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Abstract: Lopinavir (LPV) and ritonavir (RTV) are two of the essential antiretroviral active phar-
maceutical ingredients (APIs) characterized by poor solubility. Hence, attempts have been made to
improve both their solubility and dissolution rate. One of the most effective approaches used for this
purpose is to prepare amorphous solid dispersions (ASDs). To our best knowledge, this is the first
attempt aimed at developing ASDs via the electrospinning technique in the form of fibers containing
LPV and RTV. In particular, the impact of the various polymeric carriers, i.e., Kollidon K30 (PVP),
Kollidon VA64 (KVA), and Eudragit® E100 (E100), as well as the drug content as a result of the LPV
and RTV amorphization were investigated. The characterization of the electrospun fibers included
microscopic, DSC, and XRD analyses, the assessment of their wettability, and equilibrium solubility
and dissolution studies. The application of the electrospinning process led to the full amorphization
of both the APIs, regardless of the drug content and the type of polymer matrix used. The utilization
of E100 as a polymeric carrier for LPV and KVA for RTV, despite the beads-on-string morphology,
had a favorable impact on the equilibrium solubility and dissolution rate. The results showed that
the electrospinning method can be successfully used to manufacture ASDs with poorly soluble APIs.

Keywords: lopinavir; ritonavir; poorly soluble drug; electrospinning; amorphous solid dispersion;
dissolution enhancement

1. Introduction

The poor bioavailability due to the poor solubility and low dissolution rate of APIs
remains a significant challenge in developing oral dosage drug forms. This is especially
critical for active substances belonging to class II and IV of the Biopharmaceutics Classi-
fication System (BCS), thus characterized by low solubility [1]. Examples include certain
antiviral drugs such as ritonavir (RTV) and lopinavir (LPV), which are first- and second-
generation human immunodeficiency virus 1 (HIV-1) protease inhibitors. To improve the
solubility and dissolution rate of LPV and RTV, several methods have been proposed, such
as liquisolid technology [2], the formation of solid lipid nanoparticles [3], co-crystals [4],
nanocrystals [5], hybridized nanoamorphous micellar dispersion [6], as well as the prepa-
ration of solid dispersions via solvent evaporation [7,8], hot-melt extrusion [7,9–11], and
freeze drying [12].

Solid dispersion (SD) is a commonly employed technique, resulting in the enhance-
ment of drug dissolution and bioavailability, primarily through the reduction in particle
size, the decrease in the crystallinity degree, the reduction in tendency towards agglomera-
tion, and the enhancement of wettability [13,14]. So far, five generations of solid dispersions
have been described in the literature [15]. Currently, the most common approach is to
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disperse hydrophobic APIs in a hydrophilic carrier [13,16]. The choice of the appropriate
polymer has an impact on the enhancement of dissolution, bioavailability, and stabil-
ity of the drug. Polymers used for the preparation of SD include polyvinylpyrrolidone
(PVP), polyvinylpyrrolidone-co-vinyl acetate (PVP-VA), polyvinyl alcohol (PVA), poly-
methacrylates, hydroxypropylmethyl cellulose (HPMC), hydroxypropylcellulose (HPC),
and hydroxypropylmethyl cellulose acetate succinate (HPMC-AS). Solid dispersions can
be prepared using various methods, such as melting or hot-melt extrusion [9,17], ball
milling [18–20], supercritical fluid technology [21], or solvent evaporation [20,22], espe-
cially useful in preliminary screening tests. Recently, among the solvent evaporation
methods, the electrospinning technique has been gaining popularity [15,23–25].

Electrospinning involves the production of polymer fibers in an electrostatic field. The
application of high voltage leads to stretching and elongating of the polymeric solution.
The electrified fluid jet is ejected from the apex of the Taylor cone and accelerated by the
electric field. The solvent evaporates quickly, and the fibers are formed when the jet reaches
the collector. This process leads to the swift formation of fibrous mats, which reduces
the mobility of drug molecules within the polymer fibers and prevents the formation of a
crystalline lattice. It leads to a random distribution of drug molecules within the formed
drug–polymer fibers [26,27]. The formation of electrospun drug–polymer matrices leads
to an increase in the surface-to-volume ratio, which affects the dissolution performance.
Moreover, the high degree of mixing between the API and the polymer, which is difficult
to obtain via powder blending, combined with a high evaporation rate, facilitates the
formation of physically stable amorphous solid dispersions. Due to that, this technique
is perfect for obtaining the amorphous solid dispersion of poorly water-soluble active
substances [15].

