Superconductivity of Co-Doped CaKFe4As4 Investigated via Point-Contact Spectroscopy and London Penetration Depth Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystal Growth
2.2. Resistivity Measurements
2.3. Point-Contact Andreev Reflection Spectroscopy Measurements
2.4. Superfluid Density Measurements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazin, I.I. Superconductivity gets an iron boost. Nature 2010, 464, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Paglione, J.; Greene, R.L. High-temperature superconductivity in iron-based materials. Nat. Phys. 2010, 6, 645. [Google Scholar] [CrossRef]
- Johnston, D.C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 2010, 59, 803–1061. [Google Scholar] [CrossRef]
- Canfield, P.C.; Bud’ko, S.L. FeAs-Based Superconductivity: A Case Study of the Effects of Transition Metal Doping on BaFe2As2. Annu. Rev. Condens. Matter Phys. 2010, 1, 27–50. [Google Scholar] [CrossRef]
- Stewart, G.R. Superconductivity in iron compounds. Rev. Mod. Phys. 2011, 83, 1589–1652. [Google Scholar] [CrossRef]
- Chubukov, A. Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Matter Phys. 2012, 3, 57–92. [Google Scholar] [CrossRef]
- Hirschfeld, P.J.; Korshunov, M.M.; Mazin, I.I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124508. [Google Scholar] [CrossRef]
- Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 2015, 87, 855–896. [Google Scholar] [CrossRef]
- Lorenzana, J.; Seibold, G.; Ortix, C.; Grilli, M. Competing orders in FeAs layers. Phys. Rev. Lett. 2008, 101, 186402. [Google Scholar] [CrossRef]
- Ghigo, G.; Torsello, D.; Gerbaldo, R.; Gozzelino, L.; Pyon, S.; Veshchunov, I.S.; Tamegai, T.; Cao, G.H. Effects of proton irradiation on the magnetic superconductor EuFe2(As1−xPx)2. Supercond. Sci. Technol. 2020, 33, 094011. [Google Scholar] [CrossRef]
- Pallecchi, I.; Eisterer, M.; Malagoli, A.; Putti, M. Application potential of Fe-based superconductors. Supercond. Sci. Technol. 2015, 28, 114005. [Google Scholar] [CrossRef]
- Hosono, H.; Yamamoto, A.; Hiramatsu, H.; Ma, Y. Recent advances in iron-based superconductors toward applications. Mater. Today 2018, 21, 278–302. [Google Scholar] [CrossRef]
- Wang, Z.C.; He, C.Y.; Wu, S.Q.; Tang, Z.T.; Liu, Y.; Ablimit, A.; Feng, C.M.; Cao, G.H. Superconductivity in KCa2Fe4As4F2 with Separate Double Fe2As2 Layers. J. Am. Chem. Soc. 2016, 138, 7856–7859. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, C.; Tang, Z.; Wu, S.; Cao, G. Crystal structure and superconductivity at about 30 K in ACa2Fe4As4F2 (A = Rb, Cs). Sci. China Mater. 2017, 60, 83–89. [Google Scholar] [CrossRef]
- Yi, X.; Li, M.; Xing, X.; Meng, Y.; Zhao, C.; Shi, Z. Single crystal growth and effects of Ni doping on the novel 12442-type iron-based superconductor RbCa2Fe4As4F2. New J. Phys. 2020, 22, 073007. [Google Scholar] [CrossRef]
- Wang, T.; Chu, J.; Jin, H.; Feng, J.; Wang, L.; Song, Y.; Zhang, C.; Xu, X.; Li, W.; Li, Z.; et al. Single-Crystal Growth and Extremely High Hc2 of 12442-Type Fe-Based Superconductor KCa2Fe4As4F2. J. Phys. Chem. C 2019, 123, 13925–13929. [Google Scholar] [CrossRef]
