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Abstract: Photoanodes with ample visible-light absorption and efficient photogenerated charge
carrier dynamics expedite the actualization of high-efficiency photoelectrochemical water splitting
(PEC-WS). Herein, we fabricated the heterojunction nanostructures of In2S3/MoS2 on indium-doped
tin oxide glass substrates by indium sputtering and sulfurization, followed by the metal–organic
chemical vapor deposition of 2D MoS2 nanosheets (NSs). The photocurrent density of In2S3/MoS2

was substantially enhanced and higher than those of pristine In2S3 and MoS2 NSs. This improvement
is due to the MoS2 NSs extending the visible-light absorption range and the type-II heterojunction
enhancing the separation and transfer of photogenerated electron–hole pairs. This work offers a
promising avenue toward the development of an efficient photoanode for solar-driven PEC-WS.
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1. Introduction

Photoelectrochemical water splitting (PEC-WS) is propitious to produce hydrogen
(H2) to satisfy the world’s energy demands and environmental challenges since H2 gained
its importance as an ideal carbon-free energy carrier and an alternative to fossil fuels
in addition to its key roles in hydrogenation, petroleum refineries, and fertilizers [1,2].
However, the slow anode oxygen evolution reaction (OER) impedes the applicability of
PEC-WS on a large scale [1]. As a solution, semiconductor photoanodes have gained
research attention and become popular in solar energy conversion.

In2S3, an n-type semiconductor, has attracted considerable attention due to its rela-
tively narrow band gap of 2.0–2.3 eV for visible-light utilization, high photosensitivity,
and chemical stability [3,4]. However, pristine In2S3 shows a relatively low PEC efficiency
owing to its fast charge recombination inside the bulk and on the surface. Li et al. [5] re-
ported β-In2S3 nanosheets (NSs) with a photocurrent density of 35.7 µA/cm2. Yao et al. [6]
showed a PEC performance around 15 µA/cm2 by In2S3 NSs arrays. The formation of a
heterojunction with an appropriate semiconductor can effectively minimize this drawback,
resulting in improved charge separation and transfer and enhanced optical absorption.

Among the semiconductors that form favorable energy band alignments with In2S3,
2D-layered MoS2 can be a promising candidate because of its tunable bandgap energy,
excellent photoexcitation, good chemical stability, and earth abundance [7,8]. It also exhibits
tunable bandgaps from ~1.2 eV for the indirect gap of the bulk form to ~1.9 eV for the direct
gap of the monolayer and a relatively high mobility (a few hundred cm2/Vs) [8–10]. The
photoelectrochemical (PEC) activity of 2D MoS2 is also strongly affected by its architecture
standing vertically on the substrate, which provides additional conductive channels for
photoexcited carriers [11].
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Information on the PEC-WS of In2S3 heterojunctioned with vertically-standing 2D
MoS2 NSs is limited. Singh et al. [12] reported the photocatalytic reaction of In2S3 func-
tionalized with MoS2 nanoflowers. Liu et al. [13] showed that MoS2 nanodot-decorated
In2S3 nanoplates can be applied for PEC but at a low photocurrent level of 1 µA cm−2. Sun
et al. [14] later successfully applied a one-pot strategy for growing In2S3/MoS2 with an
anodic photocurrent of 0.06 mAcm−2 at 0.341 V vs. RHE; nevertheless, the performance
still has room for improvement. In the present study, we report vertical 2D MoS2 NSs on
In2S3 nanoparticles (NPs) as an alternative anodic choice to OER for significantly improved
PEC-WS. The heterojunction effect of In2S3/MoS2 was demonstrated through systematic
PEC analysis and photo-excited carrier transfer properties across In2S3/MoS2.