This research aimed to obtain an amorphous solid dispersion (ASD) containing LPV
or RTV as the model drugs via the electrospinning method. The impact of the various
polymeric carriers, i.e., polyvinylpyrrolidone, polyvinylpyrrolidone-co-vinyl acetate, and
Eudragit® E100, as well as the drug content on the fibers’ morphology, wettability, equi-
librium solubility, and dissolution rate of the APIs was assessed. To confirm the amor-
phous structure of the electrospun fibers, X-ray diffraction (XRD) and differential scanning
calorimetry (DSC) were used.

2. Materials and Methods
2.1. Materials

Lopinavir (LPV, (2S)-N-[(2S,4S,5S)-5-[[2-(2,6-dimethylphenoxy)acetyl]amino]-4-
hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide) and ri-
tonavir (RTV, 1,3-thiazol-5-ylmethyl N-[(2S,3S,5S)-3-hydroxy-5-[[(2S)-3-methyl-2-[[methyl-
[(2-propan-2-yl-1,3-thiazol-4-yl)methyl]carbamoyl]amino]butanoyl]amino]-1,6-diphenylhexan-
2-yl]carbamate) were purchased from Wuhan ChemNorm Biotech Co., Ltd., Wuhan, China.
A cationic copolymer based on dimethylaminoethyl methacrylate, butyl methacrylate,
and methyl methacrylate with a ratio of 2:1:1 (E100, Eudragit® E100), kindly donated by
Evonik Industries AG, Essen, Germany, poly(vinylpyrrolidone) (PVP, Kollidon K30), and
poly(vinylpyrrolidone-vinyl acetate) (KVA, Kollidon VA64), both purchased from BASF,
Ludwigshafen am Rhein, Germany, were used as polymeric matrices for ASDs. Poly-
oxyethylene 10 lauryl ether (Brij-35, HyperChem, Hangzhou, China) was used to prepare
medium for the solubility and dissolution study. The water used in all tests was produced
by an Elix 15UV Essential reverse osmosis system (Merck KGaA, Darmstadt, Germany).
All other reagents were of analytical grade.

2.2. Preparation of Solutions for Electrospinning

Based on the preliminary optimization of a polymer concentration in placebo elec-
trospun solutions, 30% w/w PVP, 35% w/w KVA, and 25% w/w E100 were selected for
the preparation of ASDs with LPV and RTV by the electrospinning method. The so-
lutions were prepared by dissolving the appropriate amount of polymer in 96% (v/v)
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ethanol with continuous stirring at 250 rpm using a Heidolph MR HeiTec magnetic stirrer
(Schwabach, Germany). Raw LPV or RTV was added to the polymeric solution in different
concentration ratios (Table 1) and mixed with a laboratory glass rod until the APIs were
completely dissolved.

Table 1. Composition of electrospinning solutions.

Formulation
Content of Electrospinning Solution Components (%)

30% PVP 35% KVA 25% E LPV RTV

PVP30LPV5 95.0 - - 5.0 -
PVP30LPV10 90.0 - - 10.0 -
PVP30LPV20 80.0 - - 20.0 -
KVA35LPV5 - 95.0 - 5.0 -

KVA35LPV10 - 90.0 - 10.0 -
KVA35LPV20 - 80.0 - 20.0 -

E25LPV5 - - 95.0 5.0 -
E25LPV10 - - 90.0 10.0 -
E25LPV20 - - 80.0 20.0 -

PVP30RTV2.5 97.5 - - - 2.5
PVP30RTV5 95.0 - - - 5.0

KVA35RTV2.5 - 97.5 - - 2.5
KVA35RTV5 - 95.0 - - 5.0
E25RTV2.5 - - 97.5 - 2.5
E25RTV5 - - 95.0 - 5.0

2.3. Electrospinning Process

A 20 mL syringe was filled with the electrospinning solution and mounted in a syringe
pump (Ascor AP14, Ascor Med Sp. z o.o., Warsaw, Poland). An injection needle with a
diameter of 0.6 mm was attached to the syringe through a silicone tube. Due to clogging
of the needle during the process, it was necessary to increase its diameter to 0.7 mm for
PVP30LPV10 and KVA35RTV5, 0.8 mm for PVP30LPV20 and E35RTV2.5, and 0.9 mm for
E25RTV5. The needle was connected to the positive electrode of a high-voltage power
supply (E-Fiber EF020 SKE Research Equipment®, Bollate, Italy). The grounding electrode
was connected to a stationary collector (20 × 20 cm) wrapped in aluminum foil. The
electrospinning process was carried out at room temperature and approx. 40% relative
humidity (RH). The needle was charged with 30 kV, and the distance between the needle
and the collector was 25 cm. The feeding rate of the spinning solution was set at 4 mL/h,
and the process was conducted for 3 h.

