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Abstract: Perovskite solar cells (PSCs) have demonstrated remarkable photovoltaic performance,
positioning themselves as promising devices in the field. Theoretical calculations suggest that copper
(Cu) can serve as an effective dopant, potentially occupying interstitial sites in the perovskite struc-
ture, thereby reducing the energy barrier and enhancing carrier extraction. Subsequent experimental
investigations confirm that adding CuI as an additive to MAPbI3-based perovskite cells improves
optoelectronic properties and overall device performance. Optimizing the amount of Cu (0.01 M) has
been found to significantly enhance crystalline quality and grain size, leading to improved light ab-
sorption and suppressed carrier recombination. Consequently, the power conversion efficiency (PCE)
of Cu-doped PSCs increased from 16.3% to 18.2%. However, excessive Cu doping (0.1 M) negatively
impacts morphology, resulting in inferior optical properties and diminished device performance.
Furthermore, Cu-doped PSCs exhibit higher stabilized power output (SPO) compared to pristine
cells. This study underscores the substantial benefits of Cu doping for advancing the development of
highly efficient PSCs.

Keywords: perovskite; doped perovskite; Cu+ ions; power conversion efficiency

1. Introduction

Halide perovskites have revolutionized the field of photovoltaics and related opto-
electronics as a result of their unique optoelectronic properties [1–4]. These perovskites
are multifunctional materials synthesized from inexpensive starting compounds that are
abundant in nature [5]. Using the AMX3 formula, hybrid perovskites are described, in
which A represents an organic cation, for example, methylammonium CH3NH3 (MA)
and formamidinium NH2CH3NH2 (FA). M, on the other hand, is a divalent metal such
as lead (Pb) or tin (Sn). It is important to note that X is a halide anion, like chlorine (Cl),
bromine (Br), and iodine (I) [6,7]. They have a broad range of morphologies, distinctive
photophysical properties, high carrier mobility, and long carrier diffusion length, all of
which are extremely fascinating features that combine the admirable qualities of organic as
well as inorganic materials [8,9]. Furthermore, they can be easily processed using several
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techniques, such as spin coating, dip coating, thermal evaporation, and chemical vapor
deposition [10–12]. As a result of their unique characteristics and simple fabrication process,
incredible research efforts have been made to enhance the power conversion efficiency
(PCE) of the PSCs utilizing the chemical engineering process and implementing several
device architectures [13–18]. Thus, the PCE of the PSCs has significantly improved from
3.8% to 25.8% in just over a decade [19,20].

In typical organic–inorganic perovskites, the chemical composition and the nature of
the material are crucial for customizing the electronic properties, optical bandgaps, device
performance, and stability [21]. Recent studies have demonstrated that the structural
stability of the perovskite film is mostly controlled by the organic cation CH3NH3

+ and
is not directly influenced by structure bonding [22]. The outer orbitals of the divalent
metal and halide, however, have the greatest impact on the electrical properties. The upper
valence band is primarily generated by halogen p orbitals combined with Pb s orbitals,
whereas the perovskite conduction band is primarily derived from the vacant Pb p orbitals.
As a result of Pb often being fixed, X can adjust the band gap of the perovskite material in a
wide range [21–23]. Thus, the complete or partial substitution of Pb or doping with homo-
or hetero-valent cations can influence the perovskite material properties and photovoltaic
performance, such as the band gap, the light absorption coefficient, and the charge carrier
diffusion length [24].

Previous works on the effects of the partial substitution of the Pb2+ ions at the per-
ovskite crystal lattice have shown that controlling the crystallization and the optoelectronic
characteristics of perovskites is feasible via the incorporation or partial substitution of Pb
with a monovalent cation such as Cu, Ag, K, and Na [25]. These ions were found to have
reduced the trap-assisted non-radiative recombination of perovskite films, enhanced the
crystallization, and increased the carrier lifetime. Additionally, doping Pb using divalent
cations such as Sn [26], Zn [27], Sr [28], and Cd [29] has been shown to improve the crystal
quality, enlargement of the grain size, tuning of optical band gaps, and enhancement in
the carrier lifetime of the perovskite. Furthermore, doping the perovskite with a trivalent
cation such as Bi [30] and Al [31] has shown a similar modification in the crystallization
and the optoelectronic properties. There are only a few studies that investigated the inclu-
sion of Cu+ ions, which have an ionic radius comparable to that of Pb2+, into perovskite
precursor solutions [22,26]. However, there is no extensive study combining experimental
data and density functional theory calculation to understand the position of Cu atoms in
the Cu-doped perovskite and density of states calculation to understand the energy levels
and their effect on electronic properties and device performance.

