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Abstract: Selective polymerization with heterogeneous catalysts from mixed monomers remains
a challenge in polymer synthesis. Herein, we describe that nano-sized zinc glutarate (ZnGA) can
serve as a catalyst for the selective copolymerization of phthalic anhydride (PA), propylene oxide
(PO) and lactide (LA). It was found that the ring-opening copolymerization (ROCOP) of PA with PO
occurs firstly in the multicomponent polymerization. After the complete consumption of PA, the ring-
opening polymerization (ROP) of LA turns into the formation of block polyester. In the process, the
formation of zinc–alkoxide bonds on the surface of ZnGA accounts for the selective copolymerization
from ROCOP to ROP. These results facilitate the understanding of the heterogeneous catalytic process
and offer a new platform for selective polymerization from monomer mixtures.

Keywords: selective polymerization; mixed monomers; ring-opening polymerization; zinc glutarate;
block polyester

1. Introduction

Selective copolymerization from mixed monomers can simplify process chemistry and
eliminate the energy, time and labor currently used in intermediate separation, purification
and protection–deprotection reaction steps [1,2]. It is superior to the traditional method for
block polymers based on the sequential addition of monomers, pre-synthesis of macroini-
tiators, end-to-end coupling of pre-formed polymer chains and other two-step or multi-step
routes [3–6]. Kinetic control has long been of interest as a means of controlling polymer
compositions from mixtures, but this requires a common polymerization method [7]. An-
other strategy for the one-step formation of block polymers is selective copolymerization,
which mainly depends on the nature of the catalyst with a combination of different catalytic
cycles in a mixed-monomer system [8,9]. Undoubtedly, selective copolymerization from
monomer mixtures is one of the most attractive means to prepare block copolymers. It
is necessary to develop versatile catalysts that can be made available for these promising
processes [10–12].

Polyesters are currently an important class of polymers that have been extensively
investigated in the fields of biomedicine, packaging and engineering [13,14]. The synthesis
of polyesters is generally achieved by the condensation polymerization of diols with
diacids or diester, the ring-opening copolymerization (ROCOP) of epoxides with cyclic
anhydrides and the ring-opening polymerization (ROP) of lactones [15–18]. Condensation
polymerization for polyester synthesis is generally achieved at high temperatures to obtain
polymers with a high molecular weight. In comparison, ROCOP and ROP can be performed
in a controlled manner under mild conditions, producing desirable polyesters with excellent
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biocompatibility and mechanical properties [19,20]. A variety of catalysts including metal
complexes [21–28] and organocatalysts [29–37] have been developed for ROCOP and ROP,
respectively. This is of great interest regarding the rational design of catalysts applied for
both ROCOP and ROP, which facilitate the combination of these two different catalytic
cycles, leading to selective copolymerization from mixed monomers to synthesize block
polyesters [38–40].

Generally, selective copolymerization with the combination of ROCOP and ROP
depends on the functionality of catalysts and can switch between different polymeriza-
tions for sequential monomer addition. Accordingly, organometallic catalysts have been
investigated for this promising process [41,42]. For example, Williams et al. prepared tri-
block polyesters by switching the catalytic combination of phthalic anhydride, vinyl epoxy
cyclohexene and ε-decalactone using organometallic heterodinuclear Al (III)/K(I) com-
plexes [23]. This catalyst could also be used to prepare multiblock polyesters and control the
polymer structure. Zhu’s group developed a TU/PPNCl binary catalytic system that can
switch between cyclic anhydride, epoxide and cyclic ester to prepare sequence-controlled
multiblock polyesters with multiple structures. This method shows great potential for
the synthesis of complex polymers with sequential and structural diversity [43]. Recently,
Mazzeo et al. prepared chromium and aluminum complexes with a Salen ligand to obtain
diblock polyesters (poly(propylene maleate-block-polyglycolide)) with precise compositions
by switching catalytic reactions [44]. In fact, the controlled copolymerization of hybrid
monomers often confers significant advantages on individual polymer chains and requires
a single, multi-purpose catalyst, which remains a key challenge in the field of polymer
chemistry [45]. Zinc glutarate (ZnGA) is a non-toxic catalyst that is easy to prepare and
handle that has been investigated for the copolymerization of CO2 and epoxides producing
aliphatic polycarbonate [46]. However, the heterogeneous catalytic action of ZnGA is still
not clearly understood, which has hampered its application for the sequence-controlled
copolymerization of mixed monomers. To achieve selective copolymerization using ZnGA,
PA/PO ROCOP, LA ROP and the copolymerization of mixed monomers were investigated
in detail (Scheme 1).
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2. Materials and Methods
2.1. Materials

