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Abstract: Actuators based on moisture-sorption-responsive materials can convert moisture en-
ergy into mechanical/electrical energy, making the development of moisture-sorption materials a
promising pathway for harnessing green energy to address the ongoing global energy crisis. The
deformability of these materials plays a crucial role in the overall energy conversion performance,
where moisture sorption capacity determines the energy density. Efforts to boost the moisture ab-
sorption capacity and rate have led to the development of a variety of moisture-responsive materials
in recent years. These materials interact with water molecules in different manners and have shown
diverse application scenarios. Here, in this review, we summarize the recent progress on moisture-
sorption-responsive materials and their applications. We begin by categorizing moisture-sorption
materials—biomaterials, polymers, nanomaterials, and crystalline materials—according to their
interaction modes with water. We then review the correlation between moisture-sorption and energy
harvesting performance. Afterwards, we provide examples of the typical applications using these
moisture-sorption materials. Finally, we explore future research directions aimed at developing
next-generation high-performance moisture-sorption materials with higher water uptake, tunable
water affinity, and faster water absorption.

Keywords: moisture-responsive materials; water-sorption; actuator

1. Introduction

Moisture-sorption matters show high affinity to water molecules. Materials made of
such matters can change their morphology or shape upon moisture environment. Based
on these moisture-sorption materials, a lot of energy harvesting systems have been put
forward, which provides a promising route to develop green energy and achieve a low-
carbon economy [1–6]. The feasibility of moisture-sorption-based energy harvesting has
been validated by a few documented moisture-sorption materials [7–10], although the
energy conversion system suffers from the limitations of low energy conversion efficiency
and power density. To promote energy harvesting efficiency, a variety of novel moisture
adsorption materials have been developed. Correspondingly, many comprehensive re-
views have emerged. For example, Qu et al. [11] detailed the working principles of a
moisture-sorption energy harvesting system and summarized the progress in water sor-
bents. Wang et al. [12] systematically summarized the strategies and mechanisms of motile
plant tissues in a humid environment. Yang et al. [13] introduced the mechanisms of
humidity responsiveness of moisture-sorption materials and compared diverse strategies
fabricating humidity-responsive liquid crystalline materials. Hu et al. [14] reviewed the
research progress and design principles of carbon-based humidity absorption materials
(e.g., carbon nanotube (CNT) and graphene oxide (GO)) with hydrophilic or hydrophobic
functional groups. Zhang et al. [15] recapped newly designed moisture-sorption crystalline
smart materials, such as molecular crystals and framework materials. They also gave an
in-depth interpretation of the relationship between the structural characteristics and the
responsive mechanisms of those materials.
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Previous research findings have demonstrated the diverse types of traditional moisture-
sorption materials. In recent years, new types and quantities of hygroscopic materials
have emerged in abundance, such as liquid crystal polymers, graphene, the covalent or-
ganic framework (COF), the metal–organic framework (MOF), and so on [16–18]. Those
materials demonstrate a macroscopic expansion or contraction through interactions with
water molecules in different modes. A comprehensive review involving the different water
absorption mechanisms and design principles of a moisture–energy conversion system is
therefore highly desirable to aid in the real implementation of moisture-based green energy
devices [19–23]. To this end, we summarize the recent progress in moisture-sorption energy
conversion systems. We focus on the latest developments of moisture-sorption actuator
materials, including biomaterials, polymers, nanomaterials, and crystalline materials. The
design rationale, working principle, and critical issues in each type of these materials
are discussed. Finally, the challenges and future research prospects for developing high-
performance moisture-sorption actuators are explored. This review provides the guidelines
for next-generation moisture-sorption actuators.

2. Mechanism of Moisture-Sorption Materials Responsiveness

Figure 1 summarizes the types of moisture-absorbing materials [18,24–34]. The diver-
sity of moisture-absorbing materials with different water affinities gives them high climate
adaptability, making moisture-absorbing-based water phase change theoretically accessible
anywhere and anytime.
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Figure 1. Various types of moisture-absorbing materials spontaneously undergo absorption and des-
orption processes, converting gaseous water from high-humidity environments into adsorbed water.