2. Materials and Methods

In2S3 was synthesized on indium-doped tin oxide (ITO) glass substrates via sputtering
at 30 W power under a pressure of 3 mTorr for 40 s, followed by sulfurization under a
H2S flow rate of 200 standard cubic centimeters per minute (SCCM) at 300 ◦C for 30 min
under a pressure of 10 Torr. MoS2 NSs were then decorated on the In2S3/ITO and bare ITO
substrates at 300 ◦C for 8 min under a pressure of 1 Torr by using a metal–organic chemical
vapor deposition (MOCVD) system with Mo (CO)6 and H2S gas (5 vol. % in balance N2) as
Mo and S precursors, respectively. Mo (CO)6 was vaporized at 20 ◦C and delivered into a
quartz tube using Ar gas of 20 SCCM. The flow rate of H2S gas was 65 SCCM.

The morphology of the samples was characterized via scanning electron microscopy
(SEM, Hitachi S-4800). Their crystal structures were investigated by micro-Raman spec-
troscopy using an excitation band of 532 nm and a charge coupled device detector. Their
optical property was characterized by UV–visible (UV–Vis) spectroscopy (Shimadzu UV-
2600). PEC cells were fabricated on 1 × 2 cm2 ITO glass substrates. PEC characterization
was performed using a three-electrode system with a Pt wire mesh as the working electrode
and Ag/AgCl as the reference electrode. The electrolyte solution comprised 0.3 M KH2PO4
with KOH. The light source was a 150 W Xe arc lamp that delivers 100 mW/cm2 simulated
AM 1.5 G irradiation. PEC measurements, including linear sweep voltammograms (LSVs)
recorded using a sourcemeter (Keithley 2400), and electrochemical impedance spectroscopy
(EIS) were conducted using an electrochemical analyzer (potentiostat/galvanostat 263A) in
a three-electrode reactor. EIS analysis was performed at a bias of 0.6 V while varying the ac
frequency from 100 kHz to 100 mHz. The IPCE of the electrode structure was measured
using a grating monochromator within the excitation wavelength range of 300–800 nm.
The hydrogen gas products were analyzed using a YL 6500 gas chromatograph (Young In
Chromass, Republic of Korea) equipped with a flame ionization detector and a thermal
conductivity detector.

3. Results

Figure 1a–c exhibit the top- and tilted-view SEM images of In2S3, 2D MoS2, and
In2S3/MoS2. In2S3 possessed a layer of NPs on the ITO substrate with the thickness of
~50 nm (Figure 1a). This particle network resembled a uniform structure that acted as a
seed layer for MoS2 growth. Vertically standing MoS2 NSs were uniformly generated on the
ITO substrate (Figure 1b) and In2S3 (Figure 1c). The morphological characteristics of MoS2
on the entire surface of In2S3 appeared as vertically aligned NSs with a height of ~180 nm
that developed by controlling the concentration ratio of Mo4+ to S2− during the MOCVD
reaction [11]. The adequate S2− environment encouraged the growth of vertically-standing
MoS2 NSs on In2S3.

The crystal structures of the samples (pristine In2S3, pristine MoS2, and In2S3/MoS2)
were investigated by Raman spectroscopy. Our previous study revealed that the MoS2 NSs
are few-layer 2D structures [2,11], which was also confirmed by Raman spectra (Figure 1d).
In2S3 exhibited Raman peaks around 255 and 297 cm–1, corresponding to β-In2S3 [15], and
two typical peaks of 2D-layered MoS2, corresponding to E1

2g and A1g modes [16] for the
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in-plane vibration of S and Mo atoms and the out-of-plane vibration of S atoms, respectively.
This finding indicates the successful growth of MoS2 NSs on In2S3.
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Figure 1. SEM images of (a) pristine In2S3, (b) pristine MoS2, and (c) In2S3/MoS2 and (d) Raman
spectra of all films.

