Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review
Abstract
:1. Introduction
2. Oriented Assembly of Nanomaterials
3. Stimuli Dependent Techniques
3.1. Chemical Stimuli-Based Self-Assembly of Nanomaterials
3.1.1. Solvent-Induced Self-Assembly
3.1.2. Acid–Base-Induced Self-Assembly
3.1.3. Bio-Macromolecule-Induced Self-Assembly
3.1.4. Metal Ion-Induced Self-Assembly
3.1.5. Gas-Induced Self-Assembly
3.2. Physical Stimuli-Based Self-Assembly of Nanomaterials
3.2.1. Light-Induced Self-Assembly
3.2.2. Magnetic-Induced Self-Assembly
3.2.3. Electric Field-Induced Self-Assembly
3.2.4. Temperature-Induced Self-Assembly
4. Futuristic Scope and Perspectives
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
APTES | 3-Aminopropyltriethoxysilane |
AI | Artificial Intelligence |
BNSL | Binary Nanocrystals Super Lattices |
BSPP | Bis(p-Sulfonatophenyl)-Phenyl Phosphine |
CTAB | Cetyl Trimethyl Ammonium Bromide |
CSNE | Cryosoret Nano-Engineering |
DMSO | Dimethyl Sulfoxide |
DCM | Dichloromethane |
DDA | Dodecylamine |
DNA | Deoxyribonucleic Acid |
EDTA | Ethylenediaminetetraacetic Acid |
FRET | Fluorescence Resonance Energy Transfer |
HAADF-STEM | High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy |
HSNs | Hollow Spherical Nanostructures |
HPA | Hexylphosphonic Acid |
HRTEM | High Resolution Transmission Electron Microscopy |
IoT | Internet-of-Things |
LSPR | Localized Surface Plasmon Resonance |
MEMS | Microelectromechanical |
NPOM | Nanoparticle-on-Mirror |
NPs | Nanoparticles |
NMs | Nanomaterials |
NCs | Nanocrystals |
NA | Nano-Assembly |
NRs | Nanorods |
OA | Oriented-Assembly |
Olam | Oleyamine |
ODPA | Octadecyl Phosphonic Acid |
PS | Polystyrene |
P4VP | Poly(4-Vinyl Pyridine) |
PBuA | Polybutyl Acrylate |
RhB | Rhodamine B |
SA | Self-Assembly |
SPCE | Surface Plasmon-Coupled Emission |
SPPs | Surface plasmon polaritons |
SAED | Selected Area Electron Diffraction |
SAM | Self-assembly monolayer |
SERS | Surface-Enhanced Raman Scattering |
TPs | Tetrapods |
TEM | Transmission Electron Microscopy |
THF | Tetrahydrofuran |
T-DDT | t-dodecanethiol |
1D | One Dimensional |
2D | Two Dimensional |
3D | Three Dimensional |
References
- Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green Chemistry and the Health Implications of Nanoparticles. Green Chem. 2006, 8, 417–432. [Google Scholar] [CrossRef]
- Badshah, M.A.; Koh, N.Y.; Zia, A.W.; Abbas, N.; Zahra, Z.; Saleem, M.W. Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing. Nanomaterials 2020, 10, 1749. [Google Scholar] [CrossRef]
- Che, C.; Xue, R.; Li, N.; Gupta, P.; Wang, X.; Zhao, B.; Singamaneni, S.; Nie, S.; Cunningham, B.T. Accelerated Digital Biodetection Using Magneto-Plasmonic Nanoparticle-Coupled Photonic Resonator Absorption Microscopy. ACS Nano 2022, 16, 2345–2354. [Google Scholar] [CrossRef]
- Chauhan, N.; Xiong, Y.; Ren, S.; Dwivedy, A.; Magazine, N.; Zhou, L.; Jin, X.; Zhang, T.; Cunningham, B.T.; Yao, S.; et al. Net-Shaped DNA Nanostructures Designed for Rapid/Sensitive Detection and Potential Inhibition of the SARS-CoV-2 Virus. J. Am. Chem. Soc. 2022, 145, 20214–20228. [Google Scholar] [CrossRef]
- Inan, H.; Poyraz, M.; Inci, F.; Lifson, M.A.; Baday, M.; Cunningham, B.T.; Demirci, U. Photonic Crystals: Emerging Biosensors and Their Promise for Point-of-Care Applications. Chem. Soc. Rev. 2017, 46, 366–388. [Google Scholar] [CrossRef] [PubMed]
- Rathnakumar, S.; Bhaskar, S.; Badiya, P.K.; Sivaramakrishnan, V.; Srinivasan, V.; Ramamurthy, S.S. Electrospun PVA Nanofibers Doped with Titania Nanoparticles in Plasmon-Coupled Fluorescence Studies: An Eco-Friendly and Cost-Effective Transition from 2D Nano Thin Films to 1D Nanofibers. MRS Commun. 2023, 13, 290–298. [Google Scholar] [CrossRef]
- Baumberg, J.J.; Aizpurua, J.; Mikkelsen, M.H.; Smith, D.R. Extreme Nanophotonics from Ultrathin Metallic Gaps. Nat. Mater. 2019, 18, 668–678. [Google Scholar] [CrossRef]
- Borghei, Y.-S.; Hosseinkhani, S.; Ganjali, M.R. “Plasmonic Nanomaterials”: An Emerging Avenue in Biomedical and Biomedical Engineering Opportunities. J. Adv. Res. 2022, 39, 61–71. [Google Scholar] [CrossRef]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef]
- Gwo, S.; Chen, H.-Y.; Lin, M.-H.; Sun, L.; Li, X. Nanomanipulation and Controlled Self-Assembly of Metal Nanoparticles and Nanocrystals for Plasmonics. Chem. Soc. Rev. 2016, 45, 5672–5716. [Google Scholar] [CrossRef]
- Angira, K.; Nshikawa, M.; Mori, T.; Takeya, J.; Shrestha, L.K.; Hill, J.P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 2018, 20, 51–95. [Google Scholar] [CrossRef]
