Selective Copolymerization from Mixed Monomers of Phthalic Anhydride, Propylene Oxide and Lactide Using Nano-Sized Zinc Glutarate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of ZnGA Catalyst
2.3. The ROCOP of PA- and PO-Catalyzed ZnGA
2.4. The ROP of LA Catalyzed by ZnGA/PO
2.5. Copolymerization of PO-, PA- and LA-Catalyzed ZnGA
2.6. Characterization Methods
3. Results and Discussion
3.1. Preparation and Characterization of ZnGA Catalyst
3.2. Selective Copolymerization of PA, PO and LA Using ZnGA
3.3. Polymerization Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Hu, X.; Fang, Z.; Guo, K. Chemoselective Polymerizations. Prog. Polym. Sci. 2021, 117, 101397. [Google Scholar] [CrossRef]
- Xia, X.; Gao, T.; Li, F.; Suzuki, R.; Isono, T.; Satoh, T. Multidimensional Control of Repeating Unit/Sequence/Topology for One-Step Synthesis of Block Polymers from Monomer Mixtures. J. Am. Chem. Soc. 2022, 144, 17905–17915. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.-Y.; Song, D.-P.; Wang, B.; Pan, L.; Li, Y.-S. Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers. Green Chem. 2019, 21, 6123–6132. [Google Scholar] [CrossRef]
- Diaz, C.; Mehrkhodavandi, P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym. Chem. 2021, 12, 783–806. [Google Scholar] [CrossRef]
- Xia, X.; Gao, T.; Li, F.; Suzuki, R.; Isono, T.; Satoh, T. Sequential Polymerization from Complex Monomer Mixtures: Access to Multiblock Copolymers with Adjustable Sequence, Topology, and Gradient Strength. Macromolecules 2023, 56, 92–103. [Google Scholar] [CrossRef]
- Romain, C.; Williams, C.K. Chemoselective Polymerization Control: From Mixed-Monomer Feedstock to Copolymers. Angew. Chem. Int. Ed. 2014, 53, 1607–1610. [Google Scholar] [CrossRef]
- Romain, C.; Zhu, Y.; Dingwall, P.; Paul, S.; Rzepa, H.S.; Buchard, A.; Williams, C.K. Chemoselective Polymerizations from Mixtures of Epoxide, Lactone, Anhydride, and Carbon Dioxide. J. Am. Chem. Soc. 2016, 138, 4120–4131. [Google Scholar] [CrossRef]
- Xia, X.; Suzuki, R.; Gao, T.; Isono, T.; Satoh, T. One-step synthesis of sequence-controlled multiblock polymers with up to 11 segments from monomer mixture. Nat. Commun. 2022, 13, 163. [Google Scholar] [CrossRef]
- Song, P.; Chen, Y.; Li, Y.; Ma, J.; Wang, L.; Wang, R. A One-Pot Strategy to Synthesize Block Copolyesters from Monomer Mixtures Using a Hydroxy-Functionized Ionic Liquid. Macromol. Rapid Commun. 2020, 41, 2000436. [Google Scholar] [CrossRef]
- Deacy, A.C.; Gregory, G.L.; Sulley, G.S.; Chen, T.T.D.; Williams, C.K. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J. Am. Chem. Soc. 2021, 143, 10021–10040. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, C.; Cui, F.; Pang, X.; Huang, Y.; Zhou, Y.; Chen, X. One-Pot Precision Synthesis of AB, ABA and ABC Block Copolymers via Switchable Catalysis. Angew. Chem. Int. Ed. 2022, 61, e202117533. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huo, Z.; Xie, X.; Shanaiah, N.; Tong, R. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Chem. Asian J. 2023, 18, e202201147. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, C.; Varghese, D.; Krishna, J.S.; Boominathan, T.; Rakeshkumar, R.; Dineshkumar, S.; Brahmananda Rao, C.V.S.; Sivaramakrishna, A. Recent advances in biodegradable polymers—Properties, applications and future prospects. Eur. Polym. J. 2023, 192, 112068. [Google Scholar] [CrossRef]
