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Abstract: In this work, the DC performance and RF characteristics of GaN-based high-electron-
mobility transistors (HEMTs) using the SiNx stress-engineered technique were systematically in-
vestigated. It was observed that a significant reduction in the peak electric field and an increase
in the effective barrier thickness in the devices with compressive SiNx passivation contributed to
the suppression of Fowler–Nordheim (FN) tunneling. As a result, the gate leakage decreased by
more than an order of magnitude, and the breakdown voltage (BV) increased from 44 V to 84 V.
Moreover, benefiting from enhanced gate control capability, the devices with compressive stress SiNx

passivation showed improved peak transconductance from 315 mS/mm to 366 mS/mm, along with
a higher cutoff frequency (f t) and maximum oscillation frequency (f max) of 21.15 GHz and 35.66 GHz,
respectively. Due to its enhanced frequency performance and improved pinch-off characteristics, the
power performance of the devices with compressive stress SiNx passivation was markedly superior
to that of the devices with stress-free SiNx passivation. These results confirm the substantial potential
of the SiNx stress-engineered technique for high-frequency and high-output power applications,
which are crucial for future communication systems.

Keywords: GaN HEMTs; RF; gate leakage; SiNx stress-engineered

1. Introduction

GaN-based high-electron-mobility transistors (HEMTs) are considered promising for
high-frequency and high-power applications due to the excellent properties of their wide-
bandgap semiconductor materials, such as a wide bandgap, high critical breakdown electric
field, and high electron saturation velocity [1–3]. Current collapse and gate leakage are key
reliability challenges for GaN RF devices. A silicon nitride (SiNx) film grown by plasma-
enhanced chemical vapor deposition (PECVD) is the most commonly used passivation
layer to mitigate current collapse [4,5]. However, this process is often accompanied by
a detrimental rise in the gate leakage current [6,7], which leads to breakdown voltage,
power-added efficiency (PAE), and output power degradation [8].

Nanomaterials 2024, 14, 1471. https://doi.org/10.3390/nano14181471 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14181471
https://doi.org/10.3390/nano14181471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-9585-353X
https://orcid.org/0000-0002-8151-8092
https://orcid.org/0000-0002-5430-2931
https://orcid.org/0000-0002-5133-5383
https://orcid.org/0000-0002-2626-945X
https://orcid.org/0000-0002-9638-8489
https://doi.org/10.3390/nano14181471
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14181471?type=check_update&version=2


Nanomaterials 2024, 14, 1471 2 of 9

Most researchers believe that the “virtual gate” effect caused by surface traps enhances
the electric field on the drain side of the gate edge, resulting in increased gate leakage
current in PECVD-SiNx-passivated GaN HEMTs [9]. Additionally, some researchers be-
lieve that the active plasma source used in the PECVD process can damage the (Al)GaN
surface and the deposited film itself, leading to surface traps, surface erosion, or dangling
bond defects [10]. Consequently, this results in poor passivation protection and increased
leakage current. Due to the inevitable plasma damage caused by traditional PECVD SiNx
passivation, the MOCVD [11], remote ICP-CVD [12], and LPCVD [13] techniques have
been proposed for non-destructive passivation of GaN HEMTs to achieve lower gate leak-
age. Furthermore, the use of N2O plasma remote treatment [14] or deposition of a thin
layer of Al metal [15] before PECVD passivation can effectively mitigate plasma source
bombardment on GaN HEMTs’ surfaces, thereby enhancing pinch-off characteristics.

In this work, we propose the SiNx stress-engineering technique as a novel and straight-
forward method to reduce gate leakage while enhancing breakdown voltage (BV), transcon-
ductance (gm), saturation output current, cutoff frequency (f t), maximum oscillation fre-
quency (f max), and power performance. These improvements are akin to the performance
gains seen in early-strained silicon CMOS technologies, which demonstrated significant
scaling and performance enhancements [16]. The reduction in gate leakage is primarily
attributed to SiNx stress passivation, which effectively lowers the peak electric field and
increases the effective barrier thickness of AlGaN, thereby suppressing Fowler–Nordheim
(FN) tunneling. Additionally, the device’s BV characteristics have nearly doubled, sat-
uration output current has increased by 10%, gm has improved from 315 mS/mm to
366 mS/mm, and both f t and f max have shown significant enhancements. Due to enhanced
frequency performance, maximized output current, and improved pinch-off characteristics,
devices with compressive stress SiNx passivation demonstrate superior output power
(Pout), power-added efficiency (PAE), and associated gain.