- Bhaskar, S.; Ramamurthy, S.S. Mobile Phone-Based Picomolar Detection of Tannic Acid on Nd2O3 Nanorod–Metal Thin-Film Interfaces. ACS Appl. Nano Mater. 2019, 2, 4613–4625. [Google Scholar] [CrossRef]
- Xie, K.-X.; Xu, L.-T.; Zhai, Y.-Y.; Wang, Z.-C.; Chen, M.; Pan, X.-H.; Cao, S.-H.; Li, Y.-Q. The Synergistic Enhancement of Silver Nanocubes and Graphene Oxide on Surface Plasmon-Coupled Emission. Talanta 2019, 195, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Shih, W.-C. Multiplex Sensing of Lead and Mercury in Drinking Water Using Smartphone Nano-Colorimetry. In Proceedings of the Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA, BRAIN, NTM, OMA, OMP) (2019), Bio-Optics: Design and Application 2019, Tucson, AZ, USA, 14–17 April 2019; p. DW1B.6. [Google Scholar]
- Barya, P.; Xiong, Y.; Shepherd, S.; Gupta, R.; Akin, L.D.; Tibbs, J.; Lee, H.K.; Singamaneni, S.; Cunningham, B.T. Photonic-Plasmonic Coupling Enhanced Fluorescence Enabling Digital-Resolution Ultrasensitive Protein Detection. Small 2023, 19, 2207239. [Google Scholar] [CrossRef] [PubMed]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Ghosh, S.; Li, N.; Xiong, Y.; Ju, Y.-G.; Rathslag, M.P.; Onal, E.G.; Falkiewicz, E.; Kohli, M.; Cunningham, B.T. A Compact Photonic Resonator Absorption Microscope for Point of Care Digital Resolution Nucleic Acid Molecular Diagnostics. Biomed. Opt. Express. BOE 2021, 12, 4637–4650. [Google Scholar] [CrossRef]
- Liu, L.; Bhaskar, S.; Cunningham, B.T. Hybrid Interfacial Cryosoret Nano-Engineering in Photonic Resonator Interferometric Scattering Microscopy: Insights from Nanoparticles and Nano-Assemblies. Appl. Phys. Lett. 2024, 124, 234101. [Google Scholar] [CrossRef]
- Purohit, B.; Kumar, A.; Mahato, K.; Chandra, P. Smartphone-Assisted Personalized Diagnostic Devices and Wearable Sensors. Curr. Opin. Biomed. Eng. 2020, 13, 42–50. [Google Scholar] [CrossRef]
- Allen, C.; Maysinger, D.; Eisenberg, A. Nano-Engineering Block Copolymer Aggregates for Drug Delivery. Colloids Surf. B Biointerfaces 1999, 16, 3–27. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-Optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Bodnarchuk, M.I.; Kovalenko, M.V.; Heiss, W.; Talapin, D.V. Energetic and Entropic Contributions to Self-Assembly of Binary Nanocrystal Superlattices: Temperature as the Structure-Directing Factor. J. Am. Chem. Soc. 2010, 132, 11967–11977. [Google Scholar] [CrossRef]
- Grzelczak, M.; Liz-Marzán, L.M.; Klajn, R. Stimuli-Responsive Self-Assembly of Nanoparticles. Chem. Soc. Rev. 2019, 48, 1342–1361. [Google Scholar] [CrossRef]
- Ozin, G.A.; Hou, K.; Lotsch, B.V.; Cademartiri, L.; Puzzo, D.P.; Scotognella, F.; Ghadimi, A.; Thomson, J. Nanofabrication by Self-Assembly. Mater. Today 2009, 12, 12–23. [Google Scholar] [CrossRef]
- Čižmár, T.; Romero, L.C.D.; Dholakia, K.; Andrews, D.L. Multiple Optical Trapping and Binding: New Routes to Self-Assembly. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 102001. [Google Scholar] [CrossRef]
- Haldar, A.; Pal, S.B.; Roy, B.; Gupta, S.D.; Banerjee, A. Self-Assembly of Microparticles in Stable Ring Structures in an Optical Trap. Phys. Rev. A 2012, 85, 033832. [Google Scholar] [CrossRef]
- Aoki, K.; Miyazaki, H.T.; Hirayama, H.; Inoshita, K.; Baba, T.; Sakoda, K.; Shinya, N.; Aoyagi, Y. Microassembly of Semiconductor Three-Dimensional Photonic Crystals. Nat. Mater. 2003, 2, 117–121. [Google Scholar] [CrossRef]
- Rao, A.; Roy, S.; Jain, V.; Pillai, P.P. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Appl. Mater. Interfaces 2022, 15, 25248–25274. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Q.; Yin, Y. Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chem. Rev. 2022, 122, 4976–5067. [Google Scholar] [CrossRef]
- Ji, D.-D.; Wu, M.-X.; Ding, S.-N. Photonic Crystal Barcodes Assembled from Dendritic Silica Nanoparticles for the Multiplex Immunoassays of Ovarian Cancer Biomarkers. Anal. Methods 2022, 14, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, J.; Shen, Y.; Xie, A. An Assembled Ordered W18O49 Nanowire Film with High SERS Sensitivity and Stability for the Detection of RB. Appl. Surf. Sci. 2020, 504, 144073. [Google Scholar] [CrossRef]
- Chang, W.-S.; Willingham, B.A.; Slaughter, L.S.; Khanal, B.P.; Vigderman, L.; Zubarev, E.R.; Link, S. Low Absorption Losses of Strongly Coupled Surface Plasmons in Nanoparticle Assemblies. Proc. Natl. Acad. Sci. USA 2011, 108, 19879–19884. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Moronshing, M.; Srinivasan, V.; Badiya, P.K.; Subramaniam, C.; Ramamurthy, S.S. Silver Soret Nanoparticles for Femtomolar Sensing of Glutathione in a Surface Plasmon-Coupled Emission Platform. ACS Appl. Nano Mater. 2020, 3, 4329–4341. [Google Scholar] [CrossRef]
