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Abstract: Metal nanocages exhibit localized surface plasmon resonance that strongly absorbs and
scatters light at specific wavelengths, making them potentially valuable for photothermal therapy
and biological imaging applications. However, investigations on metal nanocages are still confined
to high-cost and small-scale synthesis. The comprehensive analysis of optical properties and optimal
size parameters of metal nanocages is rarely reported. This paper simulates the effects of materials
(Ag, Au, and Cu), size parameters, refractive index of the surrounding medium, and orientation on
the light absorption and scattering characteristics of the nanocages using the finite-element method
and the size-dependent refractive-index model for metal nanoparticles. The results show that the Ag
nanocages have excellent light absorption and scattering characteristics and respond significantly
to the size parameters, while the refractive index and orientation of the surrounding medium have
less effect on them. The Au nanocages also possess superior light absorption properties at specific
incident wavelengths. This study also identified the optimized sizes of three metal nanocages at
incident light wavelengths commonly used in biomedicine; it was also found that, under deep
therapy conditions, Ag nanocages in particular exhibit the highest volume absorption and scattering
coefficients of 0.708 nm−1 and 0.583 nm−1, respectively. These findings offer theoretical insights into
preparing target nanocage particles for applications in photothermal therapy and biological imaging.

Keywords: metal nanocages; localized surface plasmon resonance; light absorption; light scattering;
finite-element method

1. Introduction

Cancer, one of the incurable diseases plaguing humankind today, has caused millions
of deaths [1,2]. With the development of science and technology, many cancer diagnostic
and therapeutic solutions have been developed, among which photothermal therapy (PTT)
and bio-imaging are emerging cancer treatment technologies [3]. PTT offers fewer side
effects compared to traditional surgical cutting, chemotherapy, and radiotherapy [2,4–6].
By utilizing the enhanced penetration and retention effect of solid tumors, PTT employs
a photothermal agent (PTA) that accumulates in the tumor tissue. When irradiated with
a near-infrared (NIR) laser, the PTA experiences photothermal conversion, raising the
temperature to the point of destroying cancerous cells and curbing disease progression [7,8].
In the selection of PTA, a wide range of nanoparticles, both magnetic and nonmagnetic
nanoparticles, can be effectively used in PTT [6]. Bio-imaging, a key technology in modern
medical diagnostics, offers higher resolution and sensitivity than traditional tissue sec-
tioning, radiography, and ultra-sound imaging [9]. Bio-imaging makes use of the special
photophysical properties of the contrast agent (CA) to correlate the imaging signal with
tumor cells in vivo; to present information about the structure, function, and metabolic
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process of the organism in the form of an image; and to realize the early detection, localiza-
tion, and diagnosis of the disease [8,10,11]. CA is central to imaging research, particularly
nanoparticle-based multifunctional CA, which has garnered significant attention in current
research [12,13]. Metal nanoparticles are currently ideal photothermal and contrast agents
in cancer diagnostic and therapeutic studies.

The application of metal nanoparticles in PTT and bio-imaging is mainly due to their
localized surface plasmon resonance (LSPR), which exhibits strong light absorption and
scattering characteristics [7]. In the current preparation and experimental study of metal
nanoparticles, the LSPR properties are mainly tuned by changing the materials, size, shape,
and other parameters of the metal nanoparticles [14–18]. The preparation of nanoparticles
of conventional shapes, such as nanorods, ellipsoids, rods, and shells, is well established
and their LSPR properties have been comprehensively studied [7,19–22]. Metal nanocages
(NCs) are a novel type of nanoparticle characterized by hollow structures and mesoporous
surfaces [23]. They offer higher sensitivity and tunability compared to conventionally
shaped particles, along with a larger surface area that provides additional active sites. The
synthesis of metal NCs has advanced significantly in recent years, mainly through the
synthesis of various NCs by controlled etchant (e.g., HAuCl4), such as volume-porous
nanoboxes, surface-porous NCs, and nanoframes [16,24–30]. Chen et al. prepared Au NC
structures with large light absorption and scattering cross sections. Their light absorption
and scattering properties can be tuned by controlling their dimensions, as well as the thick-
ness and porosity of their walls [31]. Yavuz et al. prepared a metal NC-covered polymer
for light-controlled release in the NIR region, which has strong light absorption properties
for photothermal effects [32]. Gao et al. explored a morphologically stable method for the
preparation of NCs with high activity, tunable dissociative excitatory activity, and adjustable
size [33]. However, previous studies focused mainly on experimentally prepared irregular
particles, with less emphasis on ideal NC parameters. Therefore, this paper simulates the
light absorption and scattering characteristics of different metal NCs, aiming to provide
theoretical insights for the experimental preparation of NCs with desired properties.