- Wang, Z.C.; Liu, Y.; Wu, S.Q.; Shao, Y.T.; Ren, Z.; Cao, G.H. Giant anisotropy in superconducting single crystals of CsCa2Fe4As4F2. Phys. Rev. B 2019, 99, 144501. [Google Scholar] [CrossRef]
- Piatti, E.; Torsello, D.; Ghigo, G.; Daghero, D. Spectroscopic studies of the superconducting gap in the 12442 family of iron-based compounds (Review article). Low Temp. Phys. 2023, 49, 770–785. [Google Scholar] [CrossRef]
- Torsello, D.; Piatti, E.; Ummarino, G.A.; Yi, X.; Xing, X.; Shi, Z.; Ghigo, G.; Daghero, D. Nodal multigap superconductivity in the anisotropic iron-based compound RbCa2Fe4As4F2. NPJ Quantum Mater. 2022, 7, 10. [Google Scholar] [CrossRef]
- Smidman, M.; Kirschner, F.K.K.; Adroja, D.T.; Hillier, A.D.; Lang, F.; Wang, Z.C.; Cao, G.H.; Blundell, S.J. Nodal multigap superconductivity in KCa2Fe4As4F2. Phys. Rev. B 2018, 97, 060509. [Google Scholar] [CrossRef]
- Kirschner, F.K.K.; Adroja, D.T.; Wang, Z.C.; Lang, F.; Smidman, M.; Baker, P.J.; Cao, G.H.; Blundell, S.J. Two-gap superconductivity with line nodes in CsCa2Fe4As4F2. Phys. Rev. B 2018, 97, 060506. [Google Scholar] [CrossRef]
- Torsello, D.; Piatti, E.; Fracasso, M.; Gerbaldo, R.; Gozzelino, L.; Yi, X.; Xing, X.; Shi, Z.; Daghero, D.; Ghigo, G. Unusually weak irradiation effects in anisotropic iron-based superconductor RbCa2Fe4As4F2. Front. Phys. 2024, 11, 1336501. [Google Scholar] [CrossRef]
- Iyo, A.; Kawashima, K.; Kinjo, T.; Nishio, T.; Ishida, S.; Fujihisa, H.; Gotoh, Y.; Kihou, K.; Eisaki, H.; Yoshida, Y. New-structure-type Fe-based superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs). J. Am. Chem. Soc. 2016, 138, 3410–3415. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, K.; Kinjo, T.; Nishio, T.; Ishida, S.; Fujihisa, H.; Gotoh, Y.; Kihou, K.; Eisaki, H.; Yoshida, Y.; Iyo, A. Superconductivity in Fe-based compound EuAFe4As4 (A = Rb and Cs). J. Phys. Soc. Jpn. 2016, 85, 064710. [Google Scholar] [CrossRef]
- Cho, K.; Fente, A.; Teknowijoyo, S.; Tanatar, M.A.; Joshi, K.R.; Nusran, N.M.; Kong, T.; Meier, W.R.; Kaluarachchi, U.; Guillamón, I.; et al. Nodeless multiband superconductivity in stoichiometric single-crystalline CaKFe4As4. Phys. Rev. B 2017, 95, 100502. [Google Scholar] [CrossRef]
- Teknowijoyo, S.; Cho, K.; Kończykowski, M.; Timmons, E.I.; Tanatar, M.A.; Meier, W.R.; Xu, M.; Bud’ko, S.L.; Canfield, P.C.; Prozorov, R. Robust s± pairing in CaK(Fe1−xNix)4As4 (x=0 and 0.05) from the response to electron irradiation. Phys. Rev. B 2018, 97, 140508. [Google Scholar] [CrossRef]
- Mou, D.; Kong, T.; Meier, W.R.; Lochner, F.; Wang, L.L.; Lin, Q.; Wu, Y.; Bud’ko, S.L.; Eremin, I.; Johnson, D.D.; et al. Enhancement of the Superconducting Gap by Nesting in CaKFe4As4: A New High Temperature Superconductor. Phys. Rev. Lett. 2016, 117, 277001. [Google Scholar] [CrossRef] [PubMed]