Glutaric acid (GA), zinc oxide (ZnO) and L-lactide (LA, 99%) were used without further
purification from Energy Chemical (Anhui, China). Propylene oxide (PO) was purchased
from Energy Chemical and stored in an argon atmosphere in a vessel containing a pre-dried
3 Å molecular sieve. Phthalic anhydride (PA, AR, 99%) was purchased from Machlin
Chemical (Shuanghai, China). Toluene, chloroform, n-hexane and anhydrous methanol
were obtained from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Toluene
was stored in an argon atmosphere in a vessel containing a pre-dried 3 Å molecular sieve.
Hydrochloric acid (36–38%) was procured from Beijing Chemical Works (Beijing, China).
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2.2. Preparation of ZnGA Catalyst

The preparation of the nano-sized ZnGA catalyst was based on previous reports [47,48].
Glutaric acid (12.947 g, 98.0 mmol, 99.0%) and anhydrous toluene (150 mL) were added to
a 250 mL three-necked flask, purged three times with nitrogen and kept under magnetic
stirring; then, zinc oxide powder (8.139 g, 100.0 mmol, 99.8%) was added to the flask
and refluxed for 8 h at 55 ◦C with magnetic stirring. The resulting solid was filtered and
washed three times with acetone, and then the product was washed with a sodium chloride
aqueous solution until the solution was neutral. The obtained ZnGA powder was dried
under vacuum at 80 ◦C for 24 h, and the yield was calculated (yield = 97.6%).

2.3. The ROCOP of PA- and PO-Catalyzed ZnGA

The polymerization procedure is as follows: 0.2 g ZnGA was added to the reaction
bottle and dried in a 120 ◦C vacuum oven overnight. After cooling to room temperature,
PA (6.75 mmol, 1 equiv.) was added to the polymerization bottle, and the reaction bottle
was sealed and vacuumed for 30 min. After that, PO (13.5 mmol, 2 equiv.) and 5 mL of
toluene were sequentially added to the reaction bottle with a special syringe. Then, the
polymerization was left to proceed at 120 ◦C for 4 h. To determine monomer conversion,
a crude aliquot was time-regularly withdrawn from the polymerization by pipette and
monitored by 1H NMR spectroscopy. After the defined time, the resulting mixture was
diluted with 5% dilute hydrochloric acid and 3 mL chloroform, the polymer was washed
with warm water for removing unreacted PA, and then it was precipitated with a large
amount of n-hexane. Finally, the recovered solid was dried to a constant weight under
vacuum and characterized by 1H NMR and GPC.

2.4. The ROP of LA Catalyzed by ZnGA/PO

The polymerization procedure is as follows: 0.2 g ZnGA was added to the reaction
bottle and dried in a 120 ◦C vacuum oven overnight. After cooling to room temperature,
LA (6.75 mmol, 1 equiv.) was added to the polymerization bottle, and the reaction bottle
was sealed and vacuumed for 30 min. After that, PO (13.5 mmol, 2 equiv.) and 5 mL of
toluene were sequentially added to the reaction bottle with a special syringe. Then, the
polymerization was left to proceed at 120 ◦C for 4 h. To determine monomer conversion,
a crude aliquot was time-regularly withdrawn from the polymerization by pipette and
monitored by 1H NMR spectroscopy. After the defined time, the reaction mixture was
diluted with approximately 5% dilute hydrochloric acid and 3 mL chloroform, and the
polymer was precipitated with a large amount of methanol. Finally, the recovered solid
was dried to a constant weight under vacuum and characterized by 1H NMR and GPC.

2.5. Copolymerization of PO-, PA- and LA-Catalyzed ZnGA

The polymerization procedure is as follows: 0.2 g ZnGA was added to the reaction
bottle and dried in a 120 ◦C vacuum oven overnight. After cooling to room temperature,
PA (6.75 mmol, 1 equiv.) and LA (6.75 mmol, 1 equiv.) were continuously added to the
reaction bottle, and the reaction bottle was sealed and vacuumed for 30 min. After that,
PO (13.5 mmol, 2 equiv.) and 5 mL of toluene were sequentially added to the reaction
bottle with a special syringe. The molar feed ratio of PO, PA and LA was 2:1:1. Then, the
polymerization was left to proceed at 120 ◦C for 9 h. To determine monomer conversion,
a crude aliquot was time-regularly withdrawn from the polymerization by pipette and
monitored by 1H NMR spectroscopy. After the defined time, the reaction mixture was
diluted with 5% dilute hydrochloric acid and 3 mL chloroform, the polymer was washed by
warm water for removing unreacted PA, and then it was precipitated with a large amount
of methanol. Finally, the recovered solid was dried to a constant weight under vacuum and
characterized by 1H NMR, GPC and DOSY NMR.
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2.6. Characterization Methods

