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Introduction

Developing innovative nanomaterials unlocks new opportunities in physics, chemistry,
medicine, and environmental protection [1–6]. Controlling and designing nanomaterials
with precise properties (size, morphology, porosity, chemical, mechanical, photocatalytic,
and magnetic properties) became a highly explored research topic. Particular empha-
sis involved interdisciplinary research, which merged expertise from physics, chemistry,
materials science, and biomedicine with targeting for optimized nanomaterial perfor-
mance [7–15].

Metallic-based (chromates, ferrites, bismuthates, aluminates, etc.) and carbon-based (car-
bon nanotubes, graphene, graphene oxides, etc.) nanomaterials are the most explored [3–10].
Nanoparticles’ properties make them appropriate applicants for technical applications in
biosensors, humidity sensors, photocatalysis, magnets, drug delivery, magnetic refrigera-
tion, magnetic liquids, photoluminescence, microwave absorbents, ceramic pigments, gas
sensing, corrosion protection, water decontamination, antimicrobial agents, biomedicine,
and catalysis [10–25]. Adjusting the nanoparticles’ shapes, sizes, and properties can be per-
formed via the synthesis route, by modifying parameters such as the pH and concentration
of reactants, dopants, or thermal treatment temperature and time [20–29].

This Special Issue, “Innovative Nanomaterial Properties and Applications in Chem-
istry, Physics, Medicine, or Environment”, focused on (i) the synthesis and characterisation
of nanoparticles, nanotubes, nanowires, or nanofibers; (ii) nanostructures (graphene, ze-
olites, membrane, etc.), coatings, and thin films; (iii) the correlation between chemical
composition, morphology, surface, and magnetic properties of nanostructured materials;
(iv) the thermal behaviour of ceramic pigments with applications in glazes; (v) nanomateri-
als for photocatalysis and electrocatalysis; (vi) nanomaterials for water purification; (vii)
nanomaterials for adsorption of organic and inorganic pollutants; and (viii) nanomaterials
for biosensing and biomedical applications. This Special Issue includes 12 original research
papers, and highlights the development of synthesis and characterization of nanomaterials
and nanostructures of different natures with various applications in chemistry, physics,
medicine, biology, and the environment.

Dippong et al. [30] described the influence on the structure, morphology, and magnetic
properties of Co0.4Zn0.4Ni0.2Fe2O4 nanoparticles embedded in a SiO2 matrix. The produc-
tion of low crystalline Co–Zn–Ni ferrite at 500 ◦C and highly crystalline Co–Zn–Ni ferrite
was accompanied by traces of crystalline Fe2SiO4 at 800 ◦C. At 1200 ◦C, the size of spherical
particles increased with the Co0.4Zn0.4Ni0.2Fe2O4 ferrite content (36–120 nm) [30]. The
magnetic properties were enhanced with an increased ferrite content and annealing temper-
ature. The non-embedded Co0.4Zn0.4Ni0.2Fe2O4 was ferromagnetic with a high MS, while
the SiO2 matrix was diamagnetic with a minor ferromagnetic portion. Non-embedded
Co0.4Zn0.4Ni0.2Fe2O4 displayed a single magnetic phase, while the Co0.4Zn0.4Ni0.2Fe2O4
embedded in the SiO2 matrix showed two magnetic phases. The particle size and key
magnetic parameters were diminished by embedding the ferrite into the SiO2 matrix [30].
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The influence of doping with various monovalent (Ag+, Na+), divalent (Ca2+, Cd2+),
and trivalent (La3+) metallic ions and annealing temperatures (500, 800, 1200 ◦C) on the
physico-chemical properties of MnFe2O4@SiO2 ceramic nanocomposites produced by the
sol–gel method was discussed by Dippong et al. [31]. Low crystalline MnFe2O4 at low
annealing temperatures and well-crystalline MnFe2O4 at high annealing temperatures were
noted. At 1200 ◦C, in the case of MnFe2O4 doped with divalent and trivalent metallic ions,
three crystalline phases belonging to the SiO2 matrix were also noted. The structural pa-
rameters determined by X-ray diffraction, namely the spherical particles size, the thickness
of coating layer, and the powder surface area, as well as the magnetic parameters (Ms, Mr,
K, Hc), depended on the doping metallic ion and annealing temperature [31]. By doping,
the Ms and K decreased for samples annealed at 800 ◦C, but increased for samples annealed
at 1200 ◦C, while the MR and Hc decreased by doping at 800 and 1200 ◦C [31].