- Ummarino, G.A. Phenomenology of CaKFe4As4 explained in the framework of four bands Eliashberg theory. Phys. C Supercond. Appl. 2016, 529, 50–53. [Google Scholar] [CrossRef]
- Biswas, P.K.; Iyo, A.; Yoshida, Y.; Eisaki, H.; Kawashima, K.; Hillier, A.D. Signature of multigap nodeless superconductivity in CaKFe4As4. Phys. Rev. B 2017, 95, 140505. [Google Scholar] [CrossRef]
- Fente, A.; Meier, W.R.; Kong, T.; Kogan, V.G.; Bud’ko, S.L.; Canfield, P.C.; Guillamón, I.; Suderow, H. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high-Tc CaKFe4As4. Phys. Rev. B 2018, 97, 134501. [Google Scholar] [CrossRef]
- Cui, J.; Ding, Q.P.; Meier, W.R.; Böhmer, A.E.; Kong, T.; Borisov, V.; Lee, Y.; Bud’ko, S.L.; Valentí, R.; Canfield, P.C.; et al. Magnetic fluctuations and superconducting properties of CaKFe4As4 studied by 75As NMR. Phys. Rev. B 2017, 96, 104512. [Google Scholar] [CrossRef]
- Lochner, F.; Ahn, F.; Hickel, T.; Eremin, I. Electronic properties, low-energy Hamiltonian, and superconducting instabilities in CaKFe4As4. Phys. Rev. B 2017, 96, 094521. [Google Scholar] [CrossRef]
- Torsello, D.; Ummarino, G.A.; Bekaert, J.; Gozzelino, L.; Gerbaldo, R.; Tanatar, M.A.; Canfield, P.C.; Prozorov, R.; Ghigo, G. Tuning the Intrinsic Anisotropy with Disorder in the CaKFe4As4 Superconductor. Phys. Rev. Appl. 2020, 13, 064046. [Google Scholar] [CrossRef]
- Kuzmichev, S.A.; Pervakov, K.S.; Vlasenko, V.A.; Degtyarenko, A.Y.; Gavrilkin, S.Y.; Kuzmicheva, T.E. Andreev Spectroscopy of EuCsFe4As4 Stoichiometric Superconducting Pnictide. JETP Lett. 2022, 116, 723–728. [Google Scholar] [CrossRef]
- Kuzmicheva, T.E.; Kuzmichev, S.A.; Medvedev, A.S. Multiple-gap Superconductivity of Nonmagnetic Stoichiometric CaKFe4As4 Pnictide. JETP Lett. 2024. [Google Scholar] [CrossRef]
- Daghero, D.; Piatti, E.; Zhigadlo, N.D.; Gonnelli, R. A model for critical current effects in point-contact Andreev-reflection spectroscopy. Low Temp. Phys. 2023, 49, 886–892. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.B.; Yu, Y.L.; Tao, Q.; Feng, C.M.; Cao, G.H. RbEu(Fe1−xNix)4As4: From a ferromagnetic superconductor to a superconducting ferromagnet. Phys. Rev. B 2017, 96, 224510. [Google Scholar] [CrossRef]
- Meier, W.R.; Ding, Q.P.; Kreyssig, A.; Bud’ko, S.L.; Sapkota, A.; Kothapalli, K.; Borisov, V.; Valentí, R.; Batista, C.D.; Orth, P.P.; et al. Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor. NPJ Quantum Mater. 2018, 3, 5. [Google Scholar] [CrossRef]
- Iida, K.; Ishikado, M.; Nagai, Y.; Yoshida, H.; Christianson, A.D.; Murai, N.; Kawashima, K.; Yoshida, Y.; Eisaki, H.; Iyo, A. Spin resonance in the new-structure-type iron-based superconductor CaKFe4As4. J. Phys. Soc. Jpn. 2017, 86, 093703. [Google Scholar] [CrossRef]
- Meier, W.R.; Kong, T.; Kaluarachchi, U.S.; Taufour, V.; Jo, N.H.; Drachuck, G.; Böhmer, A.E.; Saunders, S.M.; Sapkota, A.; Kreyssig, A.; et al. Anisotropic thermodynamic and transport properties of single-crystalline CaKFe4As4. Phys. Rev. B 2016, 94, 064501. [Google Scholar] [CrossRef]