Commonly used methods for simulating the optical properties of non-spherical
nanoparticles include the finite-element method (FEM), finite-difference time-domain
(FDTD), discrete dipole approximation (DDA), and the boundary element method
(BEM) [7,34,35]. Among these methods, FEM stands out for its flexibility and versatil-
ity, allowing for the analysis of complex geometries, material properties, and multiple
types of interacting complex physical fields [36]. FEM discretizes the solution area of
the electromagnetic field into small cells and numerically computes the electromagnetic
field distribution of each cell [37,38]. In this study, we employ FEM and a size-dependent
refractive-index model to simulate the light absorption and scattering characteristics of Ag,
Au, and Cu NCs. We optimize the size parameters of NCs to achieve maximum values of
light absorption and scattering.

2. Model and Method
2.1. Simulation Model

The type of metal NC studied in this paper is a hollow square with eight open sides
(Figure 1a), whose geometry can be determined by L for the edge length and W for the par-
ticle wall thickness (Figure 1b). Due to the hollow architecture of NCs, the light absorption
and scattering will be slightly changed under different angles of incident light. This effect
can be analyzed by changing the angle of inclination (Pitch) of the incident light, which is
a right-handed rotation with respect to the +y direction. as shown in Figure 1c [39]. The
initial incident light propagates to the +x direction (Pitch: 0 rad, orange dashed line), and
the electric field component of the incident light oscillates to the +z direction, corresponding
to the +k and +E0 directions, respectively, after the angle change. The rotation axis of the
NC is in the xoz plane, and Pitch denotes the angle between the rotation axis and the
x-axis [7]. The FEM simulation region of the NC can be divided into the particle layer,
the surrounding medium (SM) layer, and the perfect matching layer (PML), as shown in
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Figure 1a. The SM layer defines the calculation range of the light absorption and scattering
parameters, where the parameters include the refractive index of the medium (biological
tissue: 1.30–1.55), absorption cross section, scattering cross section, etc. The outer boundary
of the SM layer is the scattering boundary, and the thickness of it (tSM) is set to be λ/2. The
PML is a nonphysical receiver created outside of the SM layer, whose wave impedance is
independent of the angle of incidence as well as the frequency of the scattering angle [40].
The PML acts as a truncation of the computational region in the numerical method to
simulate problems with open boundaries; the wave is completely absorbed in the PML,
whose thickness tPML is set to λ/4. In addition to considering the two parameters—L and
W of the particle size—the ratio of the two, L/W, can be taken as a parameter of the size,
which is numerically equivalent to the aspect ratio of a prismatic cross section of the NC
(aspect ratio, AR = L/W). Therefore, the dimensional parameters of an NC can be regulated
by changing the AR during further simulation.
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Figure 1. (a) FEM simulation region of NC; (b) Dimensional parameters of NC; (c) Schematic of
three-dimensional coordinates (consistent with the orientation of (a)).