2. Device Structure and Fabrication Process

The epitaxial structure of the AlGaN/GaN HEMTs in this work is shown in Figure 1a.
The 6-inch Si wafer with MOCVD-grown GaN/Al0.25Ga0.75N/AlN/GaN epitaxy is pur-
chased from Enkris Semiconductor. The epilayer, from bottom to top, consists of a 1.05 µm
high-resistivity (Al)GaN buffer layer, a 1 µm Al0.07GaN back barrier layer, a 100 nm unin-
tentionally doped i-GaN channel layer, a 1 nm AlN spacer, a 19 nm Al0.25Ga0.75N barrier
layer, and a 2 nm GaN cap layer. Room-temperature Hall effect measurements indicated a
sheet carrier density (ns) of 7.23 × 1012 cm−2, an electron mobility (µ) of 2051 cm2/(V·s),
and a sheet resistance (Rsh) of 400 Ω/□.
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Figure 1. (a) Schematic diagram and (b) process flow of AlGaN/GaN-on-Si HEMTs with stress-free
SiNx passivation and compressive stress SiNx passivation.

As shown in Figure 1b, the device fabrication process begins with device isolation
using BCl3/Cl2-based inductively coupled plasma (ICP) dry etching. This is followed by
depositing a Ti/Al/Ti/Au (20/110/40/50 nm) metal stack using an e-beam evaporator
(e-beam) and annealing at 830 ◦C for 45 s under ambient nitrogen in a rapid thermal
annealing (RTA) system to form the source/drain ohmic contacts. The gate region is then
patterned using electron-beam lithography (EBL) with polymethyl methacrylate (PMMA),
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and the Ni/Au (20/60 nm) metal gate is fabricated using an e-beam evaporator. The SiNx
layers were deposited by PECVD with dual plasma excitation frequencies using silane
(SiH4) and ammonia (NH3) as precursors. Subsequently, Ti/Au (20/180 nm) metal pads
were deposited after CHF3-based opening. Figure 2a,b show the SEM images of the overall
device and the TEM images of the gate region of the fabricated GaN RF device, along with
the measured device dimensions. The reported devices feature a gate length (Lg) of 0.24 µm,
a gate width (Wg) of 2 × 25 µm, a gate–drain length (Lgd) of 993 nm, and a gate–source
length (Lgs) of 562 nm.
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Figure 2. (a) SEM images of overall device. TEM images of (b) gate metal stack (c,d) PECVD
dual-layer SiNx, composed of a 10.5 nm SiNx protection layer and a 180.3 nm SiNx stress layer.

To investigate the impact of stress on the DC and RF characteristics of GaN RF devices,
we fabricated two types of devices with different stress SiNx passivation layers. As shown
in Table 1, all devices feature a double-layer passivation structure. The first layer is a
~10 nm high-frequency (HF) SiNx protection layer with a refractive index of 2.13, designed
to minimize surface damage, while the second layer is ~180 nm SiNx stress. To modify the
intrinsic stress of the PECVD SiNx layers, several deposition parameters can be adjusted,
including the Si ratio, chamber pressure, deposition temperature, and plasma excitation
frequency [17]. Specifically, for PECVD systems utilizing dual plasma excitation frequencies,
adjusting the duty cycles of the high-frequency (HF) and low-frequency (LF) RF power
sources allows for a broad modulation of the intrinsic stress of the deposited SiNx. During
HF excitation (e.g., 13.56 MHz), the ions do not respond significantly to the RF field, leading
to the formation of low-stress SiNx films. Conversely, under LF excitation (e.g., 500 kHz),
ions are more responsive to the RF field, resulting in ion bombardment on the growing
SiNx film. This ion bombardment, as illustrated in Figure 3, densifies the film and causes it
to expand against its inherent volume, thereby inducing intrinsic compressive stress [17].

Table 1. SiNx schemes for device groups.