- Ding, Q.P.; Meier, W.R.; Cui, J.; Xu, M.; Böhmer, A.E.; Bud’ko, S.L.; Canfield, P.C.; Furukawa, Y. Hedgehog Spin-Vortex Crystal Antiferromagnetic Quantum Criticality in CaK(Fe1−xNix)4As4 Revealed by NMR. Phy. Rev. Lett. 2018, 121, 137204. [Google Scholar] [CrossRef] [PubMed]
- Bud’ko, S.L.; Kogan, V.G.; Prozorov, R.; Meier, W.R.; Xu, M.; Canfield, P.C. Coexistence of superconductivity and magnetism in CaK(Fe1−xNix)4As4 as probed by 57Fe Mössbauer spectroscopy. Phys. Rev. B 2018, 98, 144520. [Google Scholar] [CrossRef]
- Kreyssig, A.; Wilde, J.M.; Böhmer, A.E.; Tian, W.; Meier, W.R.; Li, B.; Ueland, B.G.; Xu, M.; Bud’ko, S.L.; Canfield, P.C.; et al. Antiferromagnetic order in CaK(Fe1−xNix)4As4 and its interplay with superconductivity. Phys. Rev. B 2018, 97, 224521. [Google Scholar] [CrossRef]
- Khasanov, R.; Meier, W.R.; Bud’ko, S.L.; Luetkens, H.; Canfield, P.C.; Amato, A. Anisotropy induced vortex lattice rearrangement in CaKFe4As4. Phys. Rev. B 2019, 99, 140507. [Google Scholar] [CrossRef]
- Torsello, D.; Cho, K.; Joshi, K.R.; Ghimire, S.; Ummarino, G.A.; Nusran, N.M.; Tanatar, M.A.; Meier, W.R.; Xu, M.; Bud’ko, S.L.; et al. Analysis of the London penetration depth in Ni-doped CaKFe4As4. Phys. Rev. B 2019, 100, 094513. [Google Scholar] [CrossRef]
- Daghero, D.; Gonnelli, R.S. Probing multiband superconductivity by point-contact spectroscopy. Supercond. Sci. Technol. 2010, 23, 043001. [Google Scholar] [CrossRef]
- Daghero, D.; Tortello, M.; Ummarino, G.A.; Gonnelli, R.S. Directional point-contact Andreev-reflection spectroscopy of Fe-based superconductors: Fermi surface topology, gap symmetry, and electron–boson interaction. Rep. Prog. Phys. 2011, 74, 124509. [Google Scholar] [CrossRef]
- Gonnelli, R.S.; Daghero, D.; Tortello, M. Point contact spectroscopy in Fe-based superconductors: Recent advancements and future challenges. Curr. Opin. Solid State Mater. Sci. 2013, 17, 72–80. [Google Scholar] [CrossRef]
- Daghero, D.; Piatti, E.; Zhigadlo, N.D.; Ummarino, G.A.; Barbero, N.; Shiroka, T. Superconductivity of underdoped PrFeAs(O,F) investigated via point-contact spectroscopy and nuclear magnetic resonance. Phys. Rev. B 2020, 102, 104513. [Google Scholar] [CrossRef]
- Ghigo, G.; Torsello, D. Analysis of Microwave Conductivity and Penetration Depth of Iron Based Superconductors Families. In Microwave Analysis of Unconventional Superconductors with Coplanar-Resonator Techniques; Springer International Publishing: Cham, Switzerland, 2022; pp. 61–75. [Google Scholar] [CrossRef]
- Ghigo, G.; Fracasso, M.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Napolitano, A.; Cao, G.H.; Graf, M.J.; Prozorov, R.; Tamegai, T.; et al. High-Frequency ac Susceptibility of Iron-Based Superconductors. Materials 2022, 15, 1079. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Pyon, S.; Takahashi, A.; Tamegai, T. Effects of point defects introduced by Co-doping and proton irradiation in CaKFe4As4. J. Phys. Conf. Ser. 2020, 1590, 012014. [Google Scholar] [CrossRef]