- Fakhri, V.; Su, C.-H.; Tavakoli Dare, M.; Bazmi, M.; Jafari, A.; Pirouzfar, V. Harnessing the power of polyol-based polyesters for biomedical innovations: Synthesis, properties, and biodegradation. J. Mater. Chem. B 2023, 11, 9597–9629. [Google Scholar] [CrossRef]
- D’Auria, I.; Santulli, F.; Ciccone, F.; Giannattasio, A.; Mazzeo, M.; Pappalardo, D. Synthesis of Semi-Aromatic Di-Block Polyesters by Terpolymerization of Macrolactones, Epoxides, and Anhydrides. ChemCatChem 2021, 13, 3303–3311. [Google Scholar] [CrossRef]
- Laiwattanapaisarn, N.; Virachotikul, A.; Chumsaeng, P.; Jaenjai, T.; Phomphrai, K. Ring-Opening Co- and Terpolymerization of Epoxides, Cyclic Anhydrides, and l-Lactide Using Constrained Aluminum Inden Complexes. Inorg. Chem. 2022, 61, 20616–20628. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, X.; Xiang, H.; Chang, M.; Xu, Y.; Zhao, H.; Meng, Y. Construction of triblock copolyesters via one-step switchable terpolymerization of epoxides, phthalic anhydride and ε-caprolactone using dual urea/organic base catalysts. Polym. Chem. 2022, 13, 801–807. [Google Scholar] [CrossRef]
- Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P.K.; Williams, C.K. Ring-opening copolymerization (ROCOP): Synthesis and properties of polyesters and polycarbonates. Chem. Commun. 2015, 51, 6459–6479. [Google Scholar] [CrossRef]
- Suzuki, R.; Xia, X.; Gao, T.; Yamamoto, T.; Tajima, K.; Isono, T.; Satoh, T. Synthesis of hyperbranched polyesters via the ring-opening alternating copolymerisation of epoxides with a cyclic anhydride having a carboxyl group. Polym. Chem. 2022, 13, 5469–5477. [Google Scholar] [CrossRef]
- Wu, L.-J.; Lee, W.; Kumar Ganta, P.; Chang, Y.-L.; Chang, Y.-C.; Chen, H.-Y. Multinuclear metal catalysts in ring-opening polymerization of ε-caprolactone and lactide: Cooperative and electronic effects between metal centers. Coord. Chem. Rev. 2023, 475, 214847. [Google Scholar] [CrossRef]
- Fiorentini, F.; Diment, W.T.; Deacy, A.C.; Kerr, R.W.F.; Faulkner, S.; Williams, C.K. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat. Commun. 2023, 14, 4783. [Google Scholar] [CrossRef] [PubMed]
- Diment, W.T.; Williams, C.K. Chain end-group selectivity using an organometallic Al(III)/K(I) ring-opening copolymerization catalyst delivers high molar mass, monodisperse polyesters. Chem. Sci. 2022, 13, 8543–8549. [Google Scholar] [CrossRef]
- Abel, B.A.; Lidston, C.A.L.; Coates, G.W. Mechanism-Inspired Design of Bifunctional Catalysts for the Alternating Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides. J. Am. Chem. Soc. 2019, 141, 12760–12769. [Google Scholar] [CrossRef]
- Lidston, C.A.L.; Severson, S.M.; Abel, B.A.; Coates, G.W. Multifunctional Catalysts for Ring-Opening Copolymerizations. ACS Catal. 2022, 12, 11037–11070. [Google Scholar] [CrossRef]