2.2. Fundamental Theory

The light absorption and scattering capacities of individual nanoparticles can be quan-
titatively described by the absorption cross section σabs and scattering cross section σsca,
which is defined as the ratio of optical power absorbed and scattered by the nanoparticle to
the incident light intensity, respectively [41,42]:

σabs =
1
Ii

y

VP

QhdV (1)

σsca =
1
Ii
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→
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normal to the sphere. Ii = (nmE2
0)/(2Z0) is the magnitude of the incident Poynting vector,

nm is the refractive index of the surrounding medium, E0 is the amplitude of the incident
electric field (E0 = 1 V/m in the simulation), and Z0 is the wave impedance of the vacuum.

Different sizes of nanoparticles contain different amounts of matter, which leads to
different light absorption and scattering capacities. Therefore, to fairly compare the light
absorption and scattering characteristics of nanoparticles with different sizes, volumetric
absorption coefficients, and scattering coefficients, which are the ratios of the absorption
cross section and scattering cross section to the volume of the nanoparticles, respectively [7].
Aabs = σabs/VP (volumetric absorption coefficient) and Asca = σsca/VP (volumetric scatter-
ing coefficient), which can be used to study the light absorption and scattering properties
of nanoparticles. The refractive index of metal nanoparticles is related to nanoparticle size.
Since their particle size is smaller than the mean free path of free electrons, the collision of
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free electrons with the particle surface is enhanced. Therefore, the size-dependent refractive
index of metal nanoparticles can be expressed as follows [43]:

nnano (ω, Leff) =

√
n2

bulk (ω) +
ω2

p

ω2 + iωvf/l∞
−

ω2
p

ω2 + iω(vf/l∞ + Avf/Leff)
(3)

where ω = (2πc)/λ is the angular frequency of incident light, c is the propagation speed of
light in vacuum, vf is the free electron Fermi velocity, ωp is the plasma frequency, A is a
dimensionless parameter (close to 1), Leff = Reff =

3
√

3V/4π is the effective mean free path
of free electron, and nbulk is the complex refractive index of the bulk metal material. In this
paper, Ag, Au, and Cu NCs are used as the subjects, and the values of the mean free path
l∞, Fermi velocity vf, and plasma frequency ωp for the three materials are obtained from
published papers [44–46], as shown in Table 1. In addition, the data related to complex
refractive index were obtained from the data measured by Christy and Jonhson in 1972 [47].

Table 1. The values of Fermi velocity vf, mean free path of the free electrons l∞, and plasma frequency
ωp for Au, Ag, and Cu [44–46].

Metal vf (m/s) l∞ (m/s) h̄ωp (eV)

Au 1.40 × 106 42 9.03
Ag 1.39 × 106 52 9.01
Cu 1.57 × 106 45 10.83

2.3. Numerical Verification of FEM

To verify the accuracy and reliability of the FEM simulations, we compare the results
of the FEM calculations with the rigorous Mie theory [48]. As shown in Figure 2, the
absorption spectra (Figure 2a) and scattering spectra (Figure 2b) of Ag nanospheres with
a radius R of 30 nm in biological tissues with a refractive index nm of 1.33 are simulated
using FEM and the Mie theory. The computational results show that the FEM simulation
results are in good agreement with the strict Mie theory calculations, which fully verify the
accuracy and reliability of the FEM simulation.
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Figure 2. (a) Absorption and (b) scattering spectra of metal nanospheres with a radius of 30 nm in
biological tissues with a refractive index nm of 1.33.

3. Results and Discussion

Based on the previous analyses, the light absorption and scattering properties of
the NCs are mainly affected by material, size, surrounding medium, and orientation. To
study the variation in light absorption and scattering of nanoparticles with special shapes
according to various parameters, we selected preparable NCs as the research object and
simulated the spectra of light absorption and scattering coefficients. In addition, the size
parameters of the NCs were also optimized to make it suitable for PTT and bio-imaging.
Considering that the wavelengths of incident light for PTT and bio-imaging applications
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are 808 nm, 1064 nm, and 800 nm, 980 nm, respectively, the wavelength range of incident
light is taken to be from 700 nm to 1100 nm (the first NIR biological window).