The optical properties evaluated by the UV–Vis absorbance analyses were strongly
influenced by the presence of 2D MoS2 as shown in Figure 2a. Pristine MoS2 NSs exhibited
an absorption edge of ~750 nm and two prominent absorption peaks at ~610 and ~665
nm, known as B and A excitons, respectively, which are correlated with direct excitonic
transitions at the K point of the Brillouin zone [17]. Compared with pristine In2S3, the
In2S3/MoS2 heterostructure showed improved absorbance attributed to the enhanced
surface scattering of MoS2 2D morphology. This result suggests a substantial improvement
in the light absorption of the heterostructure with the decoration of MoS2 NSs. The optical
bandgap energies (Figure 2b) calculated according to the Tauc equation [18] were 2.12
(In2S3), 1.77 (MoS2), and 1.78 eV (In2S3/MoS2) as estimated from the intercept of the linear
portion of the Tauc plot. The similar bandgaps of MoS2 and In2S3/MoS2 amplified the
ability of MoS2 for light absorption.

The PEC performance was evaluated by LSVs under simulation with AM 1.5 G
illumination as depicted in Figure 3a. Compared with dark current curves, all the samples
exhibited photocurrent attributed to the PEC reaction. The photocurrent density of pristine
In2S3 was 0.097 mA/cm2, and that of In2S3 heterojunctioned with MoS2 was significantly
improved up to 1.28 mA/cm2 at 1.23 V vs. RHE, which was higher than that of pristine
MoS2 (0.85 mA/cm2 at 0.93 V vs. RHE). The enhanced PEC properties can be attributed to
the effective electron–hole separation and transfer through the heterojunction.
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Figure 3. (a) Photo and dark current density−potential curves; (b) Photoconversion efficiency; and
(c) Nyquist plots of PEC cells with pristine In2S3, pristine MoS2, and In2S3/MoS2. The yellow circle
is enlarged in (d).

Figure 3b shows the photoconversion efficiencies (η) of the samples estimated using
the following equation [19]:

η = J(Eo − Vapp)/Plight,

where J is the photocurrent density (mA/cm2) at the applied potential, Eo is the standard
reversible potential (1.23 V), Vapp is the applied potential, and Plight is the power density of
illumination.

In2S3/MoS2 showed an η of 0.75% at 1.23 V vs. RHE which was substantially higher
than that of pristine In2S3 (~0.1%). Figure 3c,d show the Nyquist plots of the EIS fitted
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using a simplified Randles circuit (inset in Figure 3d). In2S3/MoS2 exhibited smaller EIS
semicircles, indicating a lower charge transfer resistance (Rct) of 1727 Ω under illumination
than the pristine samples (16,350 Ω and 2308 Ω for In2S3 and MoS2, respectively). This
result suggests that the heterojunction significantly improved the charge transfer efficiency.

A thorough study was performed using IPCE and H2 evolution to understand how
the heterojunction enhanced the PEC performance. In2S3/MoS2 exhibited a peak value at
~440 nm and significant IPCE enhancement in the 600–750 nm region (Figure 4a), which
was affected by the surface modulation with 2D MoS2 NSs. Hydrogen evolution from
the dark cathode (Pt) was measured at 0.5 V versus Ag/AgCl using a three-electrode
configuration for 30 min. The amount of produced H2 was significantly increased by the
In2S3/MoS2 heterojunction as shown in Figure 4b, suggesting that the photocurrent was
attributed to the WS. In2S3/MoS2 formed a staggered heterojunction (Figure 4c) [2,20],
which was effective in separating and subsequently transferring photogenerated electrons
and holes to the cathode (Pt electrode) through In2S3 and onto the anode (MoS2), leading
to a boosted PEC performance.

Nanomaterials 2024, 14, x FOR PEER REVIEW 5 of 7 
 

 

Figure 3b shows the photoconversion efficiencies (η) of the samples estimated using 
the following equation [19]: 

η = J(Eo − Vapp)/Plight,  

where J is the photocurrent density (mA/cm2) at the applied potential, Eo is the standard 
reversible potential (1.23 V), Vapp is the applied potential, and Plight is the power density of 
illumination. 

In2S3/MoS2 showed an η of 0.75% at 1.23 V vs. RHE which was substantially higher 
than that of pristine In2S3 (~0.1%). Figure 3c,d show the Nyquist plots of the EIS fitted 
using a simplified Randles circuit (inset in Figure 3d). In2S3/MoS2 exhibited smaller EIS 
semicircles, indicating a lower charge transfer resistance (Rct) of 1727 Ω under illumination 
than the pristine samples (16,350 Ω and 2308 Ω for In2S3 and MoS2, respectively). This re-
sult suggests that the heterojunction significantly improved the charge transfer efficiency. 