- Bhaskar, S.; Das, P.; Srinivasan, V.; Bhaktha, S.B.N.; Ramamurthy, S.S. Plasmonic-Silver Sorets and Dielectric-Nd2O3 Nanorods for Ultrasensitive Photonic Crystal-Coupled Emission. Mater. Res. Bull. 2022, 145, 111558. [Google Scholar] [CrossRef]
- Moronshing, M.; Subramaniam, C. Room Temperature, Multiphasic Detection of Explosives, and Volatile Organic Compounds Using Thermodiffusion Driven Soret Colloids. ACS Sustain. Chem. Eng. 2018, 6, 9470–9479. [Google Scholar] [CrossRef]
- Rai, A.; Bhaskar, S.; Ganesh, K.M.; Ramamurthy, S.S. Engineering of Coherent Plasmon Resonances from Silver Soret Colloids, Graphene Oxide and Nd2O3 Nanohybrid Architectures Studied in Mobile Phone-Based Surface Plasmon-Coupled Emission Platform. Mater. Lett. 2021, 304, 130632. [Google Scholar] [CrossRef]
- Bhaskar, S.; Jha, P.; Subramaniam, C.; Ramamurthy, S.S. Multifunctional Hybrid Soret Nanoarchitectures for Mobile Phone-Based Picomolar Cu2+ Ion Sensing and Dye Degradation Applications. Phys. E Low-Dimens. Syst. Nanostructures 2021, 132, 114764. [Google Scholar] [CrossRef]
- Bhaskar, S.; Das, P.; Moronshing, M.; Rai, A.; Subramaniam, C.; Bhaktha, S.B.N.; Ramamurthy, S.S. Photoplasmonic Assembly of Dielectric-Metal, Nd2O3-Gold Soret Nanointerfaces for Dequenching the Luminophore Emission. Nanophotonics 2021, 10, 3417–3431. [Google Scholar] [CrossRef]
- Hou, S.; Bai, L.; Lu, D.; Duan, H. Interfacial Colloidal Self-Assembly for Functional Materials. Acc. Chem. Res. 2023, 56, 740–751. [Google Scholar] [CrossRef]
- Bishop, K.J.M.; Wilmer, C.E.; Soh, S.; Grzybowski, B.A. Nanoscale Forces and Their Uses in Self-Assembly. Small 2009, 5, 1600–1630. [Google Scholar] [CrossRef]
- Deng, K.; Luo, Z.; Tan, L.; Quan, Z. Self-Assembly of Anisotropic Nanoparticles into Functional Superstructures. Chem. Soc. Rev. 2020, 49, 6002–6038. [Google Scholar] [CrossRef]
- Rai, A.; Bhaskar, S.; Ganesh, K.M.; Ramamurthy, S.S. Hottest Hotspots from the Coldest Cold: Welcome to Nano 4.0. ACS Appl. Nano Mater. 2022, 5, 12245–12264. [Google Scholar] [CrossRef]
- Chakrabortty, S.; Guchhait, A.; Ong, X.; Mishra, N.; Wu, W.-Y.; Jhon, M.H.; Chan, Y. Facet to Facet Linking of Shape Anisotropic Inorganic Nanocrystals with Site Specific and Stoichiometric Control. Nano Lett. 2016, 16, 6431–6436. [Google Scholar] [CrossRef]
- Sadtler, B.; Demchenko, D.O.; Zheng, H.; Hughes, S.M.; Merkle, M.G.; Dahmen, U.; Wang, L.-W.; Alivisatos, A.P. Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. J. Am. Chem. Soc. 2009, 131, 5285–5293. [Google Scholar] [CrossRef]
- Beberwyck, B.J.; Surendranath, Y.; Alivisatos, A.P. Cation Exchange: A Versatile Tool for Nanomaterials Synthesis. J. Phys. Chem. C 2013, 117, 19759–19770. [Google Scholar] [CrossRef]
- Gupta, S.; Wu, W.-Y.; Chakrabortty, S.; Li, M.; Wang, Y.; Ong, X.; Chan, Y. Hierarchical Multicomponent Nanoheterostructures via Facet-to-Facet Attachment of Anisotropic Semiconductor Nanoparticles. Chem. Mater. 2017, 29, 9075–9083. [Google Scholar] [CrossRef]
- Arora, D.; Lian, J.; Xu, Y.; Wu, W.-Y.; Chan, Y. Branched Heterostructured Semiconductor Nanocrystals with Various Branch Orders via a Facet-to-Facet Linking Process. ACS Nano 2020, 14, 10337–10345. [Google Scholar] [CrossRef]
- Arora, D.; Tan, H.R.; Wu, W.-Y.; Chan, Y. 2D-Oriented Attachment of 1D Colloidal Semiconductor Nanocrystals via an Etchant. Nano Lett. 2022, 22, 942–947. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Ciston, J.; Bustillo, K.; Nordlund, D.; Milliron, D.J. Synergistic Role of Dopants on the Morphology of Alloyed Copper Chalcogenide Nanocrystals. J. Am. Chem. Soc. 2015, 137, 6464–6467. [Google Scholar] [CrossRef]
- Son, D.H.; Hughes, S.M.; Yin, Y.; Alivisatos, A.P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012. [Google Scholar] [CrossRef]
- He, J.; Reyner, C.J.; Liang, B.L.; Nunna, K.; Huffaker, D.L.; Pavarelli, N.; Gradkowski, K.; Ochalski, T.J.; Huyet, G.; Dorogan, V.G.; et al. Band Alignment Tailoring of InAs1−xSbx/GaAs Quantum Dots: Control of Type I to Type II Transition. Nano Lett. 2010, 10, 3052–3056. [Google Scholar] [CrossRef]
- Tatebayashi, J.; Liang, B.L.; Laghumavarapu, R.B.; Bussian, D.A.; Htoon, H.; Klimov, V.; Balakrishnan, G.; Dawson, L.R.; Huffaker, D.L. Time-Resolved Photoluminescence of Type-II Ga(As)Sb/GaAs Quantum Dots Embedded in an InGaAs Quantum Well. Nanotechnology 2008, 19, 295704. [Google Scholar] [CrossRef] [PubMed]