- Pyon, S.; Takahashi, A.; Veshchunov, I.; Tamegai, T.; Ishida, S.; Iyo, A.; Eisaki, H.; Imai, M.; Abe, H.; Terashima, T.; et al. Large and significantly anisotropic critical current density induced by planar defects in CaKFe4As4 single crystals. Phys. Rev. B 2019, 99, 104506. [Google Scholar] [CrossRef]
- Ichinose, A.; Pyon, S.; Tamegai, T.; Ishida, S. Elucidating the origin of planar defects that enhance critical current density in CaKFe4As4 single crystals. Supercond. Sci. Technol. 2021, 34, 034003. [Google Scholar] [CrossRef]
- Zhigadlo, N.D.; Logvinovich, D.; Stepanov, V.A.; Gonnelli, R.S.; Daghero, D. Crystal growth, characterization, and point-contact Andreev-reflection spectroscopy of the noncentrosymmetric superconductor Mo3Al2C. Phys. Rev. B 2018, 97, 214518. [Google Scholar] [CrossRef]
- Daghero, D.; Tortello, M.; Ummarino, G.A.; Piatti, E.; Ghigo, G.; Hatano, T.; Kawaguchi, T.; Ikuta, H.; Gonnelli, R.S. Decoupling of critical temperature and superconducting gaps in irradiated films of a Fe-based superconductor. Supercond. Sci. Technol. 2018, 31, 034005. [Google Scholar] [CrossRef]
- Baltz, V.; Naylor, A.D.; Seemann, K.M.; Elder, W.; Sheen, S.; Westerholt, Z.; Zabel, H.; Burnell, G.; Marrows, C.H.; Hickey, B.J. Conductance features in point contact Andreev reflection spectra. J. Phys. Condens. Matter 2009, 21, 095701. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Kashiwaya, S. Theory of tunneling spectroscopy of d-wave superconductors. Phys. Rev. Lett. 1995, 74, 3451. [Google Scholar] [CrossRef]
- Kashiwaya, S.; Tanaka, Y.; Koyanagi, M.; Kajimura, K. Theory for tunneling spectroscopy of anisotropic superconductors. Phys. Rev. B 1996, 53, 2667–2676. [Google Scholar] [CrossRef]
- Torsello, D.; Ummarino, G.A.; Gozzelino, L.; Tamegai, T.; Ghigo, G. Comprehensive Eliashberg analysis of microwave conductivity and penetration depth of K-, Co-, and P-substituted BaFe2As2. Phys. Rev. B 2019, 99, 134518. [Google Scholar] [CrossRef]
- Ghigo, G.; Torsello, D.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Tamegai, T. Effects of heavy-ion irradiation on the microwave surface impedance of (Ba1−xKx)Fe2As2 single crystals. Supercond. Sci. Technol. 2018, 31, 034006. [Google Scholar] [CrossRef]
- Torsello, D.; Gerbaldo, R.; Gozzelino, L.; Tanatar, M.A.; Prozorov, R.; Canfield, P.C.; Ghigo, G. Electrodynamic response of Ba (Fe1−xRhx)2As2 across the s± to s++ order parameter transition. Eur. Phys. J. Spec. Top. 2019, 228, 719–723. [Google Scholar] [CrossRef]
- Blonder, G.E.; Tinkham, M.; Klapwijk, T.M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 1982, 25, 4515–4532. [Google Scholar] [CrossRef]
- Sheet, G.; Mukhopadhyay, S.; Raychaudhuri, P. Role of critical current on the point-contact Andreev reflection spectra between a normal metal and a superconductor. Phys. Rev. B 2004, 69, 134507. [Google Scholar] [CrossRef]
- Häussler, R.; Goll, G.; Naidyuk, Y.G.; Löhneysen, H.V. Point contacts with the amorphous superconductor (Mo0.55Ru0.45)0.8P0.2 in a magnetic field. Phys. B Condens. Matter 1996, 218, 197–199. [Google Scholar] [CrossRef]