In this study, we used CuI as a dopant for the MAPbI3-based perovskite. Cu-doping
into the perovskite significantly improved the uniformity, grain size, and crystal quality
of the perovskite film, which substantially improved the light absorption and reduced
the non-radiative recombination. We also employed a DFT calculation to determine the
position of Cu atoms in the perovskite films. The DFT calculation revealed that Cu prefers
to occupy the interstitial site and reduces the energy barrier by reducing the work function
of the perovskite film, which significantly enhanced carrier extraction. As a result, the
photovoltaic parameters of the Cu-doped PSCs increased with a PCE of 18.2% compared to
the pristine solar cell (16.3%).

2. Materials and Methods

All materials used in this study were obtained commercially and used as received.
Lead iodide (PbI2, 99.9985%), methyl ammonium iodide (MAI), N, N-dimethylformamide
(DMF; 99%), Dimethyl sulfoxide (DMSO; 99.9%) ethylene glycol (99.5%, ethylenediamine
(EDA, 99.0%,), Chlorobenzene (99.8%), and Nickel nitrate hexahydrate (Ni(NO3)2·6H2O)
were bought from Sigma Aldrich, Saint Louis, MI, USA. Phenyl-C61-butyric acid methyl
ester (PCBM, 99.5%) was purchased from Nano-C, Westwood, MA, USA.

Precursors preparation-HTLs and ETLs: Undoped and doped NiOx HTLs were synthe-
sized using the solution processing according to the prior report [32]. Briefly, 0.291 g of
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Ni(NO3)2.6H2O was dissolved in ethylene glycol (1 mL) and ethylenediamine (72 µL) as
an additive and stirred at room temperature (RT) overnight to produce the undoped NiOx.
In order to produce undoped NiOx, 0.291 g of Ni(NO3)2.6H2O was dissolved in ethylene
glycol (1 mL) with ethylenediamine (72 µL) as an additive and stirred at room tempera-
ture (RT) for an overnight period. PCBM (20 mg/mL) was dissolved in CB and stirred at
RT overnight.

Fabrication of perovskite solar cells: Inverted planar pristine and Cu-doped PSCs were fab-
ricated using a device structure of FTO/NiOx/MAPbI3 or Cu-doped MAPbI3/PCBM/Ag.
Before drying in an oven, FTO substrates were cleaned sequentially for 10 min each with a
detergent solution, DI water, acetone, and isopropanol (IPA). The substrates were cleaned,
dried, and then given a 30-minute treatment with ozone (O3) plasma to improve their
surface wettability. The NiOx HTL was prepared by spin-coating a precursor onto the
FTO substrates at 4000 rpm for 90 s and annealing them for 1 h at 300 ◦C in an ambient air
atmosphere. After cooling to room temperature, the substrates were transferred to a glove
box filled with nitrogen where the air and water content was <1 ppm, and then the MAPbI3
perovskite layer was coated. The MAPbI3 perovskite precursor solution was synthesized by
dissolving MAI (1.1 M) and PbI2 (1.1 M) in a mixed solvent of DMF: DMSO (0.7:0.3 mL) and
stirred for 4 h at RT. Similarly, Cu-doped MAPbI3 solutions were prepared by adding 0.01,
0.1, 0.03, 0.08, and 0.1 M of CuI into the perovskite solution. A PVDF (0.45 µM, Whatman)
filter was used to filter the perovskite precursor solution before it was spin-coated onto
the HTL layer at 3800 rpm for 20 s. Once the spinning was ready to stop, 300 µL of CB
as an antisolvent was dropped onto the perovskite film. The antisolvent-treated MAPbI3
samples were then spin-coated again at 5000 rpm for 20 s, followed by an immediate heat
treatment at 100 ◦C for 10 min. The MAPbI3 perovskite film was then spin-coated with
PCBM solution for 30 s at 3000 rpm. After setting a shadow mask to define an effective cell
area of 0.04 cm2, 120 nm of Ag electrodes were finally deposited on top of the devices using
a thermal evaporator at 2.2 × 10−6 torr.