- Kawazu, T.; Noda, T.; Mano, T.; Sakuma, Y.; Sakaki, H. Growth and Optical Properties of GaSb/GaAs Type-II Quantum Dots with and without Wetting Layer. Jpn. J. Appl. Phys. 2015, 54, 4DH01. [Google Scholar] [CrossRef]
- Hayne, M.; Maes, J.; Bersier, S.; Moshchalkov, V.V.; Schliwa, A.; Müller-Kirsch, L.; Kapteyn, C.; Heitz, R.; Bimberg, D. Electron Localization by Self-Assembled GaSb/GaAs Quantum Dots. Appl. Phys. Lett. 2003, 82, 4355–4357. [Google Scholar] [CrossRef]
- Borsdorf, L.; Herkert, L.; Bäumer, N.; Rubert, L.; Soberats, B.; Korevaar, P.A.; Bourque, C.; Gatsogiannis, C.; Fernández, G. Pathway-Controlled Aqueous Supramolecular Polymerization via Solvent-Dependent Chain Conformation Effects. J. Am. Chem. Soc. 2023, 145, 8882–8895. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Iglesias, A.; Grzelczak, M.; Altantzis, T.; Goris, B.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Donaldson, S.H.; Chmelka, B.F.; Israelachvili, J.N.; et al. Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano 2012, 6, 11059–11065. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, S.; Li, H.; Sun, D.; Zhang, J.; Xin, X. Solvent-Induced Self-Assembly of Copper Nanoclusters for White Light Emitting Diodes. ACS Appl. Nano Mater. 2021, 4, 10911–10920. [Google Scholar] [CrossRef]
- Yang, K.; Yao, X.; Liu, B.; Ren, B. Metallic Plasmonic Array Structures: Principles, Fabrications, Properties, and Applications. Adv. Mater. 2021, 33, 2007988. [Google Scholar] [CrossRef]
- Mayer, M.; Schnepf, M.J.; König, T.A.F.; Fery, A. Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces. Adv. Opt. Mater. 2019, 7, 1800564. [Google Scholar] [CrossRef]
- Cai, D.; Li, J.; Ma, Z.; Gan, Z.; Shao, Y.; Xing, Q.; Tan, R.; Dong, X.-H. Effect of Molecular Architecture and Symmetry on Self-Assembly: A Quantitative Revisit Using Discrete ABA Triblock Copolymers. ACS Macro Lett. 2022, 11, 555–561. [Google Scholar] [CrossRef]
- Gao, B.; Rozin, M.J.; Tao, A.R. Plasmonic Nanocomposites: Polymer-Guided Strategies for Assembling Metal Nanoparticles. Nanoscale 2013, 5, 5677–5691. [Google Scholar] [CrossRef]
- Ianiro, A.; Wu, H.; van Rijt, M.M.J.; Vena, M.P.; Keizer, A.D.A.; Esteves, A.C.C.; Tuinier, R.; Friedrich, H.; Sommerdijk, N.A.J.M.; Patterson, J.P. Liquid–Liquid Phase Separation during Amphiphilic Self-Assembly. Nat. Chem. 2019, 11, 320–328. [Google Scholar] [CrossRef]
- Huanga, X.; Liu, Y.; Barr, J.; Song, J.; He, Z.; Wang, Y.; Nie, Z.; Xiong, Y.; Chen, X. Controllable Self-Assembled Plasmonic Vesicle-Based Three-Dimensional SERS Platform for Picomolar Detection of Hydrophobic Contaminants. Nanoscale 2018, 10, 13202–13211. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, Y.; Li, X.; Ye, Z.; Yao, C.; Chen, Q.; Zhang, Y.; Bell, S.E.J. Unexpected Dual Action of Cetyltrimethylammonium Bromide (CTAB) in the Self-Assembly of Colloidal Nanoparticles at Liquid–Liquid Interfaces. Adv. Mater. Interfaces 2020, 7, 2000391. [Google Scholar] [CrossRef]
- Piloni, A.; Walther, A.; Stenzel, M.H. Compartmentalized Nanoparticles in Aqueous Solution through Hierarchical Self-Assembly of Triblock Glycopolymers. Polym. Chem. 2018, 9, 4132–4142. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, W.; Xu, Z.; Zhang, L.; Sun, T.; Du, M.; Kang, X.; Xiao, S.; Zhou, C.; Gong, M.; et al. pH-Driven Reversible Assembly and Disassembly of Colloidal Gold Nanoparticles. Front. Chem. 2021, 9, 675491. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Li, L. Metal–DNA Coordination-Driven Self-Assembly: A Conceptual Methodology to Expand the Repertoire of DNA Nanobiotechnology. Chem.—A Eur. J. 2019, 25, 13452–13457. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J. Interface-Driven Hybrid Materials Based on DNA-Functionalized Gold Nanoparticles. Matter 2019, 1, 825–847. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Liang, X.; Takarada, T.; Maeda, M. Regioselective DNA Modification and Directed Self-Assembly of Triangular Gold Nanoplates. Nanomaterials 2019, 9, 581. [Google Scholar] [CrossRef]
- Ren, S.; Wang, J.; Song, C.; Li, Q.; Yang, Y.; Teng, N.; Su, S.; Zhu, D.; Huang, W.; Chao, J.; et al. Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures. Research 2019, 2019, 7403580. [Google Scholar] [CrossRef]
- Urban, M.J.; Dutta, P.K.; Wang, P.; Duan, X.; Shen, X.; Ding, B.; Ke, Y.; Liu, N. Plasmonic Toroidal Metamolecules Assembled by DNA Origami. J. Am. Chem. Soc. 2016, 138, 5495–5498. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Han, C.; Movsesyan, A.; Li, P.; Li, H.; Tang, P.; Yuan, Y.; Jiang, S.; Ni, W.; et al. DNA-Assembled Chiral Satellite-Core Nanoparticle Superstructures: Two-State Chiral Interactions from Dynamic and Static Conformations. Nano Lett. 2022, 22, 4784–4791. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C. Self-Assembly of Biopolymers—Recent Progress and Future Prospects. Faraday Discuss. 2013, 166, 449. [Google Scholar] [CrossRef] [PubMed]