A magnetic test was conducted on a Brucker AM 600 M superconducting nuclear
magnetic resonance (NMR) apparatus (Varian, USA) utilizing CDCl3 as the solvent and
TMS as the internal standard. Fourier transform infrared (FTIR) spectra were tested on a
Digilab Merlin FTS-3000 (Digilab, USA) infrared spectrometer by 64 scans from 4000 to
500 cm−1 with a spectral resolution of 4.0 cm−1. A gel permeation chromatography (GPC)
test was performed with the United States Waters GPC2000 high-temperature gel perme-
ation chromatographer and THF as the eluent. DOSY NMR analyses were performed at a
steady temperature of 25 ◦C with at least 16 gradient increments using the ledbpgp2s se-
quence. The X-ray diffraction (XRD) patterns were recorded using a Brucher D8 DISCOVER
(Bruker AXS, Germany) with Cu Ka radiation (g = 0.154 nm, 40 kV and 40 mA). The data
were collected between 10◦ and 60◦ with a scanning speed of 2◦ min−1. Brunauer–Emmett–
Teller (BET) surface areas were investigated by NovaWin (Quantachrom, USA). The pore
volume and pore radius of the samples were determined by the Barrett–Joyner–Halenda
method. The morphology of ZnGA was characterized using an ULTRA Plus Zeiss field
emission scanning electron microscope (SEM).

3. Results and Discussion
3.1. Preparation and Characterization of ZnGA Catalyst

The ZnGA catalyst was prepared by the reaction of ZnO and GA. The structure of
ZnGA was characterized by FTIR. As shown in Figure 1a, the absence of a peak at 1697 cm−1

(C=O) and the presence of peaks at 1585 cm−1, 1536 cm−1 and 1405 cm−1 (COO−) shows
the formation of a zinc–carboxylate bond from the carbonyl group of GA. The absorbance of
a CH2 shear band at 1443 cm−1 and CH stretching bonds at 2952 cm−1 were also detected,
which indicates the successful preparation of the ZnGA catalyst. The degree of crystallinity
of the ZnGA catalyst was characterized by XRD. As illustrated in the XRD plots, the ZnGA
catalyst exhibit a distinct crystal structure (Figure 1b). To further illustrate the distinction
between the diffraction peaks, the characteristic diffraction peaks with 2θ angles of 12.70◦,
22.54◦ and 23.00◦ were selected, and the average grain sizes of the diffraction peaks were
calculated to be below 60 nm by employing the Scherrer equation (Table S1). In addition to
crystallinity, the specific surface area is also the main factor affecting the catalytic activity
of the catalyst. The specific surface area of the catalyst was further characterized by BET.
The BET isotherm analysis of ZnGA shows that the catalyst is a macroporous material with
a mean pore size of 60.3 nm and a surface area of 1.15 m2/g, which are typical values for
ZnGA frameworks (Figure S1, Table S2). In addition, the morphology of the ZnGA catalyst
was characterized by SEM. As shown in Figure 1c,d, ZnGA showed a uniform nanosheet
structure, providing the basis for good catalytic activity.

3.2. Selective Copolymerization of PA, PO and LA Using ZnGA

Firstly, the ROP of LA and ROCOP of PA with PO were carried out. Then, the
copolymerization of PA, PO and LA was developed to combine ROCOP and ROP to achieve
selective copolymerization. It is demonstrated that ZnGA can enable a selective conversion
from monomer mixtures to synthesize block polyester. Initially, the ROCOP of PA and PO
was performed with ZnGA under different conditions, and the copolymerization results
are summarized in Table 1 and Figures S2–S5. The results show that the ROCOP reaction is
consistent with zero-order reaction kinetics, and the apparent rate constants (kapp) were
calculated to be 0.256 mol L−1 min−1. The GPC results showed that the molecular weight
of PPAPO-co-PPO increased with the increase in the reaction time (Figure 2a).