Film and device characterizations: X-ray diffraction (XRD; R&D-100; Rigaku SmartLab,
Akishima-shi, Tokyo, Japan) was utilized to analyze the structural characteristics of the per-
ovskite films. We examined the surface and cross-sectional morphologies of the synthesized
ANO and perovskite films using a field-emission scanning electron microscope (FE-SEM;
SIGMA, Carl Zeiss, Oberkochen, Germany). Planar perovskite films’ absorption spectra
were evaluated using UV-visible (UV-vis) spectrophotometry (UV-2700; Shimadzu, Kyoto,
Japan). A spectrofluorometer (FP-8600, Jasco, Easton, MD, USA) was employed to conduct
steady-state PL measurements of the fabricated perovskite films at a laser excitation wave-
length of 530 nm. Using a fluorescence spectrometer (FlouTime 300, PicoQuant, Berlin,
Germany) with a laser excitation wavelength of 398.1 nm, time-resolved photolumines-
cence (TR-PL) studies of the fabricated MAPbI3-perovskite films on the ANO-based HTL
films were carried out. Using a solar simulator (PEC-L01, Peccell Technologies, Yokohama,
Japan), the current–voltage (J–V) curves and the steady-state photocurrent of the fabricated
PVSCs were measured under standard AM 1.5 illumination (100 mW/cm2) in ambient
air conditions. To detect responses as a function of the spectral wavelengths, the external
quantum efficiency (EQE) spectrum was evaluated using a monochromator (DongWoo Op-
tron, MonoRa500i, Taipei, Taiwan), a power source (Abet Technologies 150 W Xenon lamp,
Milford, CT, USA), and a CompactStat (Ivium Technologies; Eindhoven, The Netherlands).

Computational Methods: Density functional theory (DFT) simulations were performed
using the plane wave pseudopotential code, Vienna Ab initio Simulation Package (VASP),
to validate some of our experimental results [33]. A kinetic energy cutoff of 650 eV and
Gaussian smearing were used to expand the plane waves included in the basis set. The
exchange and correlation interactions were described by the generalized gradient approxi-
mation (GGA) in the PAW-PBE approach [34,35]. The pseudopotentials used were of the
Projected Augmented Wave formalism (PAW). The atomic positions were relaxed with en-
ergy and force tolerances of 10–6 eV and 0.001 eV/Å, respectively. The supercell approach
is used to model a (2 × 2 × 1) supercell of MAPbI3 containing 48 atoms and a Monkhorst
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Pack k grid of 4 × 4 × 8 was used for Brillouin zone integration. To account for the halide
atom, we included the Hubbard parameter with the values of U = 8 eV and J = 0 eV [36].

3. Results and Discussion

To examine the surface morphology, films of pristine and Cu-doped (0.01 M and
0.1 M) MAPbI3 were deposited on FTO/NiOx layers and analyzed using FE-SEM. The
top-view SEM image of the pristine perovskite film, as depicted in Figure 1a, reveals
small-sized grains. In contrast, the perovskite film doped with 0.01 M Cu+, illustrated in
Figure 1b, displays a film with larger grain sizes ranging from a few hundred nanometers
to over 1 µm, featuring a homogeneous, pinhole-free surface. However, Figure 1c illustrates
the perovskite film doped with 0.1 M Cu+ ions, revealing a poorly covered surface with
significant roughness. These findings suggest that a modest amount of Cu+ ion doping in
the perovskite precursor solution can enlarge grain size, mitigate defects arising from grain
boundaries, and enhance charge carrier lifetime [37]. The average grain size for the pristine
sample was calculated as 212 nm, while the sample doped with 0.01 M Cu+ exhibited
an average grain size of 369 nm. The particle size distribution histogram, derived from
SEM images, is presented in Figure S1 (Supporting Information). However, perovskite
films doped with a higher concentration of Cu+ ions can deteriorate the crystal structure,
trapping charge carriers and diminishing the power conversion efficiency (PCE) of the
solar cells.
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Figure 1. Top-view SEM images of (a) pristine, (b) 0.01 M, and (c) 0.1 M Cu-doped MAPbI3 films
deposited on the FTO/NiOx layer.