- Sugawara-Narutaki, A.; Kamiya, Y. Designer Biopolymers: Self-Assembling Proteins and Nucleic Acids. Int. J. Mol. Sci. 2020, 21, 3276. [Google Scholar] [CrossRef] [PubMed]
- Ofir, Y.; Samanta, B.; Rotello, V.M. Polymer and Biopolymer Mediated Self-Assembly of Gold Nanoparticles. Chem. Soc. Rev. 2008, 37, 1814. [Google Scholar] [CrossRef]
- Lin, Y.; Chapman, R.; Stevens, M.M. Integrative Self-Assembly of Graphene Quantum Dots and Biopolymers into a Versatile Biosensing Toolkit. Adv. Funct. Mater. 2015, 25, 3183–3192. [Google Scholar] [CrossRef] [PubMed]
- Peller, M.; Böll, K.; Zimpel, A.; Wuttke, S. Metal–Organic Framework Nanoparticles for Magnetic Resonance Imaging. Inorg. Chem. Front. 2018, 5, 1760–1779. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Ye, J.; Jiao, J.; Liu, Z.; Zhao, C.; Li, B.; Fu, Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. Adv. Sci. 2021, 8, 2101101. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, Z.; Liu, T.; Sun, D.; Godbert, N.; Li, H.; Hao, J.; Xin, X. Supramolecular Chirality from Hierarchical Self-Assembly of Atomically Precise Silver Nanoclusters Induced by Secondary Metal Coordination. ACS Nano 2021, 15, 15910–15919. [Google Scholar] [CrossRef]
- Mahato, P.; Shekhar, S.; Agrawal, S.; Pramanik, S.; Mukherjee, S. Assembly-Induced Emission in Mercaptosuccinic Acid-Templated Silver Nanoclusters: Metal Ion Selectivity and pH Sensitivity. ACS Appl. Nano Mater. 2022, 5, 7571–7579. [Google Scholar] [CrossRef]
- Su, J.; Huang, X.; Yang, M. Self-Limiting Assembly of Au Nanoparticles Induced by Localized Dynamic Metal-Phenolic Interactions. Eur. J. Inorg. Chem. 2020, 2020, 4477–4482. [Google Scholar] [CrossRef]
- Wu, B.; Liu, D.; Mubeen, S.; Chuong, T.T.; Moskovits, M.; Stucky, G.D. Anisotropic Growth of TiO2 onto Gold Nanorods for Plasmon-Enhanced Hydrogen Production from Water Reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117. [Google Scholar] [CrossRef]
- Chen, S.; Guo, C.X.; Zhao, Q.; Lu, X. One-Pot Synthesis of CO2-Responsive Magnetic Nanoparticles with Switchable Hydrophilicity. Chem.—A Eur. J. 2014, 20, 14057–14062. [Google Scholar] [CrossRef]
- Fan, W.; Tong, X.; Farnia, F.; Yu, B.; Zhao, Y. CO2-Responsive Polymer Single-Chain Nanoparticles and Self-Assembly for Gas-Tunable Nanoreactors. Chem. Mater. 2017, 29, 5693–5701. [Google Scholar] [CrossRef]
- Gentili, D.; Ori, G. Reversible Assembly of Nanoparticles: Theory, Strategies and Computational Simulations. Nanoscale 2022, 14, 14385–14432. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, S.; Chen, W.; Zhang, Q.; Chai, Y. Self-Assembly of Nanoparticles with Stimulated Responses at Liquid Interfaces. Nano Today 2024, 54, 102073. [Google Scholar] [CrossRef]
- Sahle, F.F.; Gulfam, M.; Lowe, T.L. Design Strategies for Physical-Stimuli-Responsive Programmable Nanotherapeutics. Drug Discov. Today 2018, 23, 992–1006. [Google Scholar] [CrossRef] [PubMed]
- Merino, E.; Ribagorda, M. Control over Molecular Motion Using the Cis–Trans Photoisomerization of the Azo Group. Beilstein J. Org. Chem. 2012, 8, 1071–1090. [Google Scholar] [CrossRef]
- Huebner, D.; Rossner, C.; Vana, P. Light-Induced Self-Assembly of Gold Nanoparticles with a Photoresponsive Polymer Shell. Polymer 2016, 107, 503–508. [Google Scholar] [CrossRef]
- Bian, T.; Chu, Z.; Klajn, R. The Many Ways to Assemble Nanoparticles Using Light. Adv. Mater. 2020, 32, 1905866. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, L.; Rong, Y.; Liu, Z.; Tong, D.; Huang, Y.; Chen, T. Light-Triggered Reversible Self-Assembly of Gold Nanoparticle Oligomers for Tunable SERS. Langmuir 2015, 31, 1164–1171. [Google Scholar] [CrossRef]
- Caillosse, E.; Zaier, M.; Mezghani, M.; Hajjar-Garreau, S.; Vidal, L.; Lougnot, D.; Balan, L. Photo-Induced Self-Assembly of Silver Nanoparticles for Rapid Generation of First and Second Surface Mirrors. ACS Appl. Nano Mater. 2020, 3, 6531–6540. [Google Scholar] [CrossRef]
- He, H.; Feng, M.; Chen, Q.; Zhang, X.; Zhan, H. Light-Induced Reversible Self-Assembly of Gold Nanoparticles Surface-Immobilized with Coumarin Ligands. Angew. Chem. Int. Ed. Engl. 2016, 55, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, T.A.; Knöner, G.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Physics of Optical Tweezers. Methods Cell Biol. 2007, 82, 207–236. [Google Scholar] [PubMed]