As shown in Figure 2b, a new absorption peak at 1728 cm−1 appeared in the FTIR
spectrum of the mixtures of ZnGA and PO, which indicates the formation of zinc–alkoxide
species in the system [6]. It is considered that the zinc–alkoxide bond on the surface of
the ZnGA can enable the ring-opening of PA and PO, which accounts for the ROCOP.
As shown in Table 1 (entries 5–10), the PA conversion increased with the increase in the
reaction temperature and the addition of PO (Figures S6–S9). This is owing to the high
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temperature and high concentration of PO, which facilitates the reaction between ZnGA
and PO to form zinc–alkoxide species. The polymerization of PO catalyzed by ZnGA was
also investigated (Table 1, entry 11). It was found that the PO conversion was only 14%
after 2 h, suggesting that the insertion of PO into the zinc–alkoxide bond is lower than that
of PA. Accordingly, it is considered that the zinc–alkoxide bond on the surface of the ZnGA
is active for the ROCOP, and the polymer chain growth takes place via the PA insertion
and nucleophilic attack of PO, producing the aliphatic polyester with polyether segments
in the chain. Furthermore, the ROP of LA with ZnGA was investigated in detail. Firstly,
the polymerization of LA and PO with a molar feed ratio of 1:2 was performed at 120 ◦C
(Figures S10–S13). The results show that the ROP reaction is consistent with first-order
reaction kinetics, and the kapp was calculated to be 0.019 mol L−1 min−1. Moreover, the
GPC curves of the resulted PLA revealed a single peak, and the molecular weight of PLA
increased with increasing reaction time (Figure 2c).
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Table 1. The ROCOP of PA and PO by ZnGA a.

Entry [PO]/[PA] b Temp. (◦C) Time (h) Conv. PA (%)
c Ether (%) d Mn

e

(kg/mol) PDI e

1 2/1 120 2 68 19 2.2 1.22
2 2/1 120 2.5 74 20 2.5 1.21
3 2/1 120 3 80 23 2.9 1.35
4 2/1 120 3.5 91 25 3.3 1.42
5 2/1 120 4 >99 26 3.7 1.50
6 3/1 120 4 >99 29 3.1 1.38
7 3/2 120 4 89 21 3.6 1.50
8 1/1 120 4 89 25 3.2 1.40
9 2/1 110 4 77 28 2.8 1.43
10 2/1 100 4 59 25 2.3 1.29
11 2/0 120 2 - 14 - -

a The copolymerization was performed at 0.2 g ZnGA in 5 mL toluene. b Molar feed ratio of PO and PA.
c Conversion of PA estimated by 1H NMR spectroscopy. d The content of ether was determined by 1H NMR
spectroscopy (3.99~3.32 ppm). e Determined by GPC, calibrated by polystyrene standards.
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Figure 2. (a) GPC traces of the aliquots withdrawn from the copolymerization of PA and PO with
ZnGA as the catalyst. (b) The FTIR spectra of pure ZnGA (black line) and PO after heating at 40 ◦C
for 48 h in toluene (red line). The experimental spectra show the formation of a new absorption at
1728 cm−1, assigned to the zinc–alkoxide intermediate. (c) GPC traces of the aliquots withdrawn
from the polymerization of LA in the presence of PO with ZnGA as the catalyst. (d) The 1H NMR
spectra of crude aliquots withdrawn from the reaction system of PA, PO and LA.

To explore the ROP process with ZnGA, we conducted the polymerization of LA
without the addition of PO. However, it is shown that there was no PLA produced in the
system in the absence of PO (Table 2, entry 1). It is suggested that the LA polymerization
by ZnGA requires PO as an initiator, which facilitates the formation of the zinc–alkoxide
bond, which accounts for the ROP of LA. Thus, the PLA chain growth can be achieved via
the insertion of LA into the zinc–alkoxide bond. It is noted that the polymerization rate of
LA with the zinc–alkoxide bond is much higher than that of PO, producing PLA without
polyether segments in the PLA chain (Table 2, entries 2–7). Moreover, the polymerization
of LA and PO with different molar feed ratios was investigated (Table 2, entries 7–10,
Figures S14 and S15). It is shown that the ROP of LA with a high concentration of PO can
produce PLA with a few polyether segments in the chain (Table 2, entry 10), which is owing
to the formation of more zinc–alkoxide bonds on the surface of the ZnGA facilitating the
homopolymerization of PO.
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Table 2. The ROP of LA catalyzed by ZnGA/PO a.

