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Following the successful publication of the first edition of our Special Issue entitled
“Application of Nanomaterials in Biomedical Imaging and Cancer Therapy” [1], we are
pleased to present this second edition, which continues to explore cutting-edge advances
in the application of nanomaterials for cancer imaging and therapy. Nanotechnology has
emerged as a transformative tool in oncology, offering novel solutions for diagnosis, treat-
ment, and theranostics [2]. In this edition, we focus on the integration of nanoparticles in
cancer research, addressing key challenges such as treatment specificity, overcoming biolog-
ical barriers, and enhancing the effectiveness of traditional therapies. The selected studies
provide valuable insights into the development of multifunctional nanocomposites, the
design of nanoparticle-based drug delivery systems, and innovations in imaging modalities
and radiotherapy dose enhancement. This Special Issue aims to advance our understand-
ing of how nanomaterials can be harnessed to improve cancer treatment outcomes and
pave the way for clinical translation, while addressing challenges such as biocompatibility,
stability, and safety. We hope this collection serves as a valuable resource for researchers
and clinicians alike, pushing the frontiers of nanotechnology in cancer care.

Studies on nanoparticle-based imaging and therapeutic applications present a wide
range of innovative approaches. Carlton et al. [3] introduce a clinically translatable protocol
using Magnetic Particle Imaging (MPI) to guide thermal simulations for Magnetic Particle Hy-
perthermia (MPH), enhancing treatment planning accuracy. Thomas et al. [4] demonstrate
the efficacy of magnet-guided liposomal nanoparticles loaded with temozolomide and feru-
carbotran in glioma treatment, overcoming blood–brain barrier challenges while improving
imaging and therapy. Petronek et al. [5] further explore MR-based nanotheranostics by
using ferumoxytol and pharmacological ascorbate (AscH−) for glioblastoma treatment,
highlighting increased toxicity when ferumoxytol is internalized in cancer cells.

Nanoparticles are also employed to enhance imaging techniques. Ostruszka et al. [6] develop
a green synthesis method for magneto-luminescent bimetallic nanocomposites (AuNCs-
BSA-SPIONs) as dual imaging agents, combining luminescence and MRI contrast for
potential clinical use. Wenzel et al. [7] describe the radiofluorination of an amphiphilic
teroligomer for stabilizing siRNA-loaded calcium phosphate nanoparticles, enabling PET
imaging of brain tumors and providing a tool for tracking nanoparticle distribution.

Theranostic applications in cancer therapy are highlighted by Ruiz-Robles et al. [8],
who report the synthesis and characterization of CdTe quantum dots for precise monoclonal
antibody and biomarker testing in cellular labeling. Fuentealba et al. [9] present an opti-
mized method for evaluating Gd-nanoparticle dose enhancement in electronic brachyther-
apy, emphasizing the importance of K-edge interactions in enhancing radiation dose.

Sadiq et al. [10] take a dosimetric approach, using Monte Carlo simulations to study
the impact of bone scatter on dose enhancement in nanoparticle-enhanced orthovoltage
radiotherapy. Their findings indicate significant underestimation of dose enhancement
when bone presence is neglected, particularly at higher nanoparticle concentrations.

Nanomaterials 2024, 14, 1627. https://doi.org/10.3390/nano14201627 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14201627
https://doi.org/10.3390/nano14201627
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-4202-4855
https://doi.org/10.3390/nano14201627
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14201627?type=check_update&version=1


Nanomaterials 2024, 14, 1627 2 of 3

From a materials science perspective, Patamia et al. [11] combine halloysite nanotubes
with kojic acid to create an antibacterial nanomaterial capable of drug delivery, demon-
strating a bio-based approach to antimicrobial cancer therapy. Marforio et al. [12] focus on
overcoming the hydrophobicity of carboranes for Boron Neutron Capture Therapy (BNCT)
by utilizing blood transport proteins as carriers.

In the realm of reviews, Figueiredo et al. [13] examine metal–polymer nanoconju-
gates in cancer imaging and therapy, noting that while metallic nanoparticles have unique
properties, combining them with polymers enhances biocompatibility, stability, and tu-
mor specificity. Lu et al. [14] review nanoparticle-based therapies targeting the tumor
microenvironment (TME) in hepatocellular carcinoma (HCC), addressing the challenges of
short drug retention and providing insights into the future of TME-targeting nanomedicine.
Siddique et al. [15] highlight advances in functionalized nanoparticles for cancer theranos-
tics, focusing on MRI-guided therapies and photothermal treatments, and discussing their
potential to revolutionize personalized cancer care.

The studies presented in this Special Issue underscore significant advancements in
the use of nanomaterials for cancer imaging, therapy, and theranostics, offering innovative
solutions for more personalized and targeted treatments. These contributions highlight
the development of dual-functional nanocomposites for improved imaging and treatment
precision, the integration of nanoparticles to overcome challenges like drug retention and
the blood–brain barrier, and the critical role of accurate dosimetric planning in radiother-
apy. Moreover, the reviews on metal–polymer nanoconjugates, tumor-microenvironment-
targeting nanoparticles, and functionalized nanoparticles for theranostics emphasize the
potential of these nanomaterials to enhance therapeutic specificity, biocompatibility, and
multifunctionality. Together, these findings pave the way for future clinical applications of
nanotechnology in cancer care, while addressing ongoing challenges like toxicity, stability,
and effective translation to clinical settings.
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