- Svoboda, K.; Block, S.M. Optical Trapping of Metallic Rayleigh Particles. Opt. Lett. 1994, 19, 930. [Google Scholar] [CrossRef]
- Zelenina, A.S.; Quidant, R.; Badenes, G.; Nieto-Vesperinas, M. Tunable Optical Sorting and Manipulation of Nanoparticles via Plasmon Excitation. Opt. Lett. 2006, 31, 2054. [Google Scholar] [CrossRef] [PubMed]
- Blázquez-Castro, A. Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules. Micromachines 2019, 10, 507. [Google Scholar] [CrossRef]
- Tan, H.; Hu, H.; Huang, L.; Qian, K. Plasmonic Tweezers for Optical Manipulation and Biomedical Applications. Analyst 2020, 145, 5699–5712. [Google Scholar] [CrossRef]
- Zaman, M.A.; Hesselink, L. Dynamically Controllable Plasmonic Tweezers Using C-Shaped Nano-Engravings. Appl. Phys. Lett. 2022, 121, 181108. [Google Scholar] [CrossRef]
- Mohapatra, J.; Elkins, J.; Xing, M.; Guragain, D.; Mishra, S.R.; Liu, J.P. Magnetic-Field-Induced Self-Assembly of FeCo/CoFe2O4 Core/Shell Nanoparticles with Tunable Collective Magnetic Properties. Nanoscale 2021, 13, 4519–4529. [Google Scholar] [CrossRef]
- Mehdizadeh Taheri, S.; Michaelis, M.; Friedrich, T.; Förster, B.; Drechsler, M.; Römer, F.M.; Bösecke, P.; Narayanan, T.; Weber, B.; Rehberg, I.; et al. Self-Assembly of Smallest Magnetic Particles. Proc. Natl. Acad. Sci. USA 2015, 112, 14484–14489. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J. Tomographic Imaging Using the Nonlinear Response of Magnetic Particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef]
- Chen, M.; Niu, X.; Yu, P.; Li, Q.; Li, Y.; Li, X.; Adnan, K. Numerical Investigation of Magnetic-Field Induced Self-Assembly of Nonmagnetic Particles in Magnetic Fluids. J. Fluids Struct. 2020, 97, 103008. [Google Scholar] [CrossRef]
- Singh, G.; Chan, H.; Udayabhaskararao, T.; Gelman, E.; Peddis, D.; Baskin, A.; Leitus, G.; Král, P.; Klajn, R. Magnetic Field-Induced Self-Assembly of Iron Oxide Nanocubes. Faraday Discuss. 2015, 181, 403–421. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, H.; Cheong, H.-K.; Lim, Y. Magnetic Control of Self-Assembly and Disassembly in Organic Materials. Nat. Commun. 2023, 14, 3081. [Google Scholar] [CrossRef]
- Abd Rahman, N.; Ibrahim, F.; Yafouz, B. Dielectrophoresis for Biomedical Sciences Applications: A Review. Sensors 2017, 17, 449. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Hansen, P.C.; Hesselink, L. Dielectrophoresis-Assisted Plasmonic Trapping of Dielectric Nanoparticles. Phys. Rev. A 2017, 95, 23840. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Wu, M.; Ren, W.; Jensen, M.A.; Davis, R.W.; Hesselink, L. Controlled Transport of Individual Microparticles Using Dielectrophoresis. Langmuir 2023, 39, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Chiou, P.-Y.; Chang., Z.; Wu, M.C. Droplet Manipulation with Light on Optoelectrowetting Device. J. Microelectromech. Syst. 2008, 17, 133–138. [Google Scholar] [CrossRef]
- Wu, M.C. Optoelectronic Tweezers—An Optofluidic Platform for Digital Cell Biology. In Proceedings of the 2019 International Conference on Optical MEMS and Nanophotonics (OMN), Daejeon, Republic of Korea, 28 July–1 August 2019; pp. 94–95. [Google Scholar]
- Zhang, S.; Xu, B.; Elsayed, M.; Nan, F.; Liang, W.; Valley, J.K.; Liu, L.; Huang, Q.; Wu, M.C.; Wheeler, A.R. Optoelectronic Tweezers: A Versatile Toolbox for Nano-/Micro-Manipulation. Chem. Soc. Rev. 2022, 51, 9203–9242. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, M.; Xiong, Z.; Li, Z.-Y. 3D Dynamic Motion of a Dielectric Micro-Sphere within Optical Tweezers. OEA 2021, 4, 200015. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Cheng, Y.-T.; Galambos, L.; Hesselink, L. Optoelectronic Tweezers with a Non-Uniform Background Field. Appl. Phys. Lett. 2020, 117, 171102. [Google Scholar] [CrossRef]
- Sebastián-Vicente, C.; Remacha-Sanz, P.; Elizechea-López, E.; García-Cabañes, Á.; Carrascosa, M. Combinatorial Nanoparticle Patterns Assembled by Photovoltaic Optoelectronic Tweezers. Appl. Phys. Lett. 2022, 121, 121104. [Google Scholar] [CrossRef]
- Atifi, S.; Mirvakili, M.-N.; Williams, C.A.; Bay, M.M.; Vignolini, S.; Hamad, W.Y. Fast Self-Assembly of Scalable Photonic Cellulose Nanocrystals and Hybrid Films via Electrophoresis. Adv. Mater. 2022, 34, e2109170. [Google Scholar] [CrossRef]
- Montelongo, Y.; Sikdar, D.; Ma, Y.; McIntosh, A.J.S.; Velleman, L.; Kucernak, A.R.; Edel, J.B.; Kornyshev, A.A. Electrotunable Nanoplasmonic Liquid Mirror. Nat. Mater. 2017, 16, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Petukhova, A.; Kumacheva, E. Properties and Emerging Applications of Self-Assembled Structures Made from Inorganic Nanoparticles. Nat. Nanotech 2010, 5, 15–25. [Google Scholar] [CrossRef]
