Green Synthesis of Metal Nanoparticles with Borojó (Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling
2.3. Chemicals
2.4. Determination of Physical-Chemical Parameters
2.5. The Extract Fruit/Plant Preparation
2.6. Characterization of Fruit
2.7. Synthesis of Nanoparticles of Fe3O4NPs, Mn3O4NPs, CuONPs
2.8. Materials and Equipment Used in the Characterization of NPs
2.9. Arsenic Removal with Mn3O4 NPs, Fe3O4 NPs and CuO NPs
3. Results and Discussion
3.1. Physical-Chemical Analysis of Water Samples from the Papallacta Lagoon
3.2. Characterization of the Fruit Extract
3.3. Characterization of Mn3O4 NPs, Fe3O4 NPs, and CuO NPs
3.4. As Removal at the Laboratory Level
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, M.M.; Bibi, I.; Niazi, N.K.; Shahid, M.; Iqbal, J.; Shakoor, M.B.; Ahmad, A.; Shah, N.S.; Bhattacharya, P.; Mao, K.; et al. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Sci. Total Environ. 2021, 773, 145040. [Google Scholar] [CrossRef] [PubMed]
- Usese, A.; Chukwu, O.; Mahmudur, M.; Naidu, R.; Islam, S.; Olusegun, E. Enrichment, contamination and geo-accumulation factors for assessing arsenic contamination in sediment of a Tropical Open Lagoon, Southwest Nigeria. Tecnol. E Innovación Ambient. 2017, 8, 126–131. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhong, W.; Yan, W.; Yan, L. Arsenic mobilization from soils in the presence of herbicides. J. Environ. Sci. 2019, 85, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Sevak, P.; Pushkar, B. Arsenic pollution cycle, toxicity and sustainable remediation technologies. A comprehensive review and bibliometric analysis. J. Environ. Manag. 2024, 349, 119504. [Google Scholar] [CrossRef]
- Jimenez, P.A.J.; Díaz, X.; Silva, M.L.N.; Vega, A.; Curi, N. Assessing and Understanding Arsenic Contamination in Agricultural Soils and Lake Sediments from Papallacta Rural Parish, Northeastern Ecuador, via Ecotoxicology Factors, for Environmental Embasement. Sustainability 2023, 15, 3951. [Google Scholar] [CrossRef]
- Pizzali, M.M.; Robles, P.; Mendoza, M.; Torres, C. Ingesta de arsénico: El impacto en la alimentación y la salud humana. Rev. Peru. De Med. Exp. Y Salud Publica 2018, 35, 93–102. [Google Scholar] [CrossRef]
- Sun, H.; Cheng, H.; Lin, L.; Deng, K.; Cui, X. Bioaccumulation and sources of metal(loid)s in lilies and their potential health risks. Ecotoxicol. Environ. Saf. 2018, 151, 228–235. [Google Scholar] [CrossRef]
- Mukherjee, A.; Coomar, P.; Sarkar, S.; Johannesson, K.H.; Fryar, A.E.; Schreiber, M.E.; Ahmed, K.M.; Alam, M.A.; Bhattacharya, P.; Bundschuh, J.; et al. Arsenic and other geogenic contaminants in global groundwater. Rev. Earth Environ. 2024, 5, 312–328. [Google Scholar] [CrossRef]
- Fu, H.; Murali, A.; Damodaran, C. Ingestion of Inorganic Arsenic in Drinking Water Induced Urogenital Carcinogenesis in Mice Models. Urol. Oncol. Semin. Orig. Investig. 2024, 2, s35. [Google Scholar] [CrossRef]
- Cumbal, L.; Aguirre, V.; Murgueitio, E.; Tipán, I.; Chávez, C. El Origen del Arsénico en las Aguas y Sedimentos de la Laguna Papallacta; Litter, M., Ed.; Sangolqui, Ecuador Libro de Resúmenes del Taller de Distribución del As en Iberoamérica: Sangolqui, Ecuador, 2006; pp. 80–81. [Google Scholar]
- Jiménez, P. Diagnóstico de la Presencia y Contaminación por Arsénico en el Suelo y Agua de Consumo en la Parroquia Papallacta. Bachelor’s Thesis, Facultad de Ingenieria en Geologia y Petróleos, Quito, Ecuador, 2018. [Google Scholar]
- Mosley, L.M.; Priestley, S.; Brookes, J.; Dittmann, S.; Farkaš, J.; Farrell, M.; Ferguson, A.J.; Gibbs, M.; Hipsey, M.; Huang, J.; et al. Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia’s largest river basin (Murray-Darling). Mar. Pollut. Bull. 2023, 188, 114648. [Google Scholar] [CrossRef]
- Stocco, A.; Dupré, L.; Pranovi, F. Exploring the interplay of landscape changes and ecosystem services maximization in man-managed lagoon areas. Estuar. Coast. Shelf Sci. 2024, 296, 108597. [Google Scholar] [CrossRef]
- World Health Organization. Arsenic and Arsenic Compounds. Environmental Health Criteria 224. 2001. Available online: http://www.inchem.org/documents/ehc/ehc/ehc224.htm (accessed on 15 May 2024).