To investigate the influence of Cu doping on the crystallinity of MAPbI3 perovskite,
the crystal structure was examined using an X-ray diffraction system. In Figure 2, the XRD
patterns of pristine and Cu-doped MAPbI3 films display diffraction peaks at 14.2◦, 28.5◦,
and 31.9◦, corresponding to the (110), (220), and (310) crystal planes of the tetragonal phase
of perovskite films. Remarkably, Cu-doped MAPbI3 samples show a significant increase
in intensity for these peaks, aligning with the larger grains observed in the top-view SEM
images. Interestingly, with the presence of 0.01 M Cu+, the diffraction peaks at 2θ = 12.6◦

and 2θ = 38.6◦, corresponding to unconverted PbI2, (*) are reduced and eliminated. This
suggests that low Cu2+ ion doping substitutes Pb2+ due to their small difference in ionic
radii (Cu2+ = 73, Pb2+ = 119), enhancing the crystallinity of the perovskite film, as observed
in the top-view SEM image (Figure 1b). However, beyond an optimal Cu+ ion addition
level, the crystallization of MAPbI3 is substantially disrupted, leading to a higher impurity
phase and increased defects. As doping increases, cation vacancies are formed, directly
affecting lattice parameters and resulting in amorphous PbI2, evidenced by XRD peaks at
2θ = 12.6◦ and 38.6◦ [6,38,39] Notably, with no apparent shift in diffraction peak positions,
the intensities of the prominent perovskite (110) and (220) peaks increase significantly with
higher concentrations of Cu+ doping. This implies that the introduction of Cu+ ions aligns
the crystal planes more effectively [39].
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Figure 2. XRD patterns of pristine, 0.01 M, and 0.1 M Cu-doped perovskite films. The * corre-
sponded to lead iodide (PbI2) residue, resulting from an incomplete reaction between the perovskite
precursor solution.

The UV-Vis absorption spectra of pristine and Cu-doped (0.01 M and 0.1 M Cu)
perovskite films are illustrated in Figure 3a. The optical absorption spectrum of the pristine
perovskite film exhibits a broad absorption band covering the entire visible spectral range.
Consequently, Cu-doped perovskite films display a significant enhancement in absorbance
compared to the pristine film, suggesting that Cu doping has improved the quality of the
perovskite film, aligning with the XRD and FE-SEM results.
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Figure 3. (a) UV-Vis absorption spectra, (b,c) PL spectra of pristine and Cu-doped MAPbI3 films
deposited on glass and NiOx/FTO substrates, respectively. (d) Time-resolved PL decay spectra of
pristine MAPbI3 film deposited on glass, and NiOx/FTO, 0.01 M, and 0.1 M of Cu-doped (blue dots)
perovskite films deposited on NiOx/FTO.



Nanomaterials 2024, 14, 172 6 of 13

The bandgap energy (Eg) of these samples is calculated using the Tauc plot, extrap-
olating the linear part of the plot to the x-axis, as presented in Figure S2 (Supporting
Information). The pristine sample shows a bandgap energy of 1.70 eV, while the sample
doped with 0.01 M Cu+ exhibits a lower bandgap energy of 1.33 eV. These results indicate
that a lower bandgap energy corresponds to better absorption. Notably, perovskite films
doped with 0.01 M Cu demonstrate the highest absorbance, whereas 0.1 M Cu leads to a
decrease in absorption compared to the 0.01 M Cu-doped film. This is attributed to the
0.01 M Cu-doped perovskite film having uniform and larger grains compared to the film
doped with 0.1 M Cu+ ions. Thus, these findings underscore that Cu+ doping can signifi-
cantly enhance the light absorption capacity of the perovskite film, offering potential bene-
fits for improving the power conversion efficiency (PCE) of corresponding perovskite solar
cells (PSCs).