Passivation Scheme Stress-Free SiNx
Passivation

Compressive SiNx
Passivation

First-layer SiNx passivation 10 nm high-frequency SiNx protective layer
(tLF/20 = 0)

Second-layer SiNx
passivation

Thickness 180 nm 180 nm

LF duty cycle tLF/20 = 45% tLF/20 = 95%
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Figure 3. Schematics for the nitrogen ions responding to different plasma excitation frequencies in PECVD.

As shown in Figure 4, adjusting the duty cycles of LF plasma excitation modulates
the intrinsic stress of SiNx. In this work, the devices with a SiNx stress layer of 45% with a
refractive index of 2.04 and 95% LF duty cycle with a refractive index of 1.95 correspond to
stress-free SiNx passivation and compressive SiNx stress passivation, respectively. In our
previous work, we utilized Raman spectroscopy to confirm the existence the level of stress
within the AlGaN/GaN heterostructure covered by different SiNx layers [18]. After the
two different SiNx depositions, we extracted the Rsh of the devices using the transmission
line model (TLM). Since both samples employed the same HF SiNx passivation process for
the first layer, the effectiveness in suppressing surface states was consistent. As a result,
the sheet resistance values were 384 Ω/□ and 379 Ω/□ for devices with stress-free SiNx
and compressive stress SiNx passivation, respectively, both lower than the initial value of
400 Ω/□. The observed decrease in sheet resistance is primarily due to the increased 2DEG
density achieved through SiNx passivation.
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low-frequency (LF) plasma excitation.

3. Results and Discussion

A Keithley 4200 semiconductor parameter analyzer (Tektronix, Beaverton, OR, USA)
was used for DC measurements. Figure 5a shows the transfer characteristics of each GaN
HEMT when Vds = 6 V. Due to the SiNx compressive stress depleting the 2DEG under
the gate region by neutralizing the original piezoelectric polarization, the devices show
a 1 V increase in threshold voltage (Vth) compared to those devices with stress-free SiNx
passivation. The reasons for the positive shift in threshold voltage have been discussed in
detail in our previous work [19]. Moreover, devices with compressive stress SiNx passivation
demonstrate more than an order of magnitude reduction in leakage current. The BV of the
devices was also significantly improved from 44 V to 84 V, as shown in Figure 5b.

The reverse gate leakage current is predominantly attributed to Poole–Frenkel (PF)
emission and FN tunneling mechanisms [10–21]. PF emission is the dominant leakage
mechanism for structures with lower mole fractions. When the Al composition exceeds
0.25, the gate leakage current is primarily dominated by FN tunneling, as reported in the
literature [22]. The prominence of the FN tunneling component at room temperature and
above in higher mole fraction structures is attributed to the higher electric field resulting
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from increased values of net bound charge (σb) [22]. The dependence of FN tunneling
current density (JFN) on the barrier electric field (E) is given by

JFN = AE2e(
−B
E ) (1)

where J is the tunneling current density, E is the electric field strength, and A and B are
constants related to the material and barrier properties.

A =
q3E2

8πhϕb
(2)

B = −
8π

√
2mϕ3/2

b

3hq
(3)

where q is the electron charge, h is Planck’s constant, m is the electron mass, ϕb is the effective
barrier height, and E is the electric field strength. To explore the intrinsic mechanism of the
stress-engineered technique in suppressing FN tunneling, we utilized technology computer-
aided design (TCAD) Sentaurus to simulate the electric field distribution and conduction
band diagram of those devices with stress-free SiNx passivation and compressive stress
SiNx passivation with the model parameters calibrated. As shown in Figure 6a,b the
introduction of compression neutralizes the inherent piezoelectric polarization caused by
lattice mismatch at the heterojunction, leading to a significant reduction in the peak electric
field in the gate region. Figure 6c extracts the electric field values near the gate–drain side;
the devices with compressive stress SiNx passivation show a 0.1 MV/cm decrease compared
to devices with stress-free SiNx passivation. The conduction band diagrams in the gate
region of devices when Vg = −8 V are shown in Figure 6d. The external compressive
stress liner elevates the conduction bands in the AlGaN barrier and GaN channel, thereby
reducing the slope of the AlGaN conduction band and effectively increasing the effective
barrier thickness. As a result, FN tunneling is suppressed in devices with compressive
stress SiNx passivation, reducing the gate leakage. Additionally, the breakdown voltage of
the device has correspondingly improved, as shown in Figure 4b.