- Martinson, C.; Reddy, K. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 2009, 336, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Habuda-Stanić, M.; Nujić, M. Arsenic removal by nanoparticles: A review. Environ. Sci. Pollut. 2015, 22, 8094–8123. [Google Scholar] [CrossRef] [PubMed]
- Babaee, Y.; Mulligan, C. Removal of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. Chem. Technol. Biotechnol. 2017, 93, 63–71. [Google Scholar] [CrossRef]
- Murgueitio, E.; Cumbal Flores, L.; Toulkeridis, T. Removal of arsenic and heavy metals from contaminated water with emerging sorbents. In International Conference on Applied Technologies; Springer Nature: Cham, Switzerland, 2022; pp. 196–211. [Google Scholar]
- Prasad, K.; Sreekanth, T.; Kim, J. Facile synthesis of Mn3O4 nanoparticles towards high performance asymmetric supercapacitors. Vacuum 2024, 221, 112930. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Li, Y.; Quan, X.; Zhao, Z. Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion. Water Res. 2018, 144, 126–133. [Google Scholar] [CrossRef]
- El-Sawaf, A.; Hemdan, M.; Selim, H.; Nassar, A. Revolutionizing water treatment: Enhanced flux and selectivity in polyethersulfone mixed matrix membrane through magnetic CuO-functionalized Fe3O4 nanoparticles for synthetic oily produced water remediation. Surf. Interfaces 2024, 46, 104142. [Google Scholar] [CrossRef]
- Uslu, S.; Maki, D.; Al-Gburi, A.S.K. Investigation of nanoparticle (Fe3O4) addition to 3rd generation biodiesel (spirulina microalgae)/diesel mixture as an innovative fuel according to different engine variables: An RSM optimization. Energy Convers. Manag. 2024, 310, 118481. [Google Scholar] [CrossRef]
- Payami, E.; Mohammadzadeh, A.; Safa, K.; Teimuri-Mofrad, R. Ferrocene surface-modified Fe3O4 nanoparticles as prominent electrode material for supercapacitor application. J. Energy Storage 2024, 88, 111624. [Google Scholar] [CrossRef]
- Payami, E.; Aghaiepour, A.; Mohamma, R.; Teimuri-Mofrad, R. Design and synthesis of ternary GO-Fc/Mn3O4/PANI nanocomposite for energy storage applications. J. Alloys Compd. 2020, 829, 154485. [Google Scholar] [CrossRef]
- Teimuri-Mofrad, R.; Payami, E.; Ahadzadeh, I. Synthesis, characterization and electrochemical evaluation of a novel high performance GO-Fc/PANI nanocomposite for supercapacitor applications. Electrochim. Acta 2019, 321, 134706. [Google Scholar] [CrossRef]
- Payami, E.; Ahadzadeh, I.; Mohammadi, R.; Teimuri-Mofrad, R. Design and synthesis of novel binuclear ferrocenyl-intercalated graphene oxide and polyaniline nanocomposite for supercapacitor applications. Electrochim. Acta 2020, 342, 136078. [Google Scholar] [CrossRef]
- Chang, Y.; Yu, D.; Long, Y.; Xu, J.; Luo, X.; Ye, R. Large-scale fabrication of single-crystalline Mn3O4 nanowires via vapor phase growth. J. Cryst. Growth 2005, 279, 88–92. [Google Scholar] [CrossRef]
- Murugadoss, G.; Ma, J.; Ning, X.; Kumar, M. Selective metal ions doped CeO2 nanoparticles for excellent photocatalytic activity under sun light and supercapacitor application. Inorg. Chem. Commun. 2019, 109, 107577. [Google Scholar] [CrossRef]
- Sophia, P.J.; Aravindkumar, S.; Chander, D.S.; Kumar, K.D.A.; Kumar, M.R. Cost-effective synthesis and studies of novel hybrid ternary Cd1−x AgxS nanoparticles. J. Nanophotonics 2020, 14, 046016. [Google Scholar]