2.4. Characterization of the ASDs
2.4.1. Morphological Assessment

The morphology of the electrospun fibers containing LPV or RTV was examined using
a Hitachi S-4700 (Tokyo, Japan) scanning electron microscope, due to its higher resolution.
The accelerating voltage of the beam was equal to 20 kV. Small pieces of the fiber mats
(approx. 0.5 × 0.5 cm) were placed on the SEM conductive adhesive tape previously glued
to a specimen mount. The electrospun fibers were sputtered with gold. Microphotographs
were taken at magnifications of 500×, 1000×, 2000×, 5000×, and 10,000×.

2.4.2. Differential Scanning Calorimetry (DSC)

The thermodynamic properties of the raw LPV, raw RTV, polymers, and prepared
electrospun fibers were examined using a Mettler-Toledo DSC 3+ System (Greifensee,
Switzerland). A known weight of the tested sample was heated in an argon atmosphere
(50 cm3/min) within the range of 293 K to 473 K at a heating rate of 10 K/min. Next,
the samples were cooled down at a 10 K/min rate to room temperature and re-heated to
293 K in a second run. Measurements were performed in an aluminum pan with a pierced
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lid. Melting points were determined as the onset of the peak in the first run, while the
temperature of the glass transition was determined in the second run.

2.4.3. X-ray Diffraction (XRD)

The crystalline structure of the samples, i.e., raw LPV, raw RTV, polymers, and pre-
pared electrospun fibers, was analyzed at an ambient temperature using a Philips PW1830
X-ray diffractometer (Amsterdam, The Netherlands) equipped with X’Pert Data Colletion
version2.0e produced by PANalytical B.V. Diffraction patterns were collected over a 2θ
range between 3◦ and 35◦ with a 5◦/min step. Samples were tested as received.

2.4.4. Wettability Study

The sessile drop technique was applied to determine the wettability of raw APIs and
electrospun fibers with a DSA255 drop shape analyzer (Krüss, Hamburg, Germany). The
droplet of the distilled water of volume equal to 2 µL was deposited on the surface of
electrospun fibers as well as on the raw LPV and RTV. The fibers and APIs were compressed
using an AtlasTM manual 15Ton hydraulic press (Specac, Kent, UK) with a load pressure of
2 tons applied for 30 s for each sample. All the measurements were carried out in triplicate.

2.4.5. High-Performance Liquid Chromatography (HPLC)

LPV and RTV quantification was performed using the HPLC method. A Jasco LC-
NetII/ADC (JASCO Corporation, Tokyo, Japan), equipped with a diode array detector, an
integrated autosampler, and an InfinityLab Poroshell 120 EC-C18 column (100 × 4.6 mm,
4 µm particle size), Agilent, were utilized for analysis. The mobile phase was composed
of water and acetonitrile (40:60 v/v) and the flow rate was 1.5 mL/min. The column
was maintained at ambient temperature (approx. 295 K). The injection volume was set
at 10 µL and the total run time was 3 min. The retention time of LPV and RTV was 1.7
and 2.0, respectively. The UV detection was carried out at λ = 210 nm for LPV and at
λ = 240 nm for RTV. Linearity for both APIs was confirmed within the concentration range
of 2.0–140.0 µg/mL (R2 = 0.9999).

2.4.6. Drug Loading and Encapsulation Efficiency

Accurately weighed samples of prepared electrospun fibers were transferred into
25 mL flasks and dissolved in methanol. Afterward, the samples were filtered through a
nylon 0.22 µm VWR® syringe filter (Avantor, Radnor, PA, USA), and the amount of LPV
and RTV was determined by HPLC.