- Chen, T.Y.; Huang, S.X.; Chien, C.L. Pronounced effects of additional resistance in Andreev reflection spectroscopy. Phys. Rev. B 2010, 81, 214444. [Google Scholar] [CrossRef]
- Döring, S.; Schmidt, S.; Gottwals, S.; Schmidl, F.; Tympel, V.; Mönch, I.; Kurth, F.; Iida, K.; Holzapfel, B.; Seidel, P. Influence of the spreading resistance on the conductance spectrum of planar hybrid thin film SNS’ junctions based on iron pnictides. J. Phys. Conf. Ser. 2014, 507, 012008. [Google Scholar] [CrossRef]
- Chandrasekhar, B.S.; Einzel, D. The superconducting penetration depth from the semiclassical model. Ann. Phys. 1993, 505, 535–546. [Google Scholar] [CrossRef]
- Ghigo, G.; Torsello, D.; Ummarino, G.A.; Gozzelino, L.; Tanatar, M.A.; Prozorov, R.; Canfield, P.C. Disorder-Driven Transition from s± to s++ Superconducting Order Parameter in Proton Irradiated Ba(Fe1−xRhx)2As2 Single Crystals. Phys. Rev. Lett. 2018, 121, 107001. [Google Scholar] [CrossRef] [PubMed]
- Torsello, D.; Ummarino, G.A.; Gerbaldo, R.; Gozzelino, L.; Ghigo, G. Eliashberg Analysis of the Electrodynamic Response of Ba(Fe1−xRhx)2As2 Across the s± to s++ Order Parameter Transition. J. Supercond. Nov. Magn. 2020, 33, 2319–2324. [Google Scholar] [CrossRef]
- Khasanov, R.; Meier, W.R.; Wu, Y.; Mou, D.; Bud’ko, S.L.; Eremin, I.; Luetkens, H.; Kaminski, A.; Canfield, P.C.; Amato, A. In-plane magnetic penetration depth of superconducting CaKFe4As4. Phys. Rev. B 2018, 97, 140503. [Google Scholar] [CrossRef]
- Ghosh, A.; Sen, S.; Ghosh, H. 1144 Fe based superconductors: Natural example of orbital selective self-doping and chemical pressure induced Lifshitz transition. Computat. Mater. Sci. 2021, 186, 109991. [Google Scholar] [CrossRef]
- Huang, Y.N.; Yu, X.L.; Liu, D.Y.; Han, M.M. Role of Doping Effect and Chemical Pressure Effect Introduced by Alkali Metal Substitution on 1144 Iron-Based Superconductors. Materials 2023, 16, 3343. [Google Scholar] [CrossRef] [PubMed]
- Bouquet, F.; Wang, Y.; Fisher, R.A.; Hinks, D.G.; Jorgensen, J.D.; Junod, A.; Phillips, N.E. Phenomenological two-gap model for the specific heat of MgB2. Europhys. Lett. 2001, 56, 856. [Google Scholar] [CrossRef]
- Nakajima, Y.; Nakagawa, T.; Tamegai, T.; Harima, H. Specific-heat evidence for two-gap superconductivity in the ternary-iron silicide Lu2Fe3Si5. Phys. Rev. Lett. 2008, 100, 157001. [Google Scholar] [CrossRef]
- Daghero, D.; Tortello, M.; Ummarino, G.A.; Stepanov, V.A.; Bernardini, F.; Topeano, M.; Putti, M.; Gonnelli, R. Effects of isoelectronic Ru substitution at the Fe site on the energy gaps of optimally F-doped SmFeAsO. Supercond. Sci. Technol. 2012, 25, 084012. [Google Scholar] [CrossRef]
- Inosov, D.S.; Park, J.T.; Charnukha, A.; Li, Y.; Boris, A.V.; Keimer, B.; Hinkov, V. Crossover from weak to strong pairing in unconventional superconductors. Phys. Rev. B 2011, 83, 214520. [Google Scholar] [CrossRef]