3.1. Effect of Materials on Light Absorption and Scattering

To compare the light absorption and scattering properties of different metal materials,
the volume absorption and scattering coefficients of Ag, Au, and Cu NCs were simulated
with wavelength as shown in Figure 3. The simulation results show that the Ag NC has
large volume absorption and scattering coefficients of 0.917 nm−1 and 0.313 nm−1 at the
resonance wavelength of 760 nm, which are 1.8 and 2.5 times higher than those of the Au
and Cu NCs, respectively, and the volume scattering coefficients are 6.2 and 12.5 times
higher than those of the Au and Cu NCs, respectively. The resonance wavelengths of the
metal NCs are between 760 nm and 840 nm (Figure 3a,b), and the parameters can be further
tuned to achieve optimal light absorption and scattering properties in the near-infrared
region. In addition, the band in which free electrons resonate with incident light in the Ag
NC is more concentrated, resulting in a narrower half-peak width of its spectrum, which
can be better applied in biomedical fields. To tune the resonance wavelength of the NCs
into the near-infrared band and to find the optimal parameters, the variations in the light
absorption and scattering spectra of the Ag, Au, and Cu NCs concerning the dimensions,
refractive index of the surrounding medium, and orientation will be further discussed.
The light absorption and scattering properties of the metal NCs are mainly determined by
the intensity and position of the resonance peaks, which are independent of the half-peak
width, so only the trend of the resonance peaks is provided in the following sections.
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Figure 3. Variation in (a) volume absorption coefficient Aabs and (b) volume scattering coefficient
Asca with incident light wavelength λ for the Ag, Au, and Cu NCs. In the numerical simulation, the
NC size L is 40 nm, the aspect ratio AR is 4, the refractive index nm of the surrounding medium is
1.33, and the incident light inclination angle Pitch is 0◦.

3.2. Effect of Size on Light Absorption and Scattering

The dimensions of NCs can be regulated by edge length (L) and aspect ratio (AR). To
investigate the variation rules of light absorption and scattering properties of the Ag, Au,
and Cu NCs with their dimensions, this section quantitatively analyses the variation rules
of the resonance peaks with the edge lengths and aspect ratios of the NCs.

3.2.1. Effect of Edge Length

To quantitatively analyze the effect of edge length on the absorption and scattering
spectra of the metal NCs, the trends of the resonance peaks of Ag, Au, and Cu NCs with
various edge lengths L (40 nm, 50 nm, 60 nm, 70 nm and 80 nm) were simulated, as shown
in Figure 4. The simulation results revealed that the absorption and scattering spectra of
the Ag, Au, and Cu NCs are red-shifted as the NC edge length increases from 40 nm to
80 nm (Figure 4). The light absorption properties of the NCs of all the three materials are
weakened at the resonance wavelength, with the largest change in the Ag NC, where the
resonance wavelength is red-shifted from 760 nm to 820 nm, and the maximum volume
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absorption coefficient decreases from 0.917 nm−1 to 0.116 nm−1, as shown in Figure 4a.
The Ag NC has a stronger light scattering property at the resonance wavelength compared
to the Au and Cu NCs and has a stronger light scattering property at the resonance. The Ag
NC has stronger light scattering than the Au and Cu NCs at the resonance wavelength and
has the largest volume scattering coefficient of 0.522 nm−1 at the resonance wavelength
of 786 nm, as shown in Figure 4b. When the edge length ranges from 40 nm to 60 nm, the
volume absorption coefficient of the Ag NC at the resonance wavelength is significantly
better than that of the same-size Au and Cu NCs. Its absorption responds significantly to
the edge length, while the absorption of the Ag NC with the larger edge length is lower
than the one of the Ag NC. The light scattering of the Ag NC is excellent at an edge length
of 60 nm, and its light scattering is significantly better than that of the Au and Cu NCs in
all nanoscale size ranges. With the increase in the edge length of NCs, its optical properties
and electronic structure will be changed, which affects the absorption and scattering ability
of light [49].
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coefficient at resonance wavelength with edge length L for the Ag, Au, and Cu NCs. In the numerical
simulation, the NC aspect ratio AR is 4, the refractive index nm of the surrounding medium is 1.33,
and the incident light inclination angle Pitch is 0◦.