2.1. Biomaterials

Nature has always been a model of inspiration for technical developments [24,35–40].
Understanding the operating principles of natural actuators not only helps us to explore
biological models with “smart” functions but also aids in the development of advanced
artificial materials [41–45]. Natural biomaterials, such as collagen, silk fibroin, cellulose,
chitosan, etc., are promising alternatives for fabricating flexible substrates owing to their
permeability, biocompatibility, degradability, and implantation potential [46–55]. For in-
stance, Li et al. [52] demonstrated the production of a biological film (BF) through the
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extraction of collagen from pigskin. Collagen is a central source of humidity-driven bio-
materials. It denatures during hot water extraction, which leads to more random amino
acid residues facilitating the formation of hydrogen bonds between the N–H group and
the water molecules. In a high-humidity environment, it took 3 s for the BF to bend to
a 120◦ angle and another 1 second to turn over, while at a lower humidity, it took as
many as 10 s to bend to a 120◦ angle before the film stopped flipping. The BF, made of
denatured collagen, is therefore more hydrophilic and moisture sensitive than the native
pigskin. As shown in Figure 2a, the collagen chains respond to moisture by forming or
breaking the hydrogen bonds in between to achieve water absorption or desorption. Apart
from collagen, silk fibroin (SF), also derived from the natural material, shows an excellent
moisture-responsive property. Molecularly, natural SF has a uniform semi-crystallinity and
orientation. Zhang et al. [51] developed a strategy endowing an SF film with a gradient con-
densed structure from the very top surface to the interior. In a high-humidity environment,
water molecules are absorbed from the bottom of the SF film, resulting in gradient stress
across the gradient structure due to the recombination of the hydrogen bonds as shown in
Figure 2b. The films were successfully origami-folded into a paper crane/boat without any
damage and could realize the dynamic jump and moisture management functions.
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Figure 2. Mechanism of biomaterial humidity responsiveness. (a) The schematic of reversible
water adsorption/desorption process of the soft biological film by extracting natural materials from
pigskin. (b) Schematic drawing of the effect of water on gradient structure for moisture-driven
silk fibroin films. (c) Spores exhibit a strong mechanical response to changing relative humidity
by absorbing and releasing moisture. (d) Schematic diagram of the twisting process of the sodium
alginate fiber. (e) Chemical structure of the agarose@poly(ethylene glycol)-conjugated azobenzene
derivative (AG@PCAD) composite film and mechanism of water exchange.

The above two natural moisture-sorption materials demonstrate substantial advan-
tages in high relative humidity (RH) conditions. At low and middle RH, materials capable
of absorbing water have also been extensively studied. Goodnight et al. [56] reported
bacterial spores exhibit strong hydration-driven actuation. As shown in Figure 2c, water
confined to nanoscale cavities, conduits, and surfaces within hygroscopic materials can
induce large pressures in response to changing relative humidity. An 8 µm thick polyimide
tape coated with an ~3 µm thick spore layer changes its curvature in humid (uncurled) and
dry (curled) conditions. When assembled in parallel, these tapes can lift weight against
gravity in dry conditions. Wang et al. [57] twisted a gel-state natural alginate fiber through
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wet spinning, obtaining a fiber-based actuator that showed remarkable performance under
water and moisture stimulations (Figure 2d). Owing to the excellent swelling and contrac-
tion properties in response to water, the twisted alginate fiber-based actuator underwent a
rapid reversible rotational motion with a rotation speed of 13,000 rpm and a revolution of
over 400 turns. Generally, the long-term stability of natural hygroscopic materials is limited
by their relatively low mechanical performance. As shown in Figure 2e, Zhang et al. [21]
prepared a composite film composed of strong hygroscopic capability of natural agarose
and synthetic azobenzene (AG@PCAD), exhibiting high mechanical performance and rapid
humidity responsiveness. In their design, the flexible diethylene glycol moieties provide
elasticity, while the terephthalates functional groups are responsible for hydrogen bonding.
The element can lift objects ~85 times heavier and can transport cargos ~20 times heavier
than itself.