The encapsulation efficiency (EE, %) of the electrospun fibers was determined based
on the following equation:

EE% =
Drug Loading

Theoretical Drug Loading
(1)

2.4.7. Equilibrium Solubility

An excess of crystalline LPV and RTV and electrospun fibers with LPV or RTV was
dispersed in 1 mL of 0.1 M hydrochloric acid (pH = 1.2), phosphate buffer (pH = 6.8),
and 0.06 M polyoxyethylene 10 lauryl ether (Brij-35) (pH = 4.1). The suspensions were
shaken at 500 rpm at ambient temperature (approx. 298 K) for 48 h using the IKA® KS-130
shaker (Königswinter, Germany) until equilibrium was reached. The samples were filtered
through a nylon 0.22 µm VWR® syringe filter (Avantor). The samples were analyzed in
triplicate using the HPLC method. The reported data represent the averages of three series
of measurements with standard deviations (SDs).

2.4.8. Dissolution Studies

The dissolution studies were performed in accordance with the USP 43-NF38 guidance
for LPV/RTV tablets [28] using a pharmacopoeial apparatus type II (Hanson Vision G2
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Elite 8, Chatsworth, CA, USA) equipped with a VisionG2 AutoPlus autosampler. The
electrospun fibers were inserted into stainless-steel sinkers and transferred into 900 mL of
0.06 M polyoxyethylene 10 lauryl ether solution of pH 4.1 at 37 ◦C. The paddle rotation
speed was 75 rpm. Filtered samples were withdrawn at 1, 3, 5, 10, 15, 30, 45, 60, and 90 min.
The samples were filtered through a nylon 0.22 µm VWR® syringe filter (Avantor) and
analyzed using the HPLC method. The tests were carried out in triplicate, and the results
represent the averages with their standard deviations (SDs).

3. Results and Discussion

The selection of a suitable polymer and solvent has an impact on electrospun fiber
morphology [27]. In the electrospinning process, a drug substance can be dissolved or
suspended in a polymeric solution [29,30]. In this study, it was assumed that solutions
of LPV and RTV would be used, due to the possibility of preparing second-generation
ASDs [15]. Hence, considering the physicochemical characteristics of LPV and RTV (Table 2),
particularly the solubility data, absolute ethanol was selected as a solvent. Based on a
preliminary study and literature data, polymers commonly used in the electrospinning
process, i.e., PVP, KVA, and E100, were selected [15,24,25,31–35]. Their concentration in
the ethanol solution was 30%, 35%, and 25%, respectively, despite the presence of fibers
with bead-on-string morphology. The chosen polymer concentrations allowed the highest
amount of the model drug substances to be incorporated.

Table 2. Physicochemical properties of the model drugs [36–39].

Properties Lopinavir Ritonavir

Molecular weight 628.8 g/mol 720.9 g/mol
Water solubility 1.92 µg/mL 1.26 µg/mL

Ethanol solubility freely soluble freely soluble
logP 4.69 5.22

pKa (strongest acidic condition) 13.39 13.68
pKa (strongest basic condition) −1.5 2.84

3.1. Morphology of the Electrospun Fibers

Morphology and fiber thickness were analyzed based on the visual assessment and
SEM images (Figures 1 and 2). Differences in fiber morphology were observed depending
on the polymer and APIs used. The electrospun mats, based on PVP and KVA, were
characterized by a soft and cotton–wool-like structure, whereas the mats composed of the
E100 were more compact and brittle.

The PVP-containing fibers with LPV were characterized by a cylindrical shape and
smooth surfaces, without beads on the string formation (Figure 1). The KVA-based fibers
were less uniform and more tangled than the PVP-containing fibers. For the KVA- and
Eudragit-based fibers, only the formulations with 20% of LPV contained no beads on
the string formation. Compared to the fibers with RTV, the fibers containing LPV were
characterized by a larger diameter, smoother, and less tangled structure (Figures 1 and 2).
The fibers containing 2.5% RTV based on PVP had smooth surfaces, although were more
frayed than those containing 5% RTV (Figure 2). In the case of the KVA-based fibers,
increasing the RTV content resulted in fibers with a more compact structure. For the KVA-
and Eudragit-based fibers, bead formation was observed within the entire RTV concentra-
tion range. A greater number of highlights and beads in the string formation compared
to the LPV fibers may be due to the different concentrations of APIs, resulting in lower
viscosity of the electrospinning solutions. The Eudragit-containing fibers were tangled and
characterized by the most brittle and compact structure of all polymers regardless of the
APIs used (Figures 1 and 2). Measurements of fiber diameter indicated that all the fibers
obtained containing both LPV and RTV were characterized by heterogeneous thicknesses,
resulting in large standard deviations from the mean diameter. It was observed that the
diameter of the fibers changed with increasing concentrations of the polymer and APIs.
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tion 2000×.