3.2.2. Effect of Aspect Ratio

To quantitatively analyze the effect of aspect ratio on the absorption and scattering
spectra of the metal NCs, the trends of the resonance peaks of the Ag, Au, and Cu NCs
with aspect ratio AR (4, 4.5, 5, 5.5 and 6) were simulated as shown in Figure 5. The analysis
results revealed that the resonance peaks of NCs with larger aspect ratios are red-shifted
beyond the first NIR window (NIR-I: 700 nm to 1100 nm). To satisfy the optical bands
usually used in the biomedical field, only the resonance wavelengths of the Ag, Au, and
Cu NCs were simulated for the resonance peaks of the Ag, Au, and Cu NCs with the trend
of resonance peaks with the AR within the NIR-I. The simulation results show that the
tunable range of AR is about 4-5.5 for the Ag NC, while the tunable range of AR for the Au
and Cu NCs should not be more than 5.5 in the NIR-I wavelength band. The absorption
and scattering spectra of the Ag, Au, and Cu NCs show the same trend of changes with
increasing AR, with the red-shifted position of resonance peaks and enhanced optical
absorption characteristics at the resonant wavelength, and the light scattering property at
the resonance wavelength is weakened. The most obvious changes were observed for the
Ag NC, where the resonance peak position was red-shifted from 786 nm to 1044 nm, the
maximum volume absorption coefficient was increased from 0.369 nm−1 to 0.976 nm−1

(Figure 5a), and the maximum volume scattering coefficient was decreased from 0.522 nm−1

to 0.448 nm−1 (Figure 5b). The absorption characteristics of the Ag NC responded better to
AR and its resonance was higher than 4 at the AR of 0.522 nm−1. Its volume absorption
coefficient at the resonance wavelength is significantly better than that of the Au and Cu
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NCs with the same AR, but the tunability of AR for the scattering properties of the NCs
made of all the three materials is limited.
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simulation, the NC edge length L is 60, the refractive index nm of the surrounding medium is 1.33,
and the incident light inclination angle Pitch is 0◦.

3.3. Effect of Surrounding Medium on Light Absorption and Scattering

To deeply analyze the effect of the surrounding environment on the light absorp-
tion and scattering properties of the metal NCs, the changes in volume absorption and
scattering coefficients of the Ag, Au, and Cu NCs at resonance wavelengths in different
surrounding media (refractive indices nm of 1.3, 1.4, 1.5, 1.6 and 1.7, respectively) were
simulated (Figure 6), which contains the refractive indices of biological tissues (usually
in the range of 1.30–1.55). The refractive indices of biological tissues are similar to the
refractive index of water. The simulation results show that as the refractive index of the
surrounding medium of the NCs increases from 1.3 to 1.7, the absorption and scattering
spectra of the Ag, Au, and Cu NCs are red-shifted with the increase in the refractive index
of the surrounding medium, and the volume absorption and scattering coefficients at the
resonance wavelengths fluctuate to different degrees. The largest change is the decrease
in the volume absorption coefficient of the Au NC from 0.372 to 0.337 nm−1, as shown in
Figure 6a. The decrease in the volume scattering coefficients of all the three metal NCs
is less than 0.05 nm−1, as shown in Figure 6b. Unlike the other parameters, both the Ag
and Au NCs have their excellent optical absorption properties at a particular range of
ambient refractive indices. Overall, the refractive index of the surrounding medium has
less influence on the optical absorption and scattering characteristics of the NCs. If Au is
used as a research object, changing the refractive index of the surrounding environment can
make it produce superior optical absorption characteristics. It is found that the resonance
wavelengths of the three materials are significantly red-shifted with the increase in the
NC edge length, aspect ratio, and ambient refractive index, which is attributed to the
decrease in the intrinsic oscillation frequency of the free electrons in the nanoparticles,
thus leading to the decrease in the resonance frequency and the increase in the resonance
wavelength [50].
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3.4. Effect of Incident Light Orientation on Light Absorption and Scattering