Entry LA(g) [PO]/[LA] b Temp (◦C) Time (h) Conv. (%) c Ether (%) d Mn
e

(kg/mol) PDI e

1 0.97 0/1 120 12 0 - - -
2 0.97 2/1 120 0.5 33 <1 2.4 1.32
3 0.97 2/1 120 0.75 54 <1 2.8 1.27
4 0.97 2/1 120 1 80 <1 3.2 1.21
5 0.97 2/1 120 2 95 <1 3.8 1.24
6 0.97 2/1 120 3 98 <1 4.2 1.26
7 0.97 2/1 120 4 >99 <1 4.4 1.18
8 0.97 0.2/1 120 4 65 <1 3.6 1.08
9 1.94 1/1 120 4 >99 <1 5.2 1.49

10 f 0.47 2/0.5 120 4 89 3 3.1 1.38
a The copolymerization was performed at 0.2 g ZnGA in 5 mL toluene. b Molar feed ratio of PO and LA.
c Conversion of LA estimated by 1H NMR spectroscopy. d The content of ether was determined by 1H NMR
spectroscopy (3.99~3.32 ppm). e Determined by GPC, calibrated by polystyrene standards. f When the PO content
increases, a small amount of ether is produced at this time.

It is demonstrated that ZnGA can efficiently catalyze both the ROCOP of PA with PO
and the ROP of LA, which encourages us to cultivate a selective copolymerization from
mixed monomers to synthesize block polyesters (Figures S16 and S17). Accordingly, the
copolymerization of PA, PO and LA with ZnGA were investigated in detail. The copolymer-
ization process was monitored by 1H NMR analysis of aliquots taken at regular intervals
(Figure 2d). It is obvious that the peaks at 8.05~7.85 ppm attributed to PA decreased
with the increase in reaction time, while the peaks at 7.75~7.40 ppm, 5.49~5.36 ppm and
4.46~4.30 ppm are assigned to PPAPO, which increased with the increasing reaction time.
Meanwhile, the peak at 5.07~5.00 ppm of LA remains unchanged until 7 h. It is suggested
that the ROCOP of PA and PO was firstly initiated in the mixed monomers. After 7 h of the
complete of PA, the increasing peak at 5.24~5.12 ppm of PLA was observed, implying that
the ROP of LA was turned on. The copolymerization results are summarized in Table 3.
It is demonstrated that a selective copolymerization including the first ROCOP and then
ROP was achieved from mixed monomers of PA, PO and LA using ZnGA.

Table 3. Copolymerization of PO, PA and LA catalyzed by ZnGA a.

Entry Time (h)
Conv. (%) b

Ether c (%)
Mn

d

(kg/mol) PDI d
PA LA

1 2 46 0 19 2.3 1.19
2 3 74 0 20 2.7 1.37
3 4 93 0 21 3.1 1.30
4 6 98 0 22 3.3 1.35
5 7 >99 0 24 3.4 1.40
6 8 >99 91 17 6.0 1.23
7 8.5 >99 95 17 6.1 1.29
8 9 >99 >99 17 6.6 1.22

a The copolymerization was performed at 0.2 g ZnGA in 5 mL toluene, and the molar feed ratio of PO, PA and LA
was 2:1:1. b Conversion of PA and LA estimated by 1H NMR spectroscopy. c The content of ether was determined
by 1H NMR spectroscopy (3.99~3.32 ppm). d Determined by GPC, calibrated by polystyrene.

The GPC measurements showed that the copolymer had a single distribution
(Figure 3a). Meanwhile, the molecular weight of the copolymer increased with the in-
crease in reaction time, corresponding to the selective conversion of the first ROCOP of
PA/PO and then the LA ROP. To verify the topology and purity of the copolymer, DOSY
NMR spectrum was used, as shown in Figure 3b. It is clear that the resulting copolymer
showed a single coefficient, indicating that only one component was exhibited in the
resulting copolymer.
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Figure 3. (a) GPC traces of the aliquots withdrawn from terpolymerization of PA, PO and LA with
ZnGA. (b) DOSY NMR spectrum of the resulting copolymer (Table 3, entry 8).