- Ummarino, G.A. Multiband s± Eliashberg theory and temperature-dependent spin-resonance energy in iron pnictide superconductors. Phys. Rev. B 2012, 83, 092508. [Google Scholar] [CrossRef]
- Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A. Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 2010, 466, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Neverov, V.D.; Lukyanov, A.E.; Krasavin, A.V.; Vagov, A.; Croitoru, M.D. Correlated disorder as a way towards robust superconductivity. Commun. Phys. 2022, 5, 177. [Google Scholar] [CrossRef]
- de Bragança, R.H.; de Moraes, L.M.T.; de C. Romaguera, A.R.; Albino Aguiar, J.; Croitoru, M.D. Impact of Correlated Disorder on Surface Superconductivity: Revealing the Robustness of the Surface Ordering Effect. J. Phys. Chem. Lett. 2024, 15, 2573–2579. [Google Scholar] [CrossRef]
- Mai, T.L.; Tran, V.H. Ab initio study of electronic structure properties of CaAFe4As4 (A=K, Rb and Cs) superconductors. Comput. Mater. Sci. 2019, 169, 109114. [Google Scholar] [CrossRef]
- Cho, K.; Kończykowski, M.; Teknowijoyo, S.; Tanatar, M.A.; Liu, Y.; Lograsso, T.A.; Straszheim, W.E.; Mishra, V.; Maiti, S.; Hirschfeld, P.J.; et al. Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2. Sci. Adv. 2016, 2, e1600807. [Google Scholar] [CrossRef] [PubMed]
- Daghero, D.; Pecchio, P.; Ummarino, G.A.; Nabeshima, F.; Imai, Y.; Maeda, A.; Tsukada, I.; Komiya, S.; Gonnelli, R.S. Point-contact Andreev-reflection spectroscopy in Fe(Te,Se) films: Multiband superconductivity and electron-boson coupling. Supercond. Sci. Technol. 2014, 27, 124014. [Google Scholar] [CrossRef]
- Pecchio, P.; Daghero, D.; Ummarino, G.A.; Gonnelli, R.S.; Kurth, F.; Holzapfel, B.; Iida, K. Doping and critical-temperature dependence of the energy gaps in Ba(Fe1−xCox)2As2 thin films. Phys. Rev. B 2013, 88, 174506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piatti, E.; Torsello, D.; Breccia, F.; Tamegai, T.; Ghigo, G.; Daghero, D. Superconductivity of Co-Doped CaKFe4As4 Investigated via Point-Contact Spectroscopy and London Penetration Depth Measurements. Nanomaterials 2024, 14, 1319. https://doi.org/10.3390/nano14151319
Piatti E, Torsello D, Breccia F, Tamegai T, Ghigo G, Daghero D. Superconductivity of Co-Doped CaKFe4As4 Investigated via Point-Contact Spectroscopy and London Penetration Depth Measurements. Nanomaterials. 2024; 14(15):1319. https://doi.org/10.3390/nano14151319
Chicago/Turabian StylePiatti, Erik, Daniele Torsello, Francesca Breccia, Tsuyoshi Tamegai, Gianluca Ghigo, and Dario Daghero. 2024. "Superconductivity of Co-Doped CaKFe4As4 Investigated via Point-Contact Spectroscopy and London Penetration Depth Measurements" Nanomaterials 14, no. 15: 1319. https://doi.org/10.3390/nano14151319
APA StylePiatti, E., Torsello, D., Breccia, F., Tamegai, T., Ghigo, G., & Daghero, D. (2024). Superconductivity of Co-Doped CaKFe4As4 Investigated via Point-Contact Spectroscopy and London Penetration Depth Measurements. Nanomaterials, 14(15), 1319. https://doi.org/10.3390/nano14151319