The orientation of metal nanoparticles is random, and the effects observed in clinical
trials follow a statistical pattern. Since some metal nanoparticles are magnetic, they will
move or rotate due to the magnetic field. To determine the high efficiency of metal NC
particle populations in applications, the differences in light absorption and scattering
properties of metal NCs in various orientations need to be verified. The orientation of
the nanoparticles can be accurately modulated by changing the Roll, Pitch, and Yaw of the
incident light. In this paper, the NC type is a hollow square, and the initial position is the
positive direction of the incident light into one side of the metal NCs. Therefore, changing
the Roll does not affect the optical properties produced by the metal NCs. In this study,
we take changing the Pitch as an example and simulate and analyze the change rule of the
light absorption properties of the metal NCs when the Pitch is rotated from 0◦ to 180◦, as
shown in Figure 7a,b. It is found that the light absorption characteristics of the metal NCs
will produce a periodic change, and the magnitude of the change is 0.006 nm−1. Therefore,
changing the azimuthal angle does not have a significant effect on the light absorption and
scattering properties of the metal NCs.
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3.5. Optimization of Light Absorption and Scattering

In cancer treatment, different wavelengths of incident light have different levels of
penetration into biological tissues, and the right wavelength of incident light can reduce
damage to normal cells and achieve a better therapeutic effect. Tumors can be treated su-
perficially (skin cancer and neck enlargement) and deeply (liver, stomach, and esophagus).
Superficial therapies use wavelengths of 800 nm (PTT) and 808 nm (bio-imaging), which are
less damaging to normal cells, while deep therapies use wavelengths of 980 nm (PTT) and
1064 (bio-imaging), which have good penetration into biological tissue [51,52]. To meet the
therapeutic needs of different types of tumors, wavelengths of 800 nm, 808 nm, 980 nm, and
1064 nm were selected as the light sources, and the optimal edge lengths and aspect ratios
were calculated to obtain the maximum volume absorption and scattering coefficients.

3.5.1. Optimum Size Parameters for PTT

The incident light wavelengths applied to PTT are 808 nm (superficial therapy) and
1064 nm (deep therapy), and the simulation results are shown in Figure 8. When the
incident light wavelength is 808 nm, the optimal aspect ratios of the NCs made of the
three materials are similar, and the light absorption of the smaller Ag NC is significantly
better than that of the Au and Cu NCs, as shown in Figure 8a–c. When the incident light
wavelength is 1064 nm, the edge lengths, aspect ratios, and volume absorption coefficients
of the three materials are significantly increased, as shown in Figure 8d–f. Whether the
wavelength of incident light is 808 nm or 1064 nm, the Ag NC exhibits excellent light
absorption properties; the Ag NC with an edge length of 67 nm and aspect ratio of 5.5 has
the largest volume absorption coefficient at 0.708 nm−1 at 1064 nm incident light, as shown
in Figure 8d. The optimal aspect ratios of the three materials are less affected by the
materials and are mainly regulated by the incident wavelengths. The optimal aspect ratios
at the same incident wavelengths are similar. It can be seen that the optical absorption of
the Ag NC is superior to that of the Au and Cu NCs under the optimal size parameter. In
addition, the hollow structure of the NCs allows multiple reflections of light inside the
cage, which enhances the absorption. By comparing the volumetric absorption coefficients
of the optimal Ag@TiO2 nanospheroid and nanorod simulated by Wumaier et al. [7], it can
be found that the light absorption properties of optimally sized nanocages are superior to
those of the Ag@TiO2 nanospheroid and nanorod.
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3.5.2. Optimum Size Parameters for Bio-Imaging