A thorough study was performed using IPCE and H2 evolution to understand how 
the heterojunction enhanced the PEC performance. In2S3/MoS2 exhibited a peak value at 
~440 nm and significant IPCE enhancement in the 600–750 nm region (Figure 4a), which 
was affected by the surface modulation with 2D MoS2 NSs. Hydrogen evolution from the 
dark cathode (Pt) was measured at 0.5 V versus Ag/AgCl using a three-electrode configu-
ration for 30 min. The amount of produced H2 was significantly increased by the 
In2S3/MoS2 heterojunction as shown in Figure 4b, suggesting that the photocurrent was 
attributed to the WS. In2S3/MoS2 formed a staggered heterojunction (Figure 4c) [2,20], 
which was effective in separating and subsequently transferring photogenerated electrons 
and holes to the cathode (Pt electrode) through In2S3 and onto the anode (MoS2), leading 
to a boosted PEC performance. 

 
Figure 4. (a) IPCE plots and (b) hydrogen evolution amounts for 30 min of PEC cells with various 
working electrodes (pristine In2S3, pristine MoS2, and In2S3/MoS2) in 0.3 M KH2PO4 in KOH solution. 
(c) Schematic of the charge generation and transfer in the In2S3/MoS2 PEC cell. 

Figure 5a shows the photocurrent density–time (J-t) curves of all of the photoanodes 
over 30 min. The photocurrent of In2S3/MoS2 stabilized after an initial decay period of ~400 
s, which was similar to that of pristine MoS2. The initial photocurrent decay was attributed 
to recombination of the photogenerated holes with electrons [11]. After PEC reaction, the 
peak positions of Raman and UV–Vis absorption spectra of In2S3/MoS2 did not change, 
indicating no significant structural change. However, the full width at half maximum of 
Raman peaks slightly increased after reaction. Our recent study showed that MoS2 NSs 
are susceptible to subtle morphological changes due to the decomposition of MoS2, mainly 
the loss of S elements during PEC reaction [11]. 

Figure 4. (a) IPCE plots and (b) hydrogen evolution amounts for 30 min of PEC cells with various
working electrodes (pristine In2S3, pristine MoS2, and In2S3/MoS2) in 0.3 M KH2PO4 in KOH
solution. (c) Schematic of the charge generation and transfer in the In2S3/MoS2 PEC cell.

Figure 5a shows the photocurrent density–time (J-t) curves of all of the photoanodes
over 30 min. The photocurrent of In2S3/MoS2 stabilized after an initial decay period of
~400 s, which was similar to that of pristine MoS2. The initial photocurrent decay was
attributed to recombination of the photogenerated holes with electrons [11]. After PEC
reaction, the peak positions of Raman and UV–Vis absorption spectra of In2S3/MoS2 did
not change, indicating no significant structural change. However, the full width at half
maximum of Raman peaks slightly increased after reaction. Our recent study showed that
MoS2 NSs are susceptible to subtle morphological changes due to the decomposition of
MoS2, mainly the loss of S elements during PEC reaction [11].
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4. Conclusions

In this study, 2D MoS2 NSs were vertically grown on a layer of In2S3 NPs using
MOCVD. In2S3/MoS2 exhibited up to more than 13 times and 1.5 times higher photocurrent
densities than pristine In2S3 and pristine MoS2, respectively, because of the extended visible-
light absorption range and the efficient separation and transportation of the photogenerated
carriers by the type-II heterojunction. The formation of a heterojunction with MoS2 NSs led
to the maximum photoconversion efficiency of In2S3/MoS2 up to 0.75% at 1.23 V vs. RHE.
This work suggests that the In2S3/MoS2 heterojunction is one of the feasible photoanodes
for efficient PEC-WS.
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