The PVP-based fibers containing LPV were characterized by diameters ranging from
978 ± 354 nm to 2583 ± 744 nm for the formulation with the lowest and highest LPV
concentrations (for formulations containing 10 and 20% LPV, larger needles of 0.7 mm and
0.8 mm, respectively, were used). For the KVA-based fibers, the largest standard deviations
from the fiber diameter mean values were observed. With the increasing API concentration,
the fiber diameter ranged from 1208 ± 860 nm to 3446 ± 1855 nm. Similarly, the diameters
of Eudragit-based fibers with LPV ranged from 1062 ± 674 nm to 1850 ± 633 nm. The
thicknesses of the PVP-based fibers containing RTV were 845 ± 240 nm and 961 ± 324 nm
for the formulations containing 2.5% and 5% RTV, respectively. For the fibers produced
from KVA, the diameters were 908 ± 272 nm for 2.5% RTV and 1260 ± 567 nm for 5%
RTV formulations (for the 5% RTV fibers, a needle with a diameter of 0.7 mm was used).
The Eudragit-based fibers had the smallest diameters of all the formulations produced,
amounting to 635 ± 170 nm and 738 ± 281 nm for 2.5% and 5% RTV concentrations, despite
using larger needles of 0.8 mm and 0.9 mm, respectively.

The fibers with the largest diameters were obtained from the 35% solution of KVA,
whereas Eudragit-based fibers (25% solution) had the smallest diameter. In addition,
regardless of the polymer used, an increase in fiber diameter was noted depending on the
concentration of the therapeutic substance [40]. However, for some formulations, this may
have been due to the use of larger needle diameters, as reported by Abdelhakim et al. [41].



Nanomaterials 2024, 14, 1569 7 of 18Nanomaterials 2024, 14, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 2. Scanning electron microscopic images of electrospun fibers with ritonavir (RTV), magnifi-
cation 2000×. 

The PVP-based fibers containing LPV were characterized by diameters ranging from 
978 ± 354 nm to 2583 ± 744 nm for the formulation with the lowest and highest LPV con-
centrations (for formulations containing 10 and 20% LPV, larger needles of 0.7 mm and 
0.8 mm, respectively, were used). For the KVA-based fibers, the largest standard devia-
tions from the fiber diameter mean values were observed. With the increasing API con-
centration, the fiber diameter ranged from 1208 ± 860 nm to 3446 ± 1855 nm. Similarly, the 
diameters of Eudragit-based fibers with LPV ranged from 1062 ± 674 nm to 1850 ± 633 nm. 
The thicknesses of the PVP-based fibers containing RTV were 845 ± 240 nm and 961 ± 324 
nm for the formulations containing 2.5% and 5% RTV, respectively. For the fibers pro-
duced from KVA, the diameters were 908 ± 272 nm for 2.5% RTV and 1260 ± 567 nm for 
5% RTV formulations (for the 5% RTV fibers, a needle with a diameter of 0.7 mm was 
used). The Eudragit-based fibers had the smallest diameters of all the formulations pro-
duced, amounting to 635 ± 170 nm and 738 ± 281 nm for 2.5% and 5% RTV concentrations, 
despite using larger needles of 0.8 mm and 0.9 mm, respectively. 

The fibers with the largest diameters were obtained from the 35% solution of KVA, 
whereas Eudragit-based fibers (25% solution) had the smallest diameter. In addition, re-
gardless of the polymer used, an increase in fiber diameter was noted depending on the 
concentration of the therapeutic substance [40]. However, for some formulations, this may 
have been due to the use of larger needle diameters, as reported by Abdelhakim et al. [41]. 

  

Figure 2. Scanning electron microscopic images of electrospun fibers with ritonavir (RTV), magnifica-
tion 2000×.

3.2. Differential Scanning Calorimetry (DSC)

The thermograms of raw LPV and RTV (black lines) are depicted in Figure 3a,b,
respectively. As can be seen in Figure 3a, the raw LPV reveals a broad endothermic event
associated with the melting of the LPV with an onset at 80 ◦C and two maxima at 93 ◦C
and 100 ◦C [4,8,9]. For the raw RTV, clear, a single, sharp endothermic peak with an onset
at 123 ◦C (Figure 3b) corresponds to the melting of the crystalline drug and is in agreement
with the literature data [9,42].