- Kumar, M.R.; Murugadoss, G.; Pirogov, A.; Thangamuthu, R. A facile one step synthesis of SnO2/CuO and CuO/SnO2 nanocomposites: Photocatalytic application. J. Mater. Sci. Mater. Electron. 2018, 29, 13508–13515. [Google Scholar] [CrossRef]
- Song, J.; Huang, G.; Han, D.; Hou, Q.; Liu, R. Alpha-MnO2 nanoneedle embedded in MgO-chitosan biochar for higher removal of arsenic from groundwater: Co-effects of oxidation and adsorption. J. Alloys Compd. 2023, 947, 169643. [Google Scholar] [CrossRef]
- Atri, A.; Dhaouadi, F.; Mechi, N.; Sellaoui, L.; Echabaane, M.; Chaabane, R.B.; Erto, A.; Badawi, M.; Lamine, A.B. Removal of textile pollutants from aqueous medium using biosynthesized CuO nanoparticles: Theoretical comparative investigation via analytical model. Heliyon 2024, 10, 5. [Google Scholar] [CrossRef]
- Gautam, P.; De, A.; Sinha, I.; Behera, C.; Singh, K. Waste to wastewater treatment: Synthesis of CuO nanoparticles from discarded printed circuit boards for the removal of Methylene Blue under visible light. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Inamdar, A.; Rajenimbalkar, R.; Thabet, A.; Shelke, S.; Inamdar, S. Environmental applications of flame synthesized CuO nanoparticles through removal of Congo Red dye. Mater. Today Proc. 2023, 92, 515–521. [Google Scholar] [CrossRef]
- Moradi, A.; Khamforoush, M.; Rahmani, F.; Ajamei, H. Synthesis of 0D/1D electrospun titania nanofibers incorporating CuO nanoparticles for tetracycline photodegradation and modeling and optimization of the removal process. Mater. Sci. Eng. B 2023, 297, 116711. [Google Scholar] [CrossRef]
- Khan, A.; Tahir, K.; Khan, Q.; Albalawi, K.; Jevtovic, V.; Almarhoon, Z.; Khan, M. Scaled-up development of recyclable Pd@ ZnO/CuO nanostructure for efficient removal of arsenic from wastewater. J. Mol. Struct. 2022, 1260, 132828. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.; Qiu, F.; Zhang, T.; Xu, J. Controllable preparation of FeOOH/CuO@ WBC composite based on water bamboo cellulose applied for enhanced arsenic removal. Food Bioprod. Process. 2020, 123, 177–187. [Google Scholar] [CrossRef]
- Sun, T.; Zhao, Z.; Liang, Z.; Cui, F. Efficient degradation of p-arsanilic acid with arsenic adsorption by magnetic CuO-Fe3O4 nanoparticles under visible light irradiation. Chem. Eng. J. 2018, 334, 1527–1536. [Google Scholar] [CrossRef]
- Murgueitio, E.; Cumbal, L.; Debut, A.; Landivar, J. Synthesis of Iron Nanoparticles using Extracts of Native Fruits of Ecuador, as Capuli (Prunus serotina) and Mortiño (Vaccinium floribundum). Biol. Med. 2016, 8, 282. [Google Scholar] [CrossRef]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci. 2017, 24, 45–50. [Google Scholar] [CrossRef]
- Sotelo, I.; Casas, N.; Camelo, G. Borojó (Borojoa Patinoi): Fuente de Polifenoles. Revista de la Facultad de Química Farmacéutica. Vitae 2010, 17, 2145–2660. [Google Scholar]
- Molina Santos, M.G. Efectos del Derrame de Petróleo Sobre la Comunidad Fitoplactónica de la Laguna de Papallacta y sus Principales Afluentes; Universidad Internacional del Ecuador: Quito, Ecuador, 2013; pp. 24–25. [Google Scholar]
- INEN. NTE INEN-ISO 5667-1. Enero 2014. Available online: https://www.insistec.ec/images/insistec/02-cliente/07-descargas/NTE%20INEN%201108%20-%20AGUA%20POTABLE.%20REQUISITOS.pdf (accessed on 20 March 2022).