- Balasubramaniam, S.; Pothayee, N.; Lin, Y.; House, M.; Woodward, R.C.; St. Pierre, T.G.; Davis, R.M.; Riffle, J.S. Poly(N-Isopropylacrylamide)-Coated Superparamagnetic Iron Oxide Nanoparticles: Relaxometric and Fluorescence Behavior Correlate to Temperature-Dependent Aggregation. Chem. Mater. 2011, 23, 3348–3356. [Google Scholar] [CrossRef]
- Liu, Y.; Han, X.; He, L.; Yin, Y. Thermoresponsive Assembly of Charged Gold Nanoparticles and Their Reversible Tuning of Plasmon Coupling. Angew. Chem. Int. Ed. 2012, 51, 6373–6377. [Google Scholar] [CrossRef]
- Lewandowski, W.; Fruhnert, M.; Mieczkowski, J.; Rockstuhl, C.; Górecka, E. Dynamically Self-Assembled Silver Nanoparticles as a Thermally Tunable Metamaterial. Nat. Commun. 2015, 6, 6590. [Google Scholar] [CrossRef]
- Cheerala, V.S.K.; Ganesh, K.M.; Bhaskar, S.; Ramamurthy, S.S.; Neelakantan, S.C. Smartphone-Based Attomolar Cyanide Ion Sensing Using Au-Graphene Oxide Cryosoret Nanoassembly and Benzoxazolium-Based Fluorophore in a Surface Plasmon-Coupled Enhanced Fluorescence Interface. Langmuir 2023, 39, 7939–7957. [Google Scholar] [CrossRef]
- Bhaskar, S. Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission. Micromachines 2023, 14, 574. [Google Scholar] [CrossRef]
- Bhaskar, S.; Ramamurthy, S.S. High Refractive Index Dielectric TiO2 and Graphene Oxide as Salient Spacers for >300-Fold Enhancements. In Proceedings of the 2021 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO), Kottayam, India, 29–30 April 2021; pp. 1–6. [Google Scholar]
- Bhaskar, S.; Srinivasan, V.; Ramamurthy, S.S. Nd2O3-Ag Nanostructures for Plasmonic Biosensing, Antimicrobial, and Anticancer Applications. ACS Appl. Nano Mater. 2023, 6, 1129–1145. [Google Scholar] [CrossRef]
- Cunningham, B.T.; Zhang, M.; Zhuo, Y.; Kwon, L.; Race, C. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review. IEEE Sens. J. 2016, 16, 3349–3366. [Google Scholar] [CrossRef]
- Kuang, M.; Wang, J.; Jiang, L. Bio-Inspired Photonic Crystals with Superwettability. Chem. Soc. Rev. 2016, 45, 6833–6854. [Google Scholar] [CrossRef]
- Duan, H.; Wang, D.; Li, Y. Green Chemistry for Nanoparticle Synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Zhao, X.; Deng, Y.; Li, Q.; Xia, Y. Green Preparation of Ag-Au Bimetallic Nanoparticles Supported on Graphene with Alginate for Non-Enzymatic Hydrogen Peroxide Detection. Nanomaterials 2018, 8, 507. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Hu, J.; Verpoort, F.; Zhuiykov, S. Bioinspired Patterned Photonic Junctions for Plasmon-Enhanced Metal Photoluminescence and Fluorescence: Design of Optical Cavities for near-Infrared Electronics. Mater. Today Energy 2022, 26, 101003. [Google Scholar] [CrossRef]
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021, 2021, e9954443. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Zhang, L.; Zeng, H. Distance-Dependent Fluorescence Resonance Energy Transfer Enhancement on Nanoporous Gold. Nanomaterials 2021, 11, 2927. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, F.; Zuo, P.; Tian, H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. Materials 2023, 16, 3083. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Chen, Y.; Lu, D.; Xiong, Q.; Lim, Y.; Duan, H. A Self-Assembled Plasmonic Substrate for Enhanced Fluorescence Resonance Energy Transfer. Adv. Mater. 2020, 32, 1906475. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, S.; Deng, Q.; Kang, M.; Nordlander, P.; Xu, H. Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2. Nano Lett. 2017, 17, 3809–3814. [Google Scholar] [CrossRef]
- Penzo, E.; Loiudice, A.; Barnard, E.S.; Borys, N.J.; Jurow, M.J.; Lorenzon, M.; Rajzbaum, I.; Wong, E.K.; Liu, Y.; Schwartzberg, A.M.; et al. Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 2020, 14, 6999–7007. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Ullah, S.; Melagraki, G.; Afantitis, A.; Lynch, I. Nanotechnology and Artificial Intelligence to Enable Sustainable and Precision Agriculture. Nat. Plants 2021, 7, 864–876. [Google Scholar] [CrossRef]
- Naik, G.G.; Jagtap, V.A. Two Heads Are Better than One: Unravelling the Potential Impact of Artificial Intelligence in Nanotechnology. Nano Trans. Med. 2024, 3, 100041. [Google Scholar] [CrossRef]
- Masson, J.-F.; Biggins, J.S.; Ringe, E. Machine Learning for Nanoplasmonics. Nat. Nanotechnol. 2023, 18, 111–123. [Google Scholar] [CrossRef]