2.2. Polymers

Synthetic polymer materials exhibit exceptional molecular designability. The further
incorporation of hydrophilic functional groups (e.g., hydroxyl (-OH), amino (-NH2), amide
(-CONH-), carboxylic acid (-COOH), sulfuryl (-SO2-), sulfonic acid (-SO3H), and so on) into
the polymer chains holds great potential for fabricating humidity-responsive novel materi-
als with tunable water absorption and mechanical strength [20,58–71]. Comprehending the
fundamental principles of structure design and synthesis of moisture-absorbing polymers
is pivotal in the development of high-performance humidity-driven devices, which can
significantly contribute to advancing intelligent energy conversion technologies.

Chen et al. [62] constructed a water-responsive shape-adaptive polymer (WRAP)
film by orienting water-soluble semi-crystalline poly (ethylene oxide) (PEO) domains
crosslinked by the poly(ethylene glycol) (PEG)-α-cyclodextrin (α-CD) inclusion complex
crystalline domains (Figure 3a). Under uniaxial cold drawing, the PEO domains plastically
deform to form aligned fibrillar bridges and a porous structure. Simultaneously, the
PEO crystallites and chains orient and are temporarily fixed by the newly formed PEO
crystallites. Water causes PEO chain recoil and super-contraction by destroying the PEO
crystallites. After contraction, the PEO crosslinked by the inclusion complex becomes
amorphous. Upon wetting, the WRAP film rapidly contracts by more than 50% of its
original length within seconds.

Langer and colleagues [20] made a dynamic polymer composite of rigid polypyrrole
(PPy) imbedded with a flexible, interpenetrating polyol-borate (PEE) network that would
be responsive to water sorption and desorption (Figure 3b). Intermolecular hydrogen bond-
ing between the polyol-borate network and PPy also modulates the intermolecular packing
of the polymer composite to alter its mechanical properties in response to water. The film
actuator can generate contractile stress up to 27 megapascals, lift objects 380 times heavier
than itself, and transport cargo 10 times heavier than itself. Wang et al. successfully devel-
oped a hydrophilic poly(ionic liquid) featuring an inverse opal porous structure [72,73],
which remarkably enhanced the absorption of water vapor (Figure 3c). As a result, the film
could flex at an astonishing angle of nearly 1440◦ within just four seconds. The orientation
of liquid crystals (LCs) on the nanometer scale is easily manipulated by using alignment
layers, and they are called liquid crystal polymers (LCPs) when fixed by polymerization.
The deformation of LCPs depends on the ordered-to-isotropic alignment variation in the
mesogenic units. Wei et al. [74] introduced hydrophilic non-mesogenic poly(ethylene
glycol) (PEG) into azobenzene mesogenic units to obtain a humidity-responsive LCPs
(Figure 3(d1)). However, introducing non-mesogenic groups into the LCPs disrupted the
ordered structure of the liquid crystal molecules. Water vapor treatment facilitates the
alignment of the LCs. Films prepared under high humidity (90% RH) showed uniform
homeotropic alignment, while those prepared under lower humidity (60–80% RH) exhib-
ited non-uniform alignment. The well-prepared films exhibit humidity-responsive bending,
which is activated by the gradient humidity field or the changed ambient humidity. The
humidity response behaviors are all attributed to the incorporation of hydrophilic moieties.
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The bending angles of the films increased with the increasing surrounding humidity, and
the maximum deformation angle was 90◦ when the ambient humidity reached 95% RH.
Yu et al. [75] demonstrated that a hydrophobic, porosity-free crosslinked liquid crystal
polymer (CLCP) film without hydrogen-bonded LCs can undergo rapid macroscopic de-
formation in response to a humidity gradient. By means of hydration of the C=O and
C-O-C groups in the LCs, the film swells and the alignment of the mesogenic units changes,
causing the bending of the whole film in the direction perpendicular to that of the align-
ment (Figure 3(d2)). The relative actuation was observed to be dependent on the molecular
configuration. The CLCP film with excellent humidity-responsive properties was designed
to demonstrate a worm-like motion stimulated by humidity gradients; the moving speed
of the CLCP “worm” was about 45 mm/min.
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In addition, Tan and colleagues [76] successfully incorporated highly polar pendants
(ester-sulfone and carboxylic acid) to a relatively stiff polyimide backbone. The polar
groups such as the sulfonyl and carboxylic acid groups increase the polymer’s ability to
absorb the moisture. The stiff polyimide films show the highest water uptake (~4.8%). Upon
being laid flat on a piece of water-wet paper towel, two opposite parts of the film were able
to curl up, followed by a quick roll-over and flattening action. Their combinations showed
a remarkable vapor-gradient actuation by demonstrating numerous oscillatory cycles and
locomotion on moist surfaces without performance degradation during storage (Figure 3e).
Their work showed a simple, wholly covalent, and amorphous polymer in monolithic
form, which can be hydromorphic and motile. The humidity-gradient responsivity they
demonstrated would enhance the functional versatility of relatively stiff polymers.