- Longo, J.M.; Sanford, M.J.; Coates, G.W. Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships. Chem. Rev. 2016, 116, 15167–15197. [Google Scholar] [CrossRef]
- Lidston, C.A.L.; Abel, B.A.; Coates, G.W. Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides. J. Am. Chem. Soc. 2020, 142, 20161–20169. [Google Scholar] [CrossRef] [PubMed]
- Diment, W.T.; Rosetto, G.; Ezaz-Nikpay, N.; Kerr, R.W.F.; Williams, C.K. A highly active, thermally robust iron(iii)/potassium(i) heterodinuclear catalyst for bio-derived epoxide/anhydride ring-opening copolymerizations. Green Chem. 2023, 25, 2262–2267. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, S.; Zhang, G.; Wang, Y.; Liao, Y.; Xu, J.; Zhou, X.; Xie, X. One-Step Synthesis of Linear and Hyperbranched CO2-Based Block Copolymers via Organocatalytic Switchable Polymerization. Macromolecules 2023, 56, 2379–2387. [Google Scholar] [CrossRef]
- Liang, J.; Ye, S.; Wang, S.; Wang, S.; Han, D.; Huang, S.; Huang, Z.; Liu, W.; Xiao, M.; Sun, L.; et al. Biodegradable Copolymers from CO2, Epoxides, and Anhydrides Catalyzed by Organoborane/Tertiary Amine Pairs: High Selectivity and Productivity. Macromolecules 2022, 55, 6120–6130. [Google Scholar] [CrossRef]
- Fu, X.; Lin, X.; Wang, M.; Ding, Z.; Ma, G.; Wang, B.; Li, Y. One-Step Synthesis of Sequence-Defined Polypeptide-block-polyester by Lewis Pair-Catalyzed Chemo-Selective Copolymerization. Macromolecules 2024, 57, 5691–5701. [Google Scholar] [CrossRef]
- Zaky, M.S.; Guichard, G.; Taton, D. Structural Effect of Organic Catalytic Pairs Based on Chiral Amino(thio)ureas and Phosphazene Bases for the Isoselective Ring-Opening Polymerization of Racemic Lactide. Macromolecules 2023, 56, 3607–3616. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, Y.; Li, Q.; Zhang, B.; Cao, X.; Zhao, J.; Zhang, G. Oxygenated Boron Species Generated In Situ by Protonolysis Enables Precision Synthesis of Alternating Polyesters. Macromolecules 2023, 56, 1907–1920. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Yu, J.; Liu, Y.; Li, Z.; Zhang, Y.; Song, P. Switchable Copolymerization of Mixed Monomers Catalyzed by Imidazolium Ionic Liquids. Polym. Chem. 2024, 15, 1475–1483. [Google Scholar] [CrossRef]
- Li, C.; Dang, Y.-F.; Wang, B.; Pan, L.; Li, Y.-S. Constructing ABA- and ABCBA-Type Multiblock Colyesters with Structural Diversity by Organocatalytic Self-Switchable Copolymerization. Macromolecules 2021, 54, 6171–6181. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, Y.-Y.; Yang, G.-W.; Zhu, X.-F.; Li, B.; Wu, G.-P. Record Productivity and Unprecedented Molecular Weight for Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides Enabled by Organoboron Catalysts. Angew. Chem. Int. Ed. 2021, 60, 19253–19261. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Lu, C.; Yang, G.-W.; Xie, R.; Fang, Y.-B.; Wang, Y.; Wu, G.-P. Mechanism-Inspired Upgradation of Phosphonium-Containing Organoboron Catalysts for Epoxide-Involved Copolymerization and Homopolymerization. Macromolecules 2022, 55, 6443–6452. [Google Scholar] [CrossRef]