The incident light wavelengths applied to bio-imaging are 800 nm (superficial therapy)
and 980 nm (deep therapy), and the simulation results are shown in Figure 9. When the
incident light wavelength is 800 nm, the optimal aspect ratios of the three materials NCs
are similar, and all of them have larger optimal sizes, among which the light scattering
capability of the Ag NC is significantly better than that of the Au and Cu NCs, as shown
in Figure 9a–c. When the incident light wavelength is 980 nm, the edge lengths, aspect
ratios, and volume scattering coefficients of the three materials are increased, as shown
in Figure 9d–f. Whether the wavelength of incident light is 800 nm or 980 nm, the Ag
NC shows excellent light scattering properties; the Ag NC with an edge length of 75 nm
and aspect ratio of 5 has the largest volume scattering coefficient of 0.583 nm−1 under the
980 nm incident light, as shown in Figure 9d.The optimal aspect ratios of the different
materials have a diversity of less than 0.5, and only by changing the wavelength of the
incident light, would the aspect ratios have a larger degree of response. It can be seen
that the light scattering characteristics of the Ag NC are superior under the optimum size
parameters compared to the Au and Cu NCs.
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In comparison, the light absorption and scattering properties of the Ag NC are superior
at all classical wavelengths of incident light, and the optimized Ag NC can be used as an
ideal photothermal and contrast agent. Despite the superior light absorption and scattering
properties of the deep tumor therapy option, it should be used with sound judgment in
actual therapy.

4. Conclusions

This paper investigates the variations in light absorption and scattering properties
of Ag, Au, and Cu NCs with material, size parameters, ambient refractive index, and
particle orientation. We also obtained the optimal edge lengths and aspect ratios of the
three metal NCs at the incident wavelengths commonly used in PTT (808 nm and 1064 nm)
and biological imaging (800 nm and 980 nm), respectively. The simulation results show
that the Ag NC has better light absorption and scattering properties than the Au and Cu
NCs, and its narrower half-peak width makes it better for biomedical applications. The
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dimensional parameters (edge length and aspect ratio) of the three metal NCs are obviously
tunable, which can effectively change the intensity and position of the resonance peaks
in the absorption and scattering spectra. Au NCs of a specific ambient species will be
more effective for a specific incident light wavelength than those of the three metal NCs.
Specific ambient species of Au NCs produce superior light absorption properties compared
to Ag NCs at specific incident wavelengths, but the refractive index of the surrounding
medium has little effect on the light absorption and scattering of the three metal NCs.
The orientation of the metal NCs does not lead to changes in the resonance wavelength
due to their hollow structure. The change in the orientation only causes a weak shift of
the resonance peaks in the absorption and scattering spectra. Based on the simulation
results of the optimal size parameters, it can be found that the optimal aspect ratios of
the Ag, Au, and Cu NCs are less affected by their material and they are regulated mainly
by the wavelength of the incident light. In the field of PTT and bio-imaging, the optical
absorption and scattering capability of Ag NCs is optimal in deep therapy. These three
materials require an additional layer of antioxidants on the surface of the nanoparticles
due to their poor stability in avoiding their oxidization of the resulting from direct contact
with oxygen. This is particularly crucial for Ag, which is toxic and requires encapsulation
with non-toxic materials for biomedical applications. The four edges of the NC model can
be further smoothed to better fit FEM analyses, which would allow one to obtain more
accurate simulation data. This investigation provides theoretical references for biomedical,
solar cell, and photocatalytic fields.
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