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1992; Volume 18. [Google Scholar]
- Portehault, D.; Cassaignon, S.; Nassif, N.; Baudrin, E.; Jolivet, J. A core–corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angew. Chem. Int. Ed. 2008, 47, 6441–6444. [Google Scholar] [CrossRef]
- Stähli, E. Über Manganate (IV) Mit Schichten-Strucktur. Ph.D. Thesis, University of Bern, Bern, Switzerland, 1968. [Google Scholar]
- Murgueitio-Herrera, E.; Falconí, C.E.; Cumbal, L.; Gómez, J.; Yanchatipán, K.; Tapia, A.; Martínez, K.; Sinde-Gonzalez, I.; Toulkeridis, T. Synthesis of Iron, Zinc, and Manganese Nanofertilizers, Using Andean Blueberry Extract, and Their Effect in the Growth of Cabbage and Lupin Plants. Nanomaterials 2022, 12, 1921. [Google Scholar] [CrossRef]
- Villacreces, L. Brief Analysis of Chemical monitoring Results of Lake Papallacta to Determine Control Parameters for an Antique oil Spill. 2015. Available online: https://www.researchgate.net/publication/274567038_Brief_analysis_of_chemical_monitoring_results_of_Lake_Papallacta_to_determine_control_parameters_for_an_antique_oil_spill (accessed on 15 April 2021).
- Molina-Santos, M.; Terneus-Jácome, E.; Yánez-Moretta, P.; Cueva-Sánchez, M. Resiliencia de la comunidad fitoplanctónica en la laguna andina de Papallacta y sus afluentes, ocho años después de un derrame de petrolero. La Granja Rev. De Cienc. De La Vida 2018, 28, 67–83. [Google Scholar] [CrossRef]
- Ministerio del Ambiente de la República del Ecuador. Texto Unificado de la Legislación Secundaria del Ministerio del Ambiente; Ministerio del Ambiente de la República del Ecuador: Quito, Ecuador, 2015; pp. 295–332. [Google Scholar]
- Zuñiga Salazar, M.M. Síntesis de Sorbentes Híbridos Para la Remoción Selectiva de Arsénico con Aplicación en la Descontaminación de Aguas Superficiales; Universidad de la Fuerzas Armadas “ESPE”: Sangolqui, Ecuador, 2009; pp. 111–113. [Google Scholar]
- Rincon-Velandia, J.; Garzón, A. Actividad Antioxidante, Contenido de Vitamina C y fenoles totales en el borojó (Borojoa Patinoi Cuatrec). Vitae 2014, 19, S442–S444. [Google Scholar]
- Souri, M.; Hoseinpour, V.; Shakeri, A.; Ghaemi, N. Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. IET Nanobiotechnol. 2018, 12, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Prabu, P.; Losetty, V. Green synthesis of copper oxide nanoparticles using Macroptilium lathyroides (L) leaf extract and their spectroscopic characterization, biological activity and photocatalytic dye degradation study. J. Mol. Struct. 2024, 1301, 137404. [Google Scholar] [CrossRef]
- Renuga, D.; Jeyasundari, J.; Athithan, A.; Jacob, Y. Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Mater. Res. Express 2020, 7, 045007. [Google Scholar] [CrossRef]
- Tholkappiyan, R.; Naveen, A.; Vishista, K.; Hamed, F. Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes. J. Taibah Univ. Sci. 2018, 12, 669–677. [Google Scholar] [CrossRef]
- Suhaimi, L.; Bahtiar, S.; Sarina, A.; Khairunnisya, K. Recovery of Manganese from Manganese Ore Reductive Acid Leaching Process Using Reeds (Imperata Cylindrica) as Reducing Agent. Metalurgi 2023, 38, 1–24. [Google Scholar] [CrossRef]
- Said, M.; Harbrecht, B. Size-controlled synthesis of Mn3O4 nanoparticles: Characterization and defect chemistry. J. Nanoparticle Res. 2019, 21, 68. [Google Scholar] [CrossRef]
- Neto, M.E.; Britt, D.; Jackson, K.; Braccini, A.; Inoue, T.; Batista, M. Early development of corn seedlings primed with synthetic tenorite nanofertilizer. J. Seed Sci. 2020, 42, e202042040. [Google Scholar] [CrossRef]
- Gopal, V.; Chellapandian, K. Synthesis of hybrid framework of tenorite and octahedrally coordinated aluminosilicate for the robust adsorption of cationic and anionic dyes. Environ. Res. 2023, 220, 115111. [Google Scholar] [CrossRef]
- Gunawardana, B.; Singhal, N.; Swedlund, P. Dechlorination of pentachlorophenol by zero valent iron and bimetals: Effect of surface characteristics and bimetal preparation procedure. Proc. Annu. Int. Conf. Soils Sediments Water Energy 2012, 17, 8. [Google Scholar]