Figure 7a illustrates the transconductance curves of those devices, the devices with
compressive stress SiNx passivation exhibit a significant improvement in the extrinsic peak
transconductance (gm,max), from 315 mS/mm to 366 mS/mm. This enhancement primarily
stems from the improved conduction band of AlGaN beneath the gate of GaN HEMTs due
to SiNx stress engineering, thereby enhancing gate modulation capability, as depicted in
Figure 7c. The output characteristics when override voltage (Vod) = −1 to 5 V are shown
in Figure 7b. The maximum drain current density (Id,max) of devices with compressive
stress SiNx passivation also shows a notable enhancement. The improved drain current
was supposedly due to the SiNx stressors causing tensile stress in the gate–drain and
gate–source regions, inducing more channel 2DEG, as shown in Figure 7d.
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and compressive stress SiNx passivation. (b) The Id/Vd curve when Vg = −8 V of the device with
stress-free SiNx passivation and compressive stress SiNx passivation.
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Figure 7. (a) The transconductance curves, (b) the output characteristics when override voltage
(Vod) = −1 to 5 V, (c) the conduction band energy of AlGaN beneath the gate, and (d) 2DEG con-
centration distribution of the devices with stress-free SiNx passivation and compressive stress
SiNx passivation.

S-parameters were measured using an Agilent 8363B network analyzer (Agilent, Santa
Clara, CA, USA). The small-signal performances of the GaN-based HEMTs with stress-free
SiNx passivation and compressive stress SiNx passivation are illustrated in Figure 8a,b,
with the devices biased at Vds = 6 V to obtain their respective Vg for the gm,max. Due
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to the improved transconductance, the devices with compressive stress SiNx passivation
exhibited higher f t and f max, measured as 21.15 GHz and 35.66 GHz, respectively.
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Figure 8. Small-signal performance biased at Vds = 6 V and their respective Vg for the gm,max of the
devices (a) with stress-free SiNx passivation and (b) compressive stress SiNx passivation.

Power measurements of AlGaN/GaN HEMTs at 5.2 GHz were conducted in continu-
ous wave (CW) mode using an on-wafer load-pull system. The load and source impedances
were tuned for optimal PAE, which led to a slightly lower power gain compared to that
observed in the small-signal performance. Figure 9a,b show the output power, power gain,
and PAE as a function of the input power for the devices with stress-free SiNx passivation
and compressive stress SiNx passivation. A maximum Pout of 13.35 dBm, along with a PAE
of 19.48% and an associated gain of 6.82 dB, is achieved for the devices with compressive
stress SiNx passivation when biased at Vds = 10 V. Figure 9c,d illustrate the impact of
drain bias on the device’s output power, PAE, and associated gain, with all measurements
conducted under Class AB operation. Regardless of the drain bias, the power performance
of the devices with compressive stress SiNx passivation is markedly superior to that of the
devices with stress-free SiNx passivation, which is attributed to its enhanced frequency
performance, maximized output current, and improved pinch-off characteristics.
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4. Conclusions

In summary, this study investigated the DC performance and RF characteristics of
GaN-based HEMTs using the SiNx stress-engineering technique. Devices with compressive
stress SiNx passivation exhibited a significant reduction in peak electric field and an increase
in effective barrier thickness, effectively suppressing FN tunneling. Consequently, there
was a substantial reduction in gate leakage and an increase in breakdown voltage (BV) from
44 V to 84 V. Furthermore, enhanced gate control capability led to an improvement in peak
transconductance, increasing from 315 mS/mm to 366 mS/mm, along with a higher cutoff
frequency (f t) and maximum oscillation frequency (f max) of 21.15 GHz and 35.66 GHz,
respectively. Due to the SiNx stressors causing tensile stress in the gate–drain and gate–
source regions, which induced more channel 2DEG, the device’s saturation current also
increased by 10%. The power performance of the devices with compressive stress SiNx
passivation was also markedly superior to that of devices with stress-free SiNx passivation,
attributed to enhanced frequency performance, maximized output current, and improved
pinch-off characteristics. These results indicate that the SiNx stress-engineering technique
is a potentially effective approach for achieving high-performance GaN-on-Si HEMTs for
RF electronics applications.
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