- Vos, C.W.; Beament, J.; Kozak, C.M. Ring opening polymerization and copolymerization for polyester and polycarbonate formation by a diamino-bis(phenolate) chromium(iii) catalyst. Polym. Chem. 2023, 14, 5083–5093. [Google Scholar] [CrossRef]
- D’Auria, I.; D’Aniello, S.; Viscusi, G.; Lamberti, E.; Gorrasi, G.; Mazzeo, M.; Pappalardo, D. One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters. Polymers 2022, 14, 4911. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Y.; Ding, W.; Zhou, X.; Liao, Y.; Xie, X. Lewis pair catalyzed highly selective polymerization for the one-step synthesis of AzCy(AB)xCyAz pentablock terpolymers. Polym. Chem. 2020, 11, 1691–1695. [Google Scholar] [CrossRef]
- Zhang, K.; Bai, T.; Ling, J. Iron(III) Triflate as a Green Catalyst for Janus Polymerization to Prepare Block Polyesters. Macromolecules 2023, 56, 7389–7395. [Google Scholar] [CrossRef]
- Gümüştaş, S.; Balcan, M.; Kinal, A. Investigation of initiator metal efficiency in the ring-opening polymerization of lactones: An experimental and computational study. Polym Int. 2022, 71, 912–920. [Google Scholar] [CrossRef]
- Liang, X.; Wang, W.; Zhao, D.; Liu, H.; Zhu, Y. Self-switchable polymerization catalysis with monomer mixtures: Using a metal-free commercial thiourea catalyst to deliver block polyesters. Polym. Chem. 2023, 14, 4918–4926. [Google Scholar] [CrossRef]
- Santulli, F.; Grimaldi, I.; Pappalardo, D.; Lamberti, M.; Mazzeo, M. Salen-like Chromium and Aluminum Complexes as Catalysts in the Copolymerization of Epoxides with Cyclic Anhydrides for the Synthesis of Polyesters. Int. J. Mol. Sci. 2023, 24, 10052. [Google Scholar] [CrossRef]
- Li, X.; Duan, R.-l.; Hu, C.-y.; Pang, X.; Deng, M.-x. Copolymerization of lactide, epoxides and carbon dioxide: A highly efficient heterogeneous ternary catalyst system. Polym. Chem. 2021, 12, 1700–1706. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, J.D.; Seo, Y.H.; Chae, J.-H.; Bang, S.; Cheong, Y.-J.; Lee, B.Y.; Lee, I.-H.; Son, S.U.; Jang, H.-Y. Surface activated zinc-glutarate for the copolymerization of CO2 and epoxides. Dalton Trans. 2022, 51, 16620–16627. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.Z.; Du, L.C.; Tiong, S.C.; Zhu, Q.; Hay, A.S. Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. J. Polym. Sci. A Polym. Chem. 2002, 40, 3579–3591. [Google Scholar] [CrossRef]
- Padmanaban, S.; Dharmalingam, S.; Yoon, S. A Zn-MOF-Catalyzed Terpolymerization of Propylene Oxide, CO2, and β-butyrolactone. Catalysts 2018, 8, 393. [Google Scholar] [CrossRef]
- Marbach, J.; Nörnberg, B.; Rahlf, A.F.; Luinstra, G.A. Zinc glutarate-mediated copolymerization of CO2 and PO—Parameter studies using design of experiments. Catal. Sci. Technol. 2017, 7, 2897–2905. [Google Scholar] [CrossRef]
- Marbach, J.; Höfer, T.; Bornholdt, N.; Luinstra, G.A. Catalytic Chain Transfer Copolymerization of Propylene Oxide and CO2 using Zinc Glutarate Catalyst. ChemistryOpen 2019, 8, 828–839. [Google Scholar] [CrossRef]