3.3. Polymerization Mechanism

To further understand the catalytic pathway, the polymerization of the PO and LA mo-
lar feed ratio of 2/1 at 120 ◦C was investigated. For the second phase at 0.5 h, an additional
portion of PA was fed into the polymerization system (Table 4). As evidenced by 1H NMR
spectroscopy (Figure 4a and Figure S18), the addition of PA immediately terminated the
propagation of PLA. Meanwhile, the ROCOP of PA with PO was turned on in the presence
of LA. It is suggested that the ROCOP of PA and PO is kinetically and thermodynamically
favored over the ROP of LA. Accordingly, the selective copolymerization mechanism of
PO, PA and LA can be proposed as shown in Figure 4b. Firstly, ZnGA can activate PO
to form a zinc–alkoxide bond (-Zn-OR), which facilitates the insertion of PA to form a
metal carboxyl terminal, followed by the ring opening of PO [49,50]. It is noted that the
insertion rate of PA and PO into the zinc–alkoxide bond has little difference, leading to a
small amount of polyether segments in the polyester chain. After the complete conversion
of PA, the polymerization was turned on with the insertion of LA into the zinc–alkoxide
bond producing block polyesters.

Table 4. The switchable copolymerization of PA, PO and LA by ZnGA and sequential addition of
PA a.

Entry Time (h)
Conv. (%) b

Ether (%) c
PA LA

1 0.5 0 26 <1
2 1.5 8 26 19
3 3.5 54 26 21
4 5.5 96 26 21
5 7.0 98 26 24
6 7.5 >99 92 17
7 9.5 >99 93 17
8 11.5 >99 94 17
9 13.5 >99 96 17

a The copolymerization was performed at 0.2 g ZnGA in 5 mL toluene, [PO]:[LA] = 2:1; another 1 equiv PA and
THF (8 mL) was added into the system when the polymerization time was extended to 0.5 h. b Conversion of PA
and LA estimated with 1H NMR. c The polyether content was determined with 1H NMR.
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Figure 4. (a) Plots of monomer conversion versus time. The polymerization was achieved in bulk
with 2/1 of [PO]/[LA] at 120 ◦C; additional PA (1 equiv.) was added after 0.5 h. (b) Selective
copolymerization pathways for the monomers of PA, PO and LA by ZnGA.

4. Conclusions

In summary, we have described a selective copolymerization route using nano-sized
ZnGA to prepare block polyesters from mixed monomers in a one-pot process. The
heterogeneous catalyst ZnGA can bridge two different catalytic polymerizations involving
the ROCOP of PA/PO and the ROP of LA. In this switchable copolymerization, the LA
ROP cannot proceed until PA is fully consumed in the multicomponent system, which
mainly depends on the selectivity of the zinc–alkoxide bonds on the surface of the ZnGA
for monomer mixture. This work offers the potential to develop a heterogeneous catalyst
for the selective copolymerization from mixed monomers.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano14181535/s1. Supplementary Table S1: X-ray data of ZnGA.
Table S2: The textural properties of ZnGA. Supplementary Figure S1: N2 adsorption–desorption
isotherms of ZnGA. Figure S2: The 1H NMR spectra of PPAPO-co-PPO (Table 1, entry 5). Figure S3:
The 1H NMR spectra of crude aliquots withdrawn from the reaction system of PA and PO copolymers.
Figure S4: The fittings of zero-order kinetic plots and first-order kinetic plots with respect to PA.
Figure S5: The plots of Mn and PDI versus PA conversion for the ROCOP of PA and PO. Figure S6:
The 1H NMR spectra of PPAPO-co-PPO at different molar feed ratios. Figure S7: GPC traces of
PPAPO-co-PPO at different molar feed ratios. Figure S8: The 1H NMR spectra of PPAPO-co-PPO at
different temperatures. Figure S9: GPC traces of PPAPO-co-PPO at different temperatures. Figure S10:
The 1H NMR spectra of PLA (Table 2, entry 7). Figure S11: The 1H NMR spectra of crude aliquots
withdrawn from the reaction system of LA and PO copolymer. Figure S12: The fittings of zero-order
kinetic plots and first-order kinetic plots with respect to LA. Figure S13: The plots of Mn and PDI
versus LA conversion for the ROP of LA. Figure S14: The 1H NMR spectra of PLA at different molar
feed ratios. Figure S15: GPC traces of PLA at different molar feed ratios. Figure S16: The 1H NMR
spectra of PA, PO and LA terpolymer (Table 3, entry 8). Figure S17: The 13C NMR spectra of PA,
PO and LA terpolymer (Table 3, entry 8). Figure S18: The in situ 1H NMR spectra of crude aliquots
withdrawn from the reaction system for monitoring the conversion of PA and LA and the formation
of (PPAPO-co-PPO)-b-PLA. The copolymerization reactions were conducted in 5 ml toluene at 120 °C,
0.2 g ZnGA, [PA]:[LA]= 2/1; another 1 equiv of PA was added into the mixtures when the reaction
was extended to 0.5 h.
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