2.3. Nanomaterials

Nanomaterials have increasingly demonstrated their potential as highly suitable
candidates for the development of soft intelligent actuators, owing to their exceptional
electrical, thermal, optical, and mechanical characteristics [50,69,77–84]. For example, car-
bon nanotubes (CNTs), possessing a one-dimensional (1D) tubular structure, are widely
acknowledged for their expansive specific surface area, exceptional electrical conductiv-
ity, remarkable mechanical strength properties, and an inverse axial thermal expansion
coefficient. Graphene shows a two-dimensional (2D) carbon monoatomic layer structure.
When subjected to treatments such as oxidation and irradiation, the various derivatives
of graphene display diverse physical properties, including the photothermal effect and
distinct variations in hydrophilicity and conductivity. Among those derivates, GO ex-
hibits strong hydrophilicity and subsequently high humidity sensitivity as well as great
dispersibility in water by a reduction process to remove the oxygen-containing functional
groups and restore hydrophobicity thus losing dispersibility. In addition, MXene (Ti3C2Tx)
is a new 2D material with hydrophilicity, endowing it with versatility in the design of
moisture-responsive actuators and sensors [9,36,43,64].

The hydrophobic nature of carbon nanotubes is widely recognized. Peng et al. [85]
successfully transformed these hydrophobic CNTs into hydrophilic ones through oxygen
treatment, enabling the preparation of humidity-responsive actuators with rapid and re-
versible contractive actuation (Figure 4a). Upon coming in contact with a water droplet,
a contractive stress of approximately 10.8 MPa was rapidly generated by the hydrophilic
primary fiber (HPF) within 400 ms. It rapidly returned to the original state after removal
of the water droplet. Qu et al. [86] fabricated graphene/graphene oxide (G/GO) (hy-
drophobic/hydrophilic) fibers, which are region asymmetric because of the positioned laser
reduction in freshly spun GO fibers. Generally, the obvious change in surface wettability
could be mainly attributed to the drastic removal of hydrophilic oxygen-containing groups,
such as the hydroxyl, epoxy, and carboxyl groups. The GO adsorbs water molecules due to
the formation of hydrogen bonds, whereas graphene adsorbs water molecules through the
much weaker van der Waals forces. Therefore, the asymmetric G/GO fiber developed in
this study should behave as a moisture-sensitive fiber actuator (Figure 4b). As expected,
a rapid bending to the G side occurs once the G/GO fiber is exposed to moist air with a
relative humidity (RH) of 80%, while the fiber recovers to the initial state when it is returned
to the ambient condition. This process is fully reversible with an average motion rate of
approximately 8◦/s. Sun et al. [32] fabricated a graphene oxide/reduction graphene oxide
(GO/RGO) bilayer paper using focused sunlight reduction (Figure 4c). In their scheme, the
RGO side of the bilayer paper was hydrophobic, while the GO side was hydrophilic. As
the humidity increased, the water absorption behavior of the GO nano-sheets caused the
interlayer spacing to increase. Such an asymmetric swelling along the longitudinal direc-
tion of the GO/RGO bilayer paper accounts for its obvious moisture-responsive bending
properties. Furthermore, with the increase in RH from 24% to 86%, the curvature of the
GO/RGO ribbon increased gradually from 0◦ to 168◦.
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Figure 4. (a) Preparation of hydrophilic secondary fiber (HSFs) with hierarchically helical channels
by oxygen plasma treatment. (b) The laser-assisted reduction in GO fibers and its deformation
under different humidity levels. (c) Schematic illustration for the fabrication of GO/RGO bilayer
papers using focused sunlight reduction, and mechanism of GO/RGO papers humidity responsive-
ness. (d) Schematic illustration of a possible mechanism for efficient conversion of water desorp-
tion/adsorption events into the bending and straightening motions of a carbon nitride polymer
(CNP) film, respectively. (e) Schematic of the bilayer structure and the deformation of homogeneous
MXene film actuator. (f) Schematic illustration of the fabrication process and mechanism of a uniform
RGO–PDA thin film actuator.