- Nandipati, M.; Fatoki, O.; Desai, S. Bridging Nanomanufacturing and Artificial Intelligence—A Comprehensive Review. Materials 2024, 17, 1621. [Google Scholar] [CrossRef]
- Chugh, V.; Basu, A.; Kaushik, A.; Manshu; Bhansali, S.; Basu, A.K. Employing Nano-Enabled Artificial Intelligence (AI)-Based Smart Technologies for Prediction, Screening, and Detection of Cancer. Nanoscale 2024, 16, 5458–5486. [Google Scholar] [CrossRef]
- Brown, K.A.; Brittman, S.; Maccaferri, N.; Jariwala, D.; Celano, U. Machine Learning in Nanoscience: Big Data at Small Scales. Nano Lett. 2020, 20, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Adv. Mater. 2020, 32, 1901989. [Google Scholar] [CrossRef]
- Pamies, R.; Zhu, K.; Kjøniksen, A.-L.; Nyström, B. Thermal Response of Low Molecular Weight Poly-(N-Isopropylacrylamide) Polymers in Aqueous Solution. Polym. Bull. 2009, 62, 487–502. [Google Scholar] [CrossRef]
- Singamaneni, S.; Bliznyuk, V.N.; Binek, C.; Tsymbal, E.Y. Magnetic Nanoparticles: Recent Advances in Synthesis, Self-Assembly and Applications. J. Mater. Chem. 2011, 21, 16819. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Zhou, J.; Wang, L.; Li, Z.; Li, L.; Shi, L.; Chan, C.-M. Re-Assembly Behaviors of Polystyrene-b-Poly(Acrylic Acid) Micelles. Polymer 2009, 50, 6166–6171. [Google Scholar] [CrossRef]
- Sui, B.; Zhu, Y.; Jiang, X.; Wang, Y.; Zhang, N.; Lu, Z.; Yang, B.; Li, Y. Recastable Assemblies of Carbon Dots into Mechanically Robust Macroscopic Materials. Nat. Commun. 2023, 14, 6782. [Google Scholar] [CrossRef]
- Ornelas-Hernández, L.F.; Garduno-Robles, A.; Zepeda-Moreno, A. A Brief Review of Carbon Dots–Silica Nanoparticles Synthesis and Their Potential Use as Biosensing and Theragnostic Applications. Nanoscale Res. Lett. 2022, 17, 56. [Google Scholar] [CrossRef]
- Habteyes, T.G.; Westphal, E.R.; Plackowski, K.M.; Kotula, P.G.; Meyerson, M.L.; White, S.L.; Corbin, W.C.; Ghosh, K.; Grey, J.K. Hierarchical Self-Assembly of Carbon Dots into High-Aspect-Ratio Nanowires. Nano Lett. 2023, 23, 9474–9481. [Google Scholar] [CrossRef]
- Chen, T.-H.; Tseng, W.-L. Self-Assembly of Monodisperse Carbon Dots into High-Brightness Nanoaggregates for Cellular Uptake Imaging and Iron(III) Sensing. Anal. Chem. 2017, 89, 11348–11356. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned, High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef]
- Joo, Y.; Brady, G.J.; Arnold, M.S.; Gopalan, P. Dose-Controlled, Floating Evaporative Self-Assembly and Alignment of Semiconducting Carbon Nanotubes from Organic Solvents. Langmuir 2014, 30, 3460–3466. [Google Scholar] [CrossRef]
- Ghamsari, M.; Madrakian, T.; Afkhami, A.; Ahmadi, M. Self-Assembled Graphene-Based Microfibers with Eclectic Optical Properties. Sci. Rep. 2021, 11, 5451. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Q.; Sun, Y.; Bai, H.; Shi, G. Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels. ACS Nano 2010, 4, 7358–7362. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010, 4, 4324–4330. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiao, X.; Li, J.; Zhao, Z.; Yu, D.; Li, Q. Self-Assembled Graphene-Based Architectures and Their Applications. Adv. Sci. 2018, 5, 1700626. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Z.; Fan, J.; Ge, Y.; Yin, J.; Hu, G. Self-Assembly of Graphene into Three-Dimensional Structures Promoted by Natural Phenolic Acids. J. Mater. Chem. 2012, 22, 22459. [Google Scholar] [CrossRef]
- Mao, J.; Ge, M.; Huang, J.; Lai, Y.; Lin, C.; Zhang, K.; Meng, K.; Tang, Y. Constructing Multifunctional MOF@rGO Hydro-/Aerogels by the Self-Assembly Process for Customized Water Remediation. J. Mater. Chem. A 2017, 5, 11873–11881. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandaru, S.; Arora, D.; Ganesh, K.M.; Umrao, S.; Thomas, S.; Bhaskar, S.; Chakrabortty, S. Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. Nanomaterials 2024, 14, 1387. https://doi.org/10.3390/nano14171387
Bandaru S, Arora D, Ganesh KM, Umrao S, Thomas S, Bhaskar S, Chakrabortty S. Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. Nanomaterials. 2024; 14(17):1387. https://doi.org/10.3390/nano14171387
Chicago/Turabian StyleBandaru, Shamili, Deepshika Arora, Kalathur Mohan Ganesh, Saurabh Umrao, Sabu Thomas, Seemesh Bhaskar, and Sabyasachi Chakrabortty. 2024. "Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review" Nanomaterials 14, no. 17: 1387. https://doi.org/10.3390/nano14171387
APA StyleBandaru, S., Arora, D., Ganesh, K. M., Umrao, S., Thomas, S., Bhaskar, S., & Chakrabortty, S. (2024). Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. Nanomaterials, 14(17), 1387. https://doi.org/10.3390/nano14171387