Figure 3b displays the photoluminescence (PL) spectra of pristine and Cu-doped
MAPbI3 perovskite films deposited on a glass substrate. The MAPbI3 perovskite film
doped with a small amount (0.01 M) of Cu+ ions exhibits the highest PL intensity compared
to the 0.1 M Cu-doped and pristine films. This relatively high PL intensity indicates that
0.01 M Cu doping is the optimal condition, effectively reducing nonradiative recombination-
related traps or defects. Conversely, pristine perovskite films show very low PL intensity,
suggesting the presence of high nonradiative recombination centers. Excessive doping,
higher than the pristine, results in a considerable decrease in PL intensity due to the devel-
opment of more defect states. To further understand the carrier extraction properties, PL
measurements of the perovskite films deposited on NiOx/FTO substrates were conducted,
as illustrated in Figure 3c. Cu-doped perovskite films exhibit significant PL quenching
compared to pristine films. The PL intensity reaches a minimum for the 0.01 M Cu-doped
perovskite film, indicating effective extraction of photoexcited charge carriers by the sub-
strate. Figure 3d presents the normalized time-resolved PL (TR-PL) kinetics of pristine
and Cu-doped perovskite films. The pristine MAPbI3 perovskite deposited on the glass
substrate exhibits an extended average lifetime, with a slight quenching when the hole
transport layer (HTL) is introduced. In contrast, the lifetime of Cu-doped perovskite films
deposited on NiOx is reduced to 3–4 ns, aligning with the PL spectra (Figure 3c). These
findings demonstrate that Cu doping significantly reduces radiative recombination and
enhances hole extraction [40].

To scrutinize the role of Cu+ ions in the MAPbI3 perovskite and assess their im-
pact on electronic behavior, density functional theory (DFT) calculations were performed.
A (2 × 2 × 1) supercell of pristine MAPbI3 was chosen for optimization, yielding relaxed
lattice parameters of a = 12.86 Å and c = 6.48 Å. One Cu atom was doped into the opti-
mized supercell by substituting for the Pb atom, considering two interstitial positions, as
presented in Figure 4. The formation energy and optimized Cu-I bond lengths are detailed
in Table 1.

Table 1. The formation energy and average Cu-I bond length of Cu-doped MAPbI3.

Doping Configuration Formation Energy (eV) Cu-I (Horizontal) (Å) Cu-I (Vertical) (Å)

MAPbI3-Cusub 1.63 2.49 2.63

MAPbI3-Cuint-1 −2.50 2.60 2.53

MAPbI3-Cuint-2 −2.48 2.55 2.54

The formation energy is calculated by using the equations below,

Ef = Etotal − Epure + µPb − µCu (for Cu substitutional), (1)

Ef = Etotal − Epure − µCu (for Cu interstitial), (2)

Here, Etotal denotes the total energy of the MAPbI3 supercell containing the Cu and
Epure is the total energy of pristine MAPbI3. µ represents the chemical potential of the
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respective element. From these equations, a negative formation energy indicates favorable
adsorption and vice versa. It can be seen that the interstitial positions have lower formation
energy compared to the substitutional and most stable configuration after relaxation,
corresponding to Figure 4d, indicating that interstitial is the favored configuration. We see
that when the Cu atom is placed in an interstitial configuration, the Cu-I horizontal bond
lengths elongate to adjust the forces.
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Additionally, an analysis of the electronic structure is conducted for the stable Cu
configurations, as depicted in Figure 5. In Figure 5a, the total and atom-resolved density
of states (DOS) for both the pristine and Cu-doped MAPbI3 are presented. The primary
contribution to the DOS is observed from the halide atom. With the addition of Cu, there is
a noticeable shift of the valence band maximum to lower energy regions. This shift aligns
with the optical absorption measurements illustrated in Figure 3a, confirming that Cu serves
as an acceptor impurity in this material. The band structure, depicted in Figure 5b,c, further
emphasizes the evident shift of the valence band maximum to the lower energy region.
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Furthermore, we conducted calculations to determine the work function for both
MAPbI3 and Cu-MAPbI3, aiming to assess the impact of Cu addition. The work function
(WF) is defined as WF = ϕ − EF, where ϕ represents the vacuum potential energy and EF
is the Fermi energy. The calculated WF value for pristine MAPbI3 is 4.77 eV. In the case of
Cu-MAPbI3, the calculated WF is 3.85 eV, which is lower than the experimentally measured
value of 4.4 eV. However, it is noteworthy that the consistent finding of a reduced WF upon
Cu+ doping of MAPbI3 is observed both experimentally and through DFT calculations. This
reduction in WF for Cu-MAPbI3 implies a decrease in the energy barrier for the reaction
with the addition of Cu.