In addition, Aida et al. [87] reported a π-stacked carbon nitride polymer (CNP) with a
highly anisotropic layered structure (2D). CNPs possess unreacted residues of amino groups
(hydrophilic groups), mainly along the edges of their 2D structure. As shown in Figure 4d,
the unreacted amino groups on the growth side of the CNP film are hydrogen-bonded
along the film plane and allow its curled shape to be locked (right). When water is adsorbed
on the film surface, those hydrogen bonds are reorganized by the incorporation of water
molecules, so that the film is released for straightening (left). The actuation was extremely
rapid (50 ms for one curl) and can be repeated >10,000 times without deterioration.

Recently, researchers have discovered that hydrophilic homogeneous MXene has
a humidity-driven capability by a moisture gradient similar to that of graphene oxide
(Figure 4e) [88]. The maximum bending angle can be as high as 155◦ at the relative hu-
midity difference of 65%. The humidity-driven and large deformation of the MXene film
were formed in situ by the asymmetric expansion of the bilayer structure. Chen et al. [89]
prepared a composite-responsive film consisting of relatively hydrophobic RGO and hy-
drophilic polydopamine (PDA) (Figure 4f). During the trigger of the RGO–PDA film by
water with a gradient from one side, humidity-responsive hydrophilic PDA can absorb
water on the surface layers of the RGO–PDA film and act as soft “muscle” to activate
the swelling locomotion. The rigid RGO sheets, with a hydrophobic nature, hinder the
diffusion of water across the film and form the actuator’s “skeleton”, supporting the PDA
“muscle” to convert water gradient energy into mechanical motion. The responsive speed
of the uniform RGO–PDA thin film triggered by the vapor is very fast, with a bending
speed of over 1000◦/s, which is significantly faster than the speed of the previous bilayer
graphene-based actuator [32].