The DSC curves of the neat polymers (Figure 3) are shown as gray lines. Regarding
the PVP and KVA, the occurrence of a broad endothermic peak located in the range of
57–143 ◦C and 37–105 ◦C, respectively, can be linked to water evaporation. For PVP, a glass
transition event was also observed with an onset at 156 ◦C [17]. In the case of E100, an
endothermic peak at 58 ◦C can be identified on the DSC thermogram, corresponding to the
glass transition [8,43].

In the analysis of the thermograms of the electrospun fibers based on the PVP and
E100 as depicted in the Figure 3, the absence of a melting point indicated full amorphization
of both LPV and RTV, regardless of their content. In the case of the PVP fibers with LPV
(Figure 3a) and RTV (Figure 3b), two endothermic events are visible. The first with an
onset at ca. 50 ◦C and 41 ◦C, respectively, can be linked to water evaporation, while the
second one with an onset above 125 ◦C corresponds to the glass transition temperature of
the polymer. The thermograms of the electrospun fibers based on the E100 indicate that
an endothermic event with an onset temperature of 55 ◦C in the case of formulations with
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LPV and 42 ◦C and 50 ◦C for E25RTV5 and E25RTV2.5, respectively, is associated with the
glass transition of the polymer. Regarding the KVA formulation, the broad endothermic
events located in the range of 46–114 ◦C for the LPV formulations and 52–126 ◦C for the
RTV fibers associated with water evaporation can be distinguished. However, as can be
seen in the case of KVA35LPV20 and KVA35RTV5 (Figure 3), another peak is interposed on
the broad thermal event with the midpoint temperature at 78 ◦C and 91 ◦C, respectively.
This might be connected with the melting of the drugs, which indicates only their partial
amorphization; however, further analysis is needed.
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tively. This might be connected with the melting of the drugs, which indicates only their 
partial amorphization; however, further analysis is needed. 
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Due to the presence of water in the polymers, particularly PVP and KVA [17,44], as well
as in the prepared formulations, which may cover other thermal events, all samples were
cooled down and then re-heated. Based on the thermograms obtained in the second run
of heating, the temperature of the glass transition was determined as depicted in Figure 4.
As can be seen, the onsets of the glass transition temperature of the fibers containing both
LPV and RTV are located near the glass transition temperatures of the corresponding
neat polymers. Therefore, it can be concluded that the glass transition event originates
from the amorphous polymer. Similar findings were reported for solid dispersions with
bicalutamide based on the poloxamers [22].
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3.3. X-ray Diffraction (XRD)

An XRD analysis was performed to assess the impact of the electrospinning process
on the molecular structure of the model drug substances and confirm the amorphous
nature of the prepared electrospun solid dispersions. The obtained diffractogram of the
raw LPV (Figure 5) with the sharp Bragg peaks at 2θ values of 6.5◦, 7.7◦, 12.3◦, 14.7◦, 15.4◦,
16.4◦, 18.8◦, 19.6◦, 21.5◦, 22.7◦, and 26.3◦ confirms its crystalline structure. A comparable
diffraction pattern for lopinavir was described in the literature [4,5,8,45]. Ritonavir has three
polymorphic forms, which differ in solubility, dissolution rate, and bioavailability [42,46–48].
The presence of the sharp, crystalline Bragg peaks on the diffractogram pattern for raw RTV
(Figure 6) at 6.4◦, 8.6◦, 9.5◦, 9.8◦, 10.9◦, 13.7◦, 16.1◦, 18.3◦, 20.0◦, 21.6◦, and 22.2◦ indicates
the occurrence of polymorphic form II, which is confirmed by literature data [42].

As can be seen in Figures 5 and 6, the presence of the characteristic amorphous
halo in the diffractograms collected for electrospun fibers containing both LPV and RTV
indicates full amorphization, regardless of the API content and type of polymeric matrix.
The differences in the results obtained from DSC measurement for KVA35LPV20 and
KVA35RTV5, where thermograms reveal the occurrence of a crystalline fraction in the
samples, may be due to the discrepancy resulting from the different analytical procedures
and sensitivity of both methods.
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3.4. Wettability Study

The wetting properties of the raw APIs and investigated fibers were evaluated by water
contact angle measurements. This parameter plays an important role in pharmaceutical
sciences due to its impact on drug dissolution, solubilization, and disintegration of a dosage
form [18,22,49–51].