In order to investigate the impact of Cu doping on the performance of the PSCs, we
embedded the Cu-MAPbI3 into solar cells sandwiched between NiOx as HTL and PCBM
as ETL layers. Figure 6a shows the cross-sectional SEM image of the PSC with the device
structure of FTO/NiOx/MAPbI3 or Cu-MAPbI3/PCBM/Ag. We have to highlight that
20 devices were tested for each concentration and for the reference cell. Figure 6b illustrates
the current density–voltage (J–V) curves of both pristine and Cu-doped perovskite solar
cells (PSCs), with corresponding photovoltaic parameters summarized in Table 2. The
pristine PSC achieved an efficiency of 16.3%, accompanied by Jsc, Voc, and FF values
of 22.1 mA/cm2, 0.99 V, and 74%, respectively. Notably, PSCs doped with 0.01 M Cu+

exhibited a significant improvement in PCE to 18.2% ± 0.51, with increased Jsc, Voc, and
FF values reaching 22.5 mA/cm2, 1.06 V, and 76%, respectively. The enhancement of Voc
and FF following Cu+ doping in a perovskite solar cell are critical parameters indicative
of the potential difference between the cell’s electrodes in the absence of current flow
and how well a solar cell can convert sunlight into electrical power, respectively. The
observed increase in Voc and FF signifies an improvement in the cell’s capacity to generate
higher voltage, likely stemming from advancements in improved crystal quality and grain
growth, diminished defects, improved charge carrier dynamics, and enhanced interface
properties [41,42]. This augmented Voc and FF contribute positively to the overall efficiency
of the solar cell, particularly up to an optimal Cu+ doping concentration of 0.01%. However,
for higher Cu+ doping concentrations (0.08% and 0.1%), a decline in Voc and FF values is
evident. This reduction may suggest challenges such as increased recombination losses,
perovskite degradation, or interface issues, leading to an overall decrease in efficiency
and performance.
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Nanomaterials 2024, 14, 172 9 of 13

Table 2. Photovoltaic performance of pristine and Cu-doped PSCs.

Solar Cells Jsc (mA/cm2) Voc (V) FF (%) PCE (%)

Pure MAPbI3 −22.1 ± 0.55 0.99 ± 0.015 74.0 ± 2.11 16.3 ± 0.59

MAPbI3: 0.01 M of Cu+ −22.5 ± 0.87 1.06 ± 0.010 76.0 ± 1.73 18.2 ± 0.51

MAPbI3: 0.10 M of Cu+ −17.5 ± 0.23 0.79 ± 0.021 32.0 ± 2.56 4.4 ± 1.15

Furthermore, the PCE for PSCs doped with 0.005 and 0.03 M are 17.9% ± 0.57 and
18.1% ± 0.48, respectively. We can conclude that considering the margin of error, the PCE
is approximately the same for the three Cu-doped concentrations. However, with a further
increase in Cu+ concentration to 0.08 and 0.1 M, all photovoltaic parameters dramatically
decreased, leading to a PCE drop to 4.6% ± 1.22 and 4.4% ± 1.15, respectively. This decline
in performance is attributed to trap-assisted recombination caused by excess Cu acting as
recombination centers. Additionally, the rough surface in the case of 0.1 M doped PSCs
may result in inferior contact between the transport layers, negatively affecting charge
collection efficiency. It is worth noting that the PCE of our Cu-doped PSCs surpasses that
reported in previous studies [7,43–46].

Figure 6c presents the external quantum efficiency (EQE) spectra of both pristine and
Cu-doped PSCs. Across the visible to near-infrared region (380–750 nm), all devices exhibit
a broad range of EQE characteristics. The PSC doped with 0.01 M Cu displays relatively
higher EQE compared to the pristine, owing to its improved photo-carrier extraction
properties. Conversely, the PSC doped with 0.10 M Cu+ exhibits the lowest EQE values,
attributed to the generation of defect centers through excess Cu+ doping, diminishing the
carrier extraction properties. Stabilized current densities of our pristine and Cu-doped
PSCs are depicted in Figure 6d, with biases maintained at 0.81 V and 0.88 V, respectively,
close to the maximum power point under AM 1.5 illumination. Stable photocurrents of
19.7 and 20.1 mA/cm2 were achieved, corresponding to stabilized PCEs of 16.0% and 17.6%
for the undoped and 0.01 M Cu-doped PSCs, respectively. These findings suggest that Cu
doping in perovskite films significantly enhances the PCE stability of PSCs.