Nanomaterials 2024, 14, 1544 8 of 16

2.4. Crystalline Materials

Crystalline materials can also have superior tunable water affinities through the in-
troduction of different types of hydrophilic groups [90,91]. Zhang et al. [92] successfully
fabricated flexible porous organic cages (POCs) that can undergo a reversible structural
transformation between the α and β phases upon moisture stimulation (Figure 5a). In
summary, the actuator with a filler size of ~0.8 µm, a loading capacity of 45%, and a mem-
brane thickness of ~34 µm showed the best actuating performance. This actuator could
perform repeated deformations for at least 20 cycles without any decay. They also found
that the metal–organic frameworks (MOFs) can undergo reversible phase transitions in
different humidity environments, resulting in a large change in unit cell volume (up to
16.2%) upon hydration (α phase) and dehydration (β phase) (Figure 5b) [18]. This fast
adsorption–desorption process allowed for the harvesting of an extrapolated 7.2 L water
per kilogram of MOF per day. A moisture-responsive actuator was further fabricated by hy-
bridizing a polyvinyl alcohol (PVA) polymer with MOF particles. The gradient-distributed
structure was beneficial to convert the humidity-triggered expansion/contraction of MOF
particles into large macroscopic deformations. The hybrid membrane showed a bending
deformation (~0.15 cm−1 curvature within 10 min) upon a moisture stimulus. In addition,
the cycling test of the actuator under RH = 0–30% suggested that the hybrid membrane can
perform repeated deformations (i.e., bending–straightening) for at least 10 cycles without
significant decay. Subsequently, they prepared metal–organic polyhedras (MOPs) which
exhibited excellent humidity responsiveness (Figure 5c) [17]. The moisture-responsive
membranes were facilely fabricated by covalent crosslinking of boronic acid-modified
Zr-based MOPs with PVA. In these membranes, MOPs serve as high-connectivity nodes
and provide dynamic borate bonds with PVA in hyper-crosslinked networks, which can be
broken/formed reversibly upon the stimulus of water vapor. An increase in the Zr-based
MOP load significantly increases the humidity sensitivity, reflected in the faster bending
response and recovery speed. The hybrid membrane could achieve a bending angle of
θ = 178◦ in as short as 10 s after exposure to water vapor and could rapidly recover to the
θ = 22◦ position once removed within 18 s.
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mechanical motion in response to humidity of the self-standing cationic covalent organic framework
(TG-DFPCOF) film.
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Afterwards, Trabolsi et al. [33] prepared a self-standing cationic covalent organic
framework (TG-DFPCOF) film (Figure 5d). Because hydrogen bonding and ionic surface
coverage are present throughout the COF network, this material facilitates the rapid
adsorption and desorption of water vapor, leading to an ultrafast actuating response rate
of less than 1 s. Upon approaching the top surface of the cup, the film curled up in
response to the high humidity, bending significantly up to an angle of θ = 178◦ within
0.22 s and then returning to its original shape once removed from the cup. The complete
folding and unfolding process of the TG-DFPCOF actuator occurred in only 0.69 s. Fast
water adsorption and transfer are the main advantages of crystalline material sorbents,
which provide an efficient water adsorption site supply and diffusion channel. However,
processing crystalline materials within hierarchical structures is of high importance in
translating the order on the molecular level to the macroscopic scale. Research on crystalline
materials with the rational design of a water transport channel has been extensively studied
in recent years, which provides meaningful insight into the development of an energy
harvesting system [93–95].

3. Practicality and Application

By harnessing the chemical potential energy inherent in the diffusion process of atmo-
spheric humidity and converting it into readily available electrical energy, a novel source
of potential energy is being unveiled, boasting promising applications within the realm of
renewable energy [96–100]. Based on the fact that most moisture-sorption materials have
biocompatibility, flexibility, excellent mechanical, self-continuity, and some other outstand-
ing properties, the moisture-sorption actuators made from those materials demonstrated
vast applications in intelligent wearables, biosensing technologies, smart switching, and
so on.

Energy harvesting is one of the important applications of humidity-responsive materi-
als. The material absorbs moisture to produce mechanical energy, which is subsequently
transformed into electrical energy for the purpose of energy harvesting. This generation
device primarily encompasses piezoelectric transducer nanogenerators [8,20,21,25] and an
electromagnetic generator for achieving magnetoelectricity [1,2,56,57]. Langer’s research
team [20] assembled PEE–PPy actuator membranes with the piezoelectric material PVDF
(Polyvinylidene difluoride) to form a generator (Figure 6(a1)). Within 7 min of charging,
the voltage of the capacitor was saturated to ~0.66 V. The electrical energy can be stored in
a capacitor to provide power for micro- and nano-electronic devices. Wang et al. [57] fabri-
cated a fiber-based water generator, which generated electricity under water stimulation.
The schematic diagram of the fiber-based generator is shown in Figure 6(a2). The LED did
not light up as the twisted fiber was stationary. However, when the fiber was rotated at a
high speed, the LED was brightly lit, and the output DC was as high as 2.8 V.