The results of the contact angle analysis are presented in Figure 7. The type of polymer
used as a carrier in solid dispersions had an impact on the contact angle values. Both
PVP and KVA are hydrophilic polymers with contact angles of approx. 40◦ [49,50], and
Eudragit 100 is characterized by hydrophobic properties (θ > 100◦) [52]. The fiber wettability
results reflected these features. Regardless of the type of the incorporated drug substance,
the contact angle values of the PVP and KVA formulations were below 90◦, whereas they
exceeded 110◦ in the case of the E100-based fibers. Moreover, the water droplet immediately
penetrated the hydrophilic fibers, while in the case of hydrophobic fibers, it remained on
the surface throughout the time of the test. However, only the KVA systems with contact
angle values ranging between 52–60◦ and 24–50◦ for the LPV and RTV formulations,
respectively, showed improved wettability compared to the raw APIs (θLPV = 62.7 ± 8.3◦,
θRTV = 80.4 ± 5.8◦). Furthermore, it was found that the higher the drug content in the
formulations, the higher the value of the contact angle.
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3.5. Drug Loading (DL) and Encapsulation Efficiency (EE%)

Electrospinning is indicated as a process enabling the preparation of nanofibers char-
acterized by high loading capacity and high encapsulation efficiency [53,54]. The drug
content varied between formulations due to the different dry mass of ingredients in electro-
spun solutions. The amount of the APIs dissolved was the same for all formulations, i.e.,
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5.0%, 10.0%, and 20% or 2.5% and 5.0% for the LPV and RTV formulations, respectively, so
the concentration of the polymer solution was different (Table 1). Generally, the lower the
polymer concentration, the higher the drug content. The API content in the investigated
fibers ranged from approx. 12% to 49% and 7% to 18% of dry mass for the LPV and RTV
formulations, respectively (Table 3).

Table 3. DL and EE% of the electrospun fibers containing LPV or RTV (n = 3).

Formulation DL ± SD (% w/w) EE% ± RSD (%)

PVP30LPV5 12.9 ± 0.3 86.9 ± 2.6
PVP30LPV10 23.7 ± 0.7 87.6 ± 3.2
PVP30LPV20 39.7 ± 1.3 87.2 ± 3.8
KVA35LPV5 12.2 ± 1.0 93.5 ± 8.8
KVA35LPV10 22.6 ± 0.1 94.0 ± 0.3
KVA35LPV20 37.8 ± 0.3 90.7 ± 1.0

E25LPV5 18.5 ± 2.1 106.1 ± 10.6
E25LPV10 23.0 ± 0.5 97.3 ± 1.7
E25LPV20 49.2 ± 1.3 98.5 ± 2.7

PVP30RTV2.5 7.5 ± 0.2 94.7 ± 2.7
PVP30RTV5 14.0 ± 0.3 93.6 ± 2.0

KVA35RTV2.5 6.8 ± 0.1 100.4 ± 1.9
KVA35RTV5 12.6 ± 0.2 96.1 ± 1.8
E25RTV2.5 9.4 ± 0.1 101.0 ± 0.4
E25RTV5 17.6 ± 0.4 101.4 ± 2.4

The measured LPV and RTV loading was close to the theoretical content, which was
confirmed by high EE% values between 86% and 101% (Table 3). Most of the investigated
fibers were also characterized by a low RSD below 5%, which indicates homogeneous API
dispersion in the polymeric matrix. Only in the case of the formulation E25LPV5 do the
obtained results, i.e., EE% over 106% and RSD 10.6%, suggest heterogeneous dispersion of
LPV in the fibers.

3.6. Equilibrium Solubility Study

The equilibrium solubility studies were performed for the raw APIs and all inves-
tigated fibers in phosphate buffer (pH = 6.8), 0.1 M HCl (pH = 1.2), and in the medium
recommended by the USP 43-NF38 guidance for LPV/RTV tablets [28], i.e., 0.06 M Brij-35
(pH = 4.1). The results obtained for both the LPV and RTV fibers show the differences
between the solubilizing efficacy of the utilized polymers. The results from the saturation
solubility tests for the LPV and RTV formulations are presented in Figure 8.