The impact of La3+ doping and annealing on the structure, morphology, and photocat-
alytic properties of Ni ferrite was also reported by Dippong et al. [32]. The XRD validated
the formation of a single-phase cubic spinel structure at all annealing temperatures. The
particle and crystallite sizes decreased from 37 to 26 nm by substituting Fe3+ with La3+

ions, while the lattice constants increased with an increase in La3+ content and annealing
temperature, owing to the different La3+ and Fe3+ ionic radii [32]. The specific surface area
varied with the La3+ content, and decreased with the increase in the treatment temperature,
possibly due to the larger particle size and higher crystallinity at higher temperatures [32].
The excellent sonophotocatalytic performance was reported for NiLa0.3Fe1.7O4/SiO2, most
likely due to the La3+ content inserted in the band gap of Ni ferrite [32].

Atanasov et al. [33] reported the magnetic properties and magnetocaloric effect of
polycrystalline and nano-manganites Pr0.65Sr(0.35−x)CaxMnO3, obtained by a solid-state
reaction and the sol–gel method. Rietveld’s refinement confirmed the presence of a single
phase with orthorhombic (Pbnm) symmetry, and lower cell volume and Mn–O bond length
at a higher Ca substitution [33]. The bulk samples’ resistivity was related to the grain
boundary conditions and ferromagnetic/paramagnetic conversion [33]. Curie temperature
values decreased from 295 K to 201 K, with an increasing Ca substitution. Due to the mag-
netocaloric property and the tuned Curie temperature, the obtained bulk polycrystalline
compounds could be capable candidates for magnetic refrigeration [33].

The simple fabrication of active CeO2@ZnO nanoheterojunction photocatalysts with
various Zn:Ce ratios by pyrolysis of Ce/Zn-MOFs precursors was reported by Ai et al. [34].
By increasing the Zn:Ce ratio from 0 to 1, pure CeO2, ZnO, and CeO2@ZnO nanocomposites
were obtained [34]. With the Zn:Ce ratio increasing, the CeO2@ZnO nanocomposites
progressively converted from nanospheres into nanoparticles of about 10 nm [34]. The
optical band gaps widened with the increase in Zn:Ce ratio, due to the quantum size effects
and heterojunction interface [34].

Jaramillo-Fierro and León [35] reported the impact of doping TiO2 nanoparticles with
lanthanides (La, Ce, and Eu). Moreover, the photodegradation of cyanide, the impact
of reactive oxygen species on the photocatalytic procedure below simulated light, and
the reuse of these nanoparticles in five successive cycles were tested [35]. The highest
percentage of cyanide removal was reported for La/TiO2 (98%), Ce/TiO2 (92%), Eu/TiO2
(90%), and TiO2 (88%). According to the obtained results, the La, Ce, and Eu dopants
enhanced the adsorption and photocatalytic properties of TiO2 semiconductors, as well as
their ability to remove cyanide from aqueous synthetic solutions [35].

The study by Segura-Sanchis et al. [36] focused on scanning photocurrent microscopy
(SEM) in single-crystal multidimensional hybrid lead bromide perovskites. Their composi-
tion played an important role in their optoelectronic properties, mainly the effect on the
photogenerated transport charges along the microcrystals [36]. Noteworthy changes among
multidimensional perovskite crystals regarding the photocarrier decay length values and
spatial dynamics across the crystal were also noted [36]. The photocurrent maps indicated
that the effective decay length cuts near the border, indicating the importance of border
recombination centres in monocrystalline samples [36]. The multidimensional 2D–3D
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perovskites showed a single exponential fitting model, while the 3D perovskites confirmed
a fast and slow charge carrier migration dynamic inside the crystal [36].