Zhang et al. [51] fabricated an origami pristine silk fibroin (SF) film. In a high-humidity
environment, water molecules are absorbed from the bottom of the SF film. With the
additional absorption of water, the increased stress induces SF origami to move along axis-x
and axis-y. Eventually, the SF origami undergoes a complete flip and jumps. Furthermore,
this film can be used as a hat lining to manage perspiration on the forehead while staying
fashionable (Figure 6(b1)). Liu et al. [101] reported a textile from these silk fibers. As
shown in Figure 6(b2), the sleeves of the smart textile shrink in the warp (vertical) direction
when humidity increases (for example, due to perspiration or humid environment), and
then expands when humidity decreases. The investigated smart sleeves generated a large
contraction (45%) when exposed to moisture or sweat, and then recovered to its initial
length when the environment became dry. This moisture-responsive textile, which can
change its macro-shape or micro-structure, promises to be very effective in achieving such
functions for moisture and thermal management for increased comfort between the skin
and fabric.
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Figure 6. (a) Design and performance of a humidity-driven generator. (a1) Sketch of the film-
based generator. (a2) Schematic diagram of the fiber-based generator. (b) Intelligent wearables.
(b1) Model of moisture-managing hat responding to moisture changes after long duration in hot
weather resulting in forehead perspiration. (b2) Sequential photos showing that smart clothing can
change macro-shape or micro-structure to achieve moisture and thermal management. (c) Schematic
illustration and response signals of the multilayer graphene/polyamide (MG/PA66) humidity sensor
(MPHS) for human exhaled air detection during speaking. (d) A miniature car driven by a rotary
engine. (e1) Moisture-responsive performance of a smart curtain. (e2) Smart window and louver in
response to moisture. (f) A sensor which was assembled with conductive materials and LED lights.
(g) Optical images of the phoenix’s wings flapping and completing the opera under the stimulation
of moisture.

The human body’s skin plays a role in the overall metabolism and contributes to
18–20% of the total water content, enabling sweat on the skin surface to function as a
remote noncontact control source for a humidity sensor. Yang et al. [29] reported a flexible
high-sensitivity humidity sensor, fabricated by anchoring multilayer graphene (MG) into
electro-spun polyamide (PA) 66 (MPHS). Figure 6c shows a schematic illustration of the
MPHS for human exhaled air detection during speaking. Various repeated responses of the
MPHS to words with different numbers of syllables were recorded. Each syllable had a
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corresponding characteristic peak with different intensities in the recording signals when
the subject spoke certain words.

For mobile devices and wearable technology, it is essential to develop lightweight and
compact power sources that do not rely on traditional charging methods. Goodnight et al. [56]
reported a steam-driven actuator that could propel a small car (weighing 0.1 kg) forward as the
water in the car evaporated (Figure 6d). Wu et al. [102] reported a hydrophobic/hydrophilic
linear polymer formed with a semi-intercross crosslinking network. Such a copolymer exhibits
excellent humidity-sensitive, mechanical properties and water resistance. Based on these
characteristics, windows that open automatically are successfully developed (Figure 6(e1)).
Peng et al. [85] focused on investigating the mechanical behavior of carbon nanotube fibers
under the influence of water and humidity (Figure 6(e2)). They constructed multi-level helical
carbon nanotubes to create numerous nanoscale and micron-scale pipe structures within the
fibers, enabling an efficient and rapid solvent penetration into the fiber interior. This resulted
in the swift, large-scale reversible contraction and rotation of the fibers. The fibers achieved a
responsive contraction and rotation to water, leading to the development of smart curtains
capable of detecting changes in humidity.