The physicochemical properties of LPV (Table 2) and published data [55] indicate that
its solubility is independent of the pH of the medium. In the case of the LPV formulations,
the highest solubility improvement in the phosphate buffer and Brij solution was achieved
using E100 as a polymeric matrix, while in the acidic conditions the solubility values for all
formulations were at a low level. Furthermore, as shown in Figure 8a, the LPV solubility
from investigated fibers increased with decreasing API content. Among all investigated
formulations, E25LPV5 exhibited the highest solubility in the tested media (phosphate
buffer and Brij-35 solution), i.e., 244.8 ± 16.7 µg/mL and 833.9 ± 7.9 µg/mL, respectively.
This was 1224- and 2-fold higher in comparison with the crystalline LPV. The obtained
results, in particular the significant improvement in solubility in an alkaline environment,
were surprising, since based on the data from the literature [43,56,57], Eudragit® E is
primarily useful for improving solubility in acidic pH due to its good solubility at a pH
below 5.0. At a higher pH, it is swellable and permeable [58], which could explain the
increased solubility in an alkaline environment.
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In contrast, the highest solubility for the RTV formulations was obtained in acidic
conditions, due to its alkaline nature (Table 2), which is in accordance with the findings
reported by Trasi et al. [55]. The best solubility improvement was obtained using KVA
as a carrier. The solubility of raw RTV was found to be 340.4 ± 31.9 µg/mL, while the
KVA-based formulations were more than 13-fold higher (Figure 8b). In the Brij-35 solution
at pH = 4.1, the PVP- and KVA-based solid dispersions were similar in solubility, i.e.,
approx. 370 µg/mL, which was only 2.6-fold greater than the crystalline RTV. However,
this medium was selected for further dissolution studies because it provided favorable
conditions for both LPV and RTV.
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3.7. Dissolution Study

Dissolution studies were performed to examine the impact of the type of polymeric
carrier and drug loading on the dissolution rate. The dissolution profiles are presented
in Figure 9. For the LPV formulations, only E25LPV20 exhibited a faster dissolution rate
compared to the raw APIs. The amount of LPV dissolved after 1 and 30 min was approx.
2- and 1.3-fold higher than in the case of bulk drug substances, respectively (Figure 9a).
In the case of the remaining formulations, the amount of the dissolved drug was lower
or comparable to raw LPV. Surprisingly, the slowest API dissolution was reported for
E25LPV5, where the amount of LPV released after 90 min was 1.5-fold lower than for the
crystalline LPV. The dissolution test results are in contradiction with the results from the
equilibrium solubility studies (Figure 8a). This inconsistency may be due to the timing of
both tests; however, further analysis will be performed to explain this phenomenon.
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In contrast to the results for LPV, the greatest improvement in the dissolution rate
for fibers with RTV was shown for fibers based on PVP and KVA, regardless of the API
content (Figure 9b). In both cases, the amount of RTV dissolved after 1 and 5 min was more
than 3- and 2-fold higher in comparison to the crystalline RTV. The E100 fibers exhibited
slower dissolution rates than the bulk RTV, and similarly to the LPV systems, the lower the
drug content, the slower the dissolution. After 90 min, the amount of the drug released
from E25RTV5 and E25RTV2.5 was 1.4- and 2.2- fold lower compared to the raw APIs.
The increased dissolution rate of RTV from PVP- and KVA-based fibers may be related
to their improved wettability and thus facilitated water penetration through the polymer
matrix [18,59].

4. Conclusions

The results prove that the use of the electrospinning process enables the preparation
of ASDs containing LPV and RTV, characterized by high encapsulation efficiency, increased
solubility, and an increased dissolution rate. The selection of the appropriate polymeric
carrier as well as API concentration in electrospun solutions is a key factor, which impacts
the ASD properties. In this work, all investigated polymers led to the amorphization of
both the LPV and RTV, which was confirmed in DSC and XRD studies. However, based
on the solubility and dissolution test results, for the LPV and RTV formulations, the most
promising polymers were Eudragit® E100 and Kollidon® VA64, respectively, despite the
bead-on-fiber morphology and their heterogeneous thickness. In the case of the E100-based
fibers with LPV, formulations with 5% and 20% of the drug substance featured the highest
solubility and dissolution rate, respectively. In turn, for the RTV formulations, the use of
KVA as a polymeric carrier resulted in the greatest improvement in both solubility and
the dissolution rate. In summary, E25LPV20 and KVA35RTV5 were selected as the most
promising formulations.

Both investigated APIs are used for antiretroviral therapy in children and are listed on
the World Health Organization 2023 Model List of Essential Medicines for Children [60].
Therefore, taking into account the obtained results, further studies will include the devel-
opment of pediatric forms of the drug, such as orodispersible films and minitablets and
their long-term stability.
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