- Hanesch, M. Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Deng, Y.; Handoko, A.D.; Du, Y.; Xi, S.; Yeo, B.S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of CuIII oxides as catalytically active species. ACS Catal. 2016, 6, 2473–2481. [Google Scholar] [CrossRef]
- Murthy, P.; Venugopalan, V.; Arunya, D.; Dhara, S.; Pandiyan, R.; Tyagi, A. Antibiofilm activity of nano sized CuO. In Proceedings of the International conference on nanoscience, engineering and technology, ICONSET 2011, Chennai, India, 28–30 November 2011; IEEE: New York City, NY, USA, 2011; pp. 580–583. [Google Scholar]
- Robles Ardila, D.; Rodríguez Pardo, N.; Pataquiva-Mateus, A. Síntesis de nanopartículas de magnetita a partir del extracto de cáscara de papaya para la degradación de colorantes azoicos en soluciones acuosas. Ingeniare Rev. Chil. De Ing. 2019, 27, 431–442. [Google Scholar] [CrossRef]
- Corredor Acuña, J.; Echeverría Echeverría, F. Preparación y evaluación mediante oxidación cíclica a 700 °C de recubrimientos electroless ni-p y ni-p-magnetita. Rev. Latinoam. De Metal. Y Mater. 2012, 32, 107–120. [Google Scholar]
- Li, Q.; Kartikowati, C.W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 2017, 7, 9894. [Google Scholar] [CrossRef]
- Rosaiah, P.; Zhu, J.; Hussain, O.; Qiu, Y. Synthesis of flower-like reduced graphene oxide–Mn3O4 nanocomposite electrodes for supercapacitors. Appl. Phys. A 2018, 124, 1–9. [Google Scholar] [CrossRef]
- Park, Y.; Lee, S.W.; Kim, K.; Min, B.; Kumar Nayak, A.; Pradhan, D.; Sohn, Y. Understanding hydrothermal transformation from Mn2O3 particles to Na0.55Mn2O4·1.5 H2O nanosheets, nanobelts and single crystalline ultra-long Na4Mn9O18 nanowires. Sci. Rep. 2015, 5, 18275. [Google Scholar] [CrossRef]
- Khan, M.; Nayan, N.; Ahmad, M.; Soon, C. Surface study of CuO nanopetals by advanced nanocharacterization techniques with enhanced optical and catalytic properties. Nanomaterials 2020, 10, 1298. [Google Scholar] [CrossRef]
- Sun, T.; Zhao, Z.; Liang, Z.; Liu, J.; Shi, W.; Cui, F. Efficient As (III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation. J. Colloid Interface Sci. 2017, 495, 168–177. [Google Scholar] [CrossRef]
- Villafañe, G.; Bazán, V.; Brandaleze, E.; López, A.; Maratta, A. Solid phase extraction of arsenic on modified MWCNT/Fe3O4 magnetic hybrid nanoparticles from copper ores samples with ETAAS determination. Talanta Open 2022, 6, 100149. [Google Scholar] [CrossRef]
- Feng, L.; Cao, M.; Ma, X.; Zhu, Y.; Hu, C. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J. Hazard. Mater. 2012, 217, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Babaeivelni, K.; Khodadoust, A.; Bogdan, D. Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength. J. Enviromental Sci. Health 2014, 49, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Manquián-Cerda, K.; Cruces, E.; Rubio, M.A.; Reyes, C.; Arancibia-Miranda, N. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. J. Ecotoxicol. Environ. Saf. 2017, 145, 69–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murgueitio Herrera, E.; Jacome, G.; Stael, C.; Arroyo, G.; Izquierdo, A.; Debut, A.; Delgado, P.; Montalvo, G. Green Synthesis of Metal Nanoparticles with Borojó (Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix. Nanomaterials 2024, 14, 1526. https://doi.org/10.3390/nano14181526
Murgueitio Herrera E, Jacome G, Stael C, Arroyo G, Izquierdo A, Debut A, Delgado P, Montalvo G. Green Synthesis of Metal Nanoparticles with Borojó (Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix. Nanomaterials. 2024; 14(18):1526. https://doi.org/10.3390/nano14181526
Chicago/Turabian StyleMurgueitio Herrera, Erika, Gissela Jacome, Carina Stael, Geovanna Arroyo, Andrés Izquierdo, Alexis Debut, Patricio Delgado, and Gemma Montalvo. 2024. "Green Synthesis of Metal Nanoparticles with Borojó (Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix" Nanomaterials 14, no. 18: 1526. https://doi.org/10.3390/nano14181526
APA StyleMurgueitio Herrera, E., Jacome, G., Stael, C., Arroyo, G., Izquierdo, A., Debut, A., Delgado, P., & Montalvo, G. (2024). Green Synthesis of Metal Nanoparticles with Borojó (Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix. Nanomaterials, 14(18), 1526. https://doi.org/10.3390/nano14181526