Kim et al. [37] reported the 3D plasmonic architecture of Ag nanoparticles function-
alized with carbon nanowalls, and their use in increasing the hotspot density [37]. The
evaluation of the substrate using Rhodamine 6G in concentrations of 10−6 to 10−10 M for a
4 min exposure established a related increase in Raman signal intensity with the concen-
tration [37]. The large specific surface area and graphene domains of carbon nanowalls
provide dense hotspots and high charge mobility, contributing to the electromagnetic and
chemical mechanisms of surface-enhanced Raman spectroscopy [37]. The pioneering SERS
concept embraces a high potential for bioanalysis and chemical analysis [37].

The recent breakthroughs in using quantum dots, i.e., semiconducting tiny nanocrys-
tals of 2–10 nm with tunable optoelectronic properties, for cancer imaging and drug delivery
purposes, were reviewed by Hamidu et al. [38]. This research emphasized semiconduct-
ing quantum dots’ synthesis methods and properties, such as slight tunable size, great
surface-to-volume ratio, steady photoluminescence, and excellent biocompatibility [38].
The conjugation or binding of molecules to the quantum dots’ surfaces were also discussed.
The properties of these nanoparticles prevail over the limitations of traditional cancer
management approaches, and may allow for early detection and treatment [38].

The study by Khalaj-Hedayati et al. [39] focused on identifying and in silico character-
isation of a preserved peptide on an influenza hemagglutinin protein. The computational
framework was used to evaluate the efficacy of an antigen produced over current bioinfor-
matics tools [39]. Epitope mapping approached five top-ranked B-cell and twelve T-cell
epitopes, and the consistent Human Leukocyte Antigen alleles to T-cell epitopes exposed a
high population coverage [39]. The theoretical physicochemical properties of HA288–107
peptides guaranteed the thermostability and hydrophilicity, while the obtained results
indicated the obtaining of a capable antigen for an influenza vaccine strategy [39].

Fritz et al. [40] examined the distribution of the particle size and shape of the in vivo
bioproduced particles from aqueous Au3+ and Eu3+ solutions using the cyanobacterium
Anabaena sp. An incubation time of 51 h doubled the number of Au particles, and the
spherical diameter shrank to 8.4–7.2 nm [40]. Anabaena sp. could rapidly bioform small-
sized nanoparticles displaying a high tendency towards sphere-shaped nanoparticles [40].
Accordingly, Anabaena sp. is a suitable applicant for the cost-effective and non-toxic
production of a specific nanoparticle size and shape by varying the growth time [40].

The adsorption outcome of CH4 molecules on monolayer PbSe was investigated, con-
sidering the first-principle calculations by Zhou et Mao [41]. The impact of the adsorption
of CH4 molecules on monolayer PbSe, and the Se and Pb vacancies of monolayer PbSe,
indicated that the CH4 molecules display an excellent physical adsorption effect on mono-
layer PbSe with/without vacancy defects [41]. The variations in the band gap were more
sensitive to strain for the monolayer PbSe with Se vacancy. In this regard, the adsorption
capacity of the CH4 molecules on the strained system decreased sharply, suggesting that
strain can successfully regulate the electronic structure of CH4 molecules adsorbed on a 2D
PbSe nanomaterial [41]. Moreover, the Se vacancy and P-PbSe displayed diverse reactions
on the CH4 molecule adsorption when using the same strain [41].

Considering that the variety of innovative compounds, and that the rapid development
of investigating tools in the multidisciplinary research of metal-based nanomaterials is
continuously progressing, this Special Issue will underwrite the interest of research in this
area by providing a broad and updated scenario. These published research papers will
indicate a new line for future studies to produce significant advances related to materials
science and engineering.

Concluding, as the Editor of this Special Issue, I would like to thank all of the authors
and reviewers who contributed to this Special Issue with their innovative ideas and con-
structive comments. I am also grateful for the consistent support from the Nanomaterials
Editorial Office. Indeed, this Special Issue will provide an accessible platform to compre-
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hend the synthesis and characterisation of innovative nanomaterials and nanostructures
and their crucial roles in various applications.
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