In daily life, the storage of different items has strict requirements for air humid-
ity, and it is difficult to perceive tiny changes in humidity. By converting humidity
signals into visually perceptible signals, people can more intuitively detect humidity
changes. This signal conversion can be achieved through intelligent actuation mechanisms.
Yu et al. [75] developed a hydrophobic polymer actuator that responds to humidity and
exhibits crosslinked liquid crystal properties. When this thin film is connected to a circuit,
the variations in humidity close the circuit and activate an LED light, thereby creating an
alarm effect (Figure 6f).

Moreover, there are many humidity-responsive materials in nature. For example,
pinecones open and close in different humidity environments. At present, humidity-
responsive materials have also demonstrated a unique performance in imitating biological
behaviors. For instance, Dai et al. [103] applied the humidity-responsive film as an actuator
in the Chinese shadow puppet show “Feng Qiu Huang”. The wings of the phoenix
are initially closed; then, when moisture is introduced, the humidity-responsive film
immediately bends upward, resulting in open phoenix wings (Figure 6g). The applications
demonstrate the outstanding performance and enormous potential of flexible actuators,
opening new avenues for promoting traditional culture.

4. Outlooks and Challenges

In this review, we summarize the recent progress in moisture-sorption materials. In general,
moisture-responsive actuators are mainly composed of thin films and fibers [2,85,104,105].
With the involvement of more researchers from various interdisciplinary fields, the types of
moisture-sorption materials have become increasingly diverse. For large-scale applications of
moisture-responsive actuators, it is necessary for the moisture-sorption materials to possess
high mechanical strength, sensitivity, and controllable moisture absorption level. Additionally,
the development of simple fabrication methods is also crucial. Based on a review of the
recent literature, the characteristics and future directions of moisture-sorption materials can be
summarized as follows:

(1) Biomaterials: In nature, an abundance of biomass raw materials with renewable,
biocompatible, biodegradable, and excellent moisture absorption properties exists.
However, the complex secondary processing required for biomass raw materials
often limits their large-scale production. Therefore, there is a need to improve the
mechanical properties and long-term stability and reliability of the prepared actuators.

(2) Synthetic polymers: For synthetic polymers, the number, type, and positioning of
hydrophilic groups can be tailored to achieve controllable water absorption and
water adsorption/desorption capabilities. The modifiable flexibility and rigidity of
molecular chains, as well as crystallinity and orientation, confer excellent mechanical
properties and versatility for diverse applications. Furthermore, through composit-
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ing with other materials (CNT, COF, MOF, MXene, GO, and so on), the polymer
can acquire unique properties and will be ideal for humidity-responsive actuators.
Nevertheless, the current range of humidity-absorbing polymers is limited, with the
narrow scope of humidity absorption being a primary constraint on its advancement.
Therefore, the development of innovative humidity-absorbing polymers holds great
significance for harnessing green energy.

(3) Nanomaterials: The materials are primarily categorized as 1D and 2D nanomaterials,
exhibiting either hydrophilic or hydrophobic properties. In the case of hydropho-
bic nanomaterials, surface modification with hydrophilic properties is necessary
prior to layer-by-layer stacking for the formation of a moisture-responsive actuator.
Nevertheless, these membrane actuators often exhibit low durability and are suscepti-
ble to delamination. Hence, enhancing the longevity of these materials remains an
imminent challenge.

(4) Crystalline materials: Crystalline materials have superior tunable water affinities.
And the hydrophilic groups can be uniformly installed in the skeleton of the crystal
materials to form ordered molecular arrays, making energy transfer between moisture-
stimulus signals and responsive sites much faster and more efficient. However, most
of the current crystalline materials are in the form of particles or powders, which must
be blended with other polymers to form a humidity-responsive actuator. Although
physically blending is conveniently used, it suffers from deficiencies from aggregation
and precipitation, resulting in poor performance. As a result, improving the dispersion
of crystal materials in polymers is a key factor in the future development of moisture-
absorbing materials.
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