To investigate the charge transportation and carrier recombination mechanism, we
measured the light intensity-dependent Voc and Jsc characteristics of the pristine and
Cu-doped PSCs, as shown in Figure 7a and 7b, respectively. We estimated the ideality
factor (n) of our pristine and Cu-doped PSCs using the light intensity-dependent semilog-
arithmic plot of Voc, as shown in Figure 7a, and matched with a straight line using the
following expression

VOC =
ηkT

q
ln(I) + constant (3)

where k is the Boltzmann constant, T is temperature, q is electric charge and I is light
intensity [47]. The proportionality factor (ηkT/q) can be determined based on the slope
of this function. As a result, η = 1 indicates dominant bimolecular recombination (such
as Langevin), while η = 2 indicates monomolecular, trap-assisted recombination (such as
Shockley-Read-Hall (SRH)) [48]. Moreover, additional traps may emerge either within the
perovskite layer or at the interface with the transport layer. The Cu-doped (0.01 M) device
exhibits a relatively higher slope compared to the other devices, leading to a slightly higher
Voc. By assessing the slopes, we estimated the ideality factor of the pristine, 0.01 M, and
0.1 M Cu-doped perovskite solar cells (PSCs) to be 1.35, 1.21, and 1.79, respectively. The
Cu-doped (0.01 M) device demonstrates a reduced ideality factor, indicative of inhibited
trap-assisted Shockley–Read–Hall recombination at the perovskite–hole transport layer
(HTL) interface, attributed to improved charge extraction and reduced hole accumulation
near the interface [49]. Conversely, the ideality factor increases with the introduction of
an excess of Cu+ ions (0.1 M) to the perovskite, signifying an increase in trap-assisted
recombination that adversely affects device performance. It is well-known that the short-
circuit current density (Jsc) has a power-law dependence on light intensity Plight, expressed



Nanomaterials 2024, 14, 172 10 of 13

as Jsc α (Plight)α, where α represents the power-law exponent. Figure 7b depicts the light-
dependent Jsc for our pristine and Cu-doped devices. When α = 0.75, the device operates in
a space-charge-limited manner, and α close to 1 indicates a negligible space-charge limit [50].
We obtained α values of 1.06, 1.04, and 1.07 for the pristine, 0.01 M, and 0.01 M Cu-doped
PSCs, respectively, in good agreement with a previous report [51]. All devices exhibit
an α value close to 1, indicating effective inhibition of bimolecular recombination at the
device interface. This suggests efficient elimination of charge carriers before recombination
under short-circuit conditions [52–54]. Furthermore, it implies adequate electron and hole
mobility with no charge transport barrier in solar cells, consistent with the high photo
response observed in external quantum efficiency (EQE) [54].
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4. Conclusions

In conclusion, we have successfully introduced Cu doping into MAPbI3-based per-
ovskites and thoroughly investigated its impact on the structural, optical, electrical, and
device performance of perovskite solar cells (PSCs). Our findings indicate that a judicious
amount of Cu doping significantly enhances grain size and optical absorbance while re-
ducing trap-assisted recombination in the perovskite films. However, excessive doping
results in suboptimal device performance due to inferior grain size, which exacerbates
trap formation in the absorber layer and compromises interfacial contact. DFT calculations
further revealed that the addition of Cu shifts the valence band maximum to lower energy
regions, reducing the energy barrier of the perovskite layer and facilitating carrier extrac-
tion. Consequently, the PCE improved efficiently from 16.3% (pristine) to 18.2% with 0.01
M of Cu doping. Thus, our study underscores the highly beneficial role of Cu doping in
enhancing the quality of perovskite films and the PCE of PSCs, indicating its potential for
the development of highly efficient PSCs on an industrial scale.
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