Entry | [PO]/[PA] b | Temp. (°C) | Time (h) | Conv. PA (%) c | Ether (%) d | Mne (kg/mol) | PDI e |
---|---|---|---|---|---|---|---|
1 | 2/1 | 120 | 2 | 68 | 19 | 2.2 | 1.22 |
2 | 2/1 | 120 | 2.5 | 74 | 20 | 2.5 | 1.21 |
3 | 2/1 | 120 | 3 | 80 | 23 | 2.9 | 1.35 |
4 | 2/1 | 120 | 3.5 | 91 | 25 | 3.3 | 1.42 |
5 | 2/1 | 120 | 4 | >99 | 26 | 3.7 | 1.50 |
6 | 3/1 | 120 | 4 | >99 | 29 | 3.1 | 1.38 |
7 | 3/2 | 120 | 4 | 89 | 21 | 3.6 | 1.50 |
8 | 1/1 | 120 | 4 | 89 | 25 | 3.2 | 1.40 |
9 | 2/1 | 110 | 4 | 77 | 28 | 2.8 | 1.43 |
10 | 2/1 | 100 | 4 | 59 | 25 | 2.3 | 1.29 |
11 | 2/0 | 120 | 2 | - | 14 | - | - |
Entry | LA(g) | [PO]/[LA] b | Temp (°C) | Time (h) | Conv. (%) c | Ether (%) d | Mne (kg/mol) | PDI e |
---|---|---|---|---|---|---|---|---|
1 | 0.97 | 0/1 | 120 | 12 | 0 | - | - | - |
2 | 0.97 | 2/1 | 120 | 0.5 | 33 | <1 | 2.4 | 1.32 |
3 | 0.97 | 2/1 | 120 | 0.75 | 54 | <1 | 2.8 | 1.27 |
4 | 0.97 | 2/1 | 120 | 1 | 80 | <1 | 3.2 | 1.21 |
5 | 0.97 | 2/1 | 120 | 2 | 95 | <1 | 3.8 | 1.24 |
6 | 0.97 | 2/1 | 120 | 3 | 98 | <1 | 4.2 | 1.26 |
7 | 0.97 | 2/1 | 120 | 4 | >99 | <1 | 4.4 | 1.18 |
8 | 0.97 | 0.2/1 | 120 | 4 | 65 | <1 | 3.6 | 1.08 |
9 | 1.94 | 1/1 | 120 | 4 | >99 | <1 | 5.2 | 1.49 |
10 f | 0.47 | 2/0.5 | 120 | 4 | 89 | 3 | 3.1 | 1.38 |
Entry | Time (h) | Conv. (%) b | Ether c (%) | Mnd (kg/mol) | PDI d | |
---|---|---|---|---|---|---|
PA | LA | |||||
1 | 2 | 46 | 0 | 19 | 2.3 | 1.19 |
2 | 3 | 74 | 0 | 20 | 2.7 | 1.37 |
3 | 4 | 93 | 0 | 21 | 3.1 | 1.30 |
4 | 6 | 98 | 0 | 22 | 3.3 | 1.35 |
5 | 7 | >99 | 0 | 24 | 3.4 | 1.40 |
6 | 8 | >99 | 91 | 17 | 6.0 | 1.23 |
7 | 8.5 | >99 | 95 | 17 | 6.1 | 1.29 |
8 | 9 | >99 | >99 | 17 | 6.6 | 1.22 |
Entry | Time (h) | Conv. (%) b | Ether (%) c | |
---|---|---|---|---|
PA | LA | |||
1 | 0.5 | 0 | 26 | <1 |
2 | 1.5 | 8 | 26 | 19 |
3 | 3.5 | 54 | 26 | 21 |
4 | 5.5 | 96 | 26 | 21 |
5 | 7.0 | 98 | 26 | 24 |
6 | 7.5 | >99 | 92 | 17 |
7 | 9.5 | >99 | 93 | 17 |
8 | 11.5 | >99 | 94 | 17 |
9 | 13.5 | >99 | 96 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Z.; Wang, L.; Yu, J.; Liu, Y.; Song, P. Selective Copolymerization from Mixed Monomers of Phthalic Anhydride, Propylene Oxide and Lactide Using Nano-Sized Zinc Glutarate. Nanomaterials 2024, 14, 1535. https://doi.org/10.3390/nano14181535
Zhang X, Li Z, Wang L, Yu J, Liu Y, Song P. Selective Copolymerization from Mixed Monomers of Phthalic Anhydride, Propylene Oxide and Lactide Using Nano-Sized Zinc Glutarate. Nanomaterials. 2024; 14(18):1535. https://doi.org/10.3390/nano14181535
Chicago/Turabian StyleZhang, Xiaoting, Zhidong Li, Liyan Wang, Jingjing Yu, Yefan Liu, and Pengfei Song. 2024. "Selective Copolymerization from Mixed Monomers of Phthalic Anhydride, Propylene Oxide and Lactide Using Nano-Sized Zinc Glutarate" Nanomaterials 14, no. 18: 1535. https://doi.org/10.3390/nano14181535
APA StyleZhang, X., Li, Z., Wang, L., Yu, J., Liu, Y., & Song, P. (2024). Selective Copolymerization from Mixed Monomers of Phthalic Anhydride, Propylene Oxide and Lactide Using Nano-Sized Zinc Glutarate. Nanomaterials, 14(18), 1535. https://doi.org/10.3390/nano14181535