binary Output |
---|---|---|---|---|
0 | 0 | 0.2 | 0 | 0 |
0 | 1 | 0.2 | 0.478 | 1 |
1 | 0 | 0.2 | 0.478 | 1 |
1 | 1 | 0.2 | 0.957 | 1 |
Input A | Input B | Threshold | Optical Transmittance | Binary Output |
---|---|---|---|---|
0 | 0 | 0.2 | 0 | 0 |
0 | 1 | 0.2 | 0.383 | 1 |
1 | 0 | 0.2 | 0.382 | 1 |
1 | 1 | 0.2 | 0.016 | 0 |
Input A | Input B for Control | Threshold | Optical Transmittance | Binary Output |
---|---|---|---|---|
0 | 1 | 0.2 | 0.547 | 1 |
1 | 1 | 0.2 | 0.037 | 0 |
Input A | Input B | Threshold | Optical Transmittance | Binary Output |
---|---|---|---|---|
0 | 0 | 0.5 | 0 | 0 |
0 | 1 | 0.5 | 0.350 | 0 |
1 | 0 | 0.5 | 0.349 | 0 |
1 | 1 | 0.5 | 0.700 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Liu, Q.; Liang, H.; Geng, M.; Wei, K.; Zhang, Z. Design of Ultra-Compact and Multifunctional Optical Logic Gate Based on Sb2Se3-SOI Hybrid Platform. Nanomaterials 2024, 14, 1317. https://doi.org/10.3390/nano14151317
Yang L, Liu Q, Liang H, Geng M, Wei K, Zhang Z. Design of Ultra-Compact and Multifunctional Optical Logic Gate Based on Sb2Se3-SOI Hybrid Platform. Nanomaterials. 2024; 14(15):1317. https://doi.org/10.3390/nano14151317
Chicago/Turabian StyleYang, Liuni, Qiang Liu, Haoyuan Liang, Minming Geng, Kejin Wei, and Zhenrong Zhang. 2024. "Design of Ultra-Compact and Multifunctional Optical Logic Gate Based on Sb2Se3-SOI Hybrid Platform" Nanomaterials 14, no. 15: 1317. https://doi.org/10.3390/nano14151317
APA StyleYang, L., Liu, Q., Liang, H., Geng, M., Wei, K., & Zhang, Z. (2024). Design of Ultra-Compact and Multifunctional Optical Logic Gate Based on Sb2Se3-SOI Hybrid Platform. Nanomaterials, 14(15), 1317. https://doi.org/10.3390/nano14151317