The Development of a Flexible Humidity Sensor Using MWCNT/PVA Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensor Fabrication
2.3. Sensor Morphological Characterization
2.4. Electrical Resistance Measurements
2.4.1. Initial Electrical Resistance Measurements
2.4.2. Electrical Resistance under Humidity Levels
3. Results and Discussion
3.1. Humidity Sensor Size Assessment
3.1.1. Initial Electrical Resistance Measurements
3.1.2. Electrical Resistance under Different Humidity Levels
3.2. MWCNT Percentage Assessment
3.2.1. Morphological Characterization SEM
3.2.2. Initial Electrical Measurements
3.2.3. Electrical Measurements under Humidity
- PVA Matrix Swelling: As humidity increases, the hydrophilic PVA matrix absorbs water molecules and swells. This swelling increases the separation between the MWCNTs dispersed in the PVA, reducing the number of conductive paths between them. As a result, the overall electrical resistance of the sensor increases due to the reduced connectivity within the MWCNT network [33].
- MWCNT Water Absorption: The MWCNTs absorb water molecules, which leads to an increase in their electrical resistance. This occurs because the adsorbed water molecules alter the charge carrier density and mobility within the MWCNT network, which interferes with the electrical conductivity of the MWCNTs [22].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, C.H.; Chiu, H.L.; Chen, Y.C.; Yesilmen, M.; Schulz, F.; Ketelsen, B.; Vossmeyer, T.; Liao, Y.C. Highly Responsive PEG/Gold Nanoparticle Thin-Film Humidity Sensor via Inkjet Printing Technology. Langmuir 2019, 35, 3256–3264. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.B.; Lim, T.H.; Jeon, Y.M.; Gong, M.S. Inkjet Printing of Polymeric Resistance Humidity Sensor Using UV-Curable Electrolyte Inks. Macromol. Res. 2008, 16, 149–154. [Google Scholar] [CrossRef]
- Kulkarni, M.V.; Apte, S.K.; Naik, S.D.; Ambekar, J.D.; Kale, B.B. Ink-Jet Printed Conducting Polyaniline Based Flexible Humidity Sensor. Sens. Actuators B Chem. 2013, 178, 140–143. [Google Scholar] [CrossRef]
- Kinkeldei, T.; Mattana, G.; Leuenberger, D.; Ataman, C.; Lopez, F.M.; Quintero, A.V.; Briand, D.; Nisato, G.; de Rooij, N.F.; Tröster, G. Feasibility of Printing Woven Humidity and Temperature Sensors for the Integration into Electronic Textiles. Adv. Sci. Technol. 2012, 80, 77–82. [Google Scholar] [CrossRef]
- Soukup, R.; Hamáček, A.; Řeboun, J. Advanced Screen Printing for the Fabrication of Organic Humidity Sensors. In Proceedings of the 2012 4th Electronic System-Integration Technology Conference, ESTC 2012, Amsterdam, The Netherlands, 17–20 September 2012; pp. 8–12. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Liu, R.; Liu, J.; Li, Z.; Liu, X. Humidity Sensor Fabricated by Inkjet-Printing Photosensitive Conductive Inks PEDOT:PVMA on a Paper Substrate. RSC Adv. 2016, 6, 47498–47508. [Google Scholar] [CrossRef]
- Dubourg, G.; Katona, J.; Rodović, M.; Savić, S.; Kitic, G.; Niarchos, G.; Jancović, N.; Crnojević-Bengin, V. Flexible and Highly Sensitive Humidity Sensors Using Screen-Printed TiO2 Nanoparticles as Sensitive Layer. J. Phys. Conf. Ser. 2017, 939, 012008. [Google Scholar] [CrossRef]
- Gaspar, C.; Olkkonen, J.; Passoja, S.; Smolander, M. Paper as Active Layer in Inkjet-Printed Capacitive Humidity Sensors. Sensors 2017, 17, 1464. [Google Scholar] [CrossRef]
- Hassan, G.; Sajid, M.; Choi, C. Highly Sensitive and Full Range Detectable Humidity Sensor Using PEDOT:PSS, Methyl Red and Graphene Oxide Materials. Sci. Rep. 2019, 9, 15227. [Google Scholar] [CrossRef]
- Descent, P.; Izquierdo, R.; Fayomi, C. Printing of Temperature and Humidity Sensors on Flexible Substrates for Biomedical Applications. In Proceedings of the IEEE International Symposium on Circuits and Systems 2018, Florence, Italy, 27–30 May 2018. [Google Scholar] [CrossRef]
- He, P.; Brent, J.R.; Ding, H.; Yang, J.; Lewis, D.J.; O’Brien, P.; Derby, B. Fully Printed High Performance Humidity Sensors Based on Two-Dimensional Materials. Nanoscale 2018, 10, 5599–5606. [Google Scholar] [CrossRef]
- Chen, H.; Han, K.; Li, Y. Laser-Direct-Writing Assisted Preparation of Flexible Humidity Sensors Based on Semi-Interpenetrating Polymer Network for Applications in Non-Contact Human-Machine Interaction. Sens. Actuators B Chem. 2023, 394, 134486. [Google Scholar] [CrossRef]
- Wang, H.; Tang, C.; Xu, J. A Highly Sensitive Flexible Humidity Sensor Based on Conductive Tape and a Carboxymethyl Cellulose@graphene Composite. RSC Adv. 2023, 13, 27746–27755. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.G.; Narakathu, B.B.; Atashbar, M.Z.; Rebros, M.; Rebrosova, E.; Bazuin, B.J.; Joyce, M.K.; Fleming, P.D.; Pekarovicova, A. Printed Capacitive Based Humidity Sensors on Flexible Substrates. Sens. Lett. 2011, 9, 869–871. [Google Scholar] [CrossRef]
- Ma, X.; Ning, H.; Hu, N.; Liu, Y.; Zhang, J.; Xu, C.; Wu, L. Highly Sensitive Humidity Sensors Made from Composites of HEC Filled by Carbon Nanofillers. Mater. Technol. 2015, 30, 134–139. [Google Scholar] [CrossRef]
- Reddy, A.S.G.; Narakathu, B.B.; Atashbar, M.Z.; Rebros, M.; Rebrosova, E.; Joyce, M.K. Fully Printed Flexible Humidity Sensor. Procedia Eng. 2011, 25, 120–123. [Google Scholar] [CrossRef]
- Martadi, S.; Sulthoni, M.A.; Wiranto, G.; Surawijaya, A.; Herminda, I.D.P. Design and Fabrication of PVA-Based Relative Humidity Sensors Using Thick Film Technology. In Proceedings of the 2019 International Symposium on Electronics and Smart Devices, ISESD 2019, Badung, Indonesia, 8–9 October 2019; pp. 16–19. [Google Scholar] [CrossRef]
- Li, T.; Zhao, T.; Zhang, H.; Yuan, L.; Cheng, C.; Dai, J.; Xue, L.; Zhou, J.; Liu, H.; Yin, L.; et al. A Skin-Conformal and Breathable Humidity Sensor for Emotional Mode Recognition and Non-Contact Human-Machine Interface. npj Flex. Electron. 2024, 8, 3. [Google Scholar] [CrossRef]
- Turkani, V.S.; Narakathu, B.B.; Maddipatla, D.; Bazuin, B.J.; Atashbar, M.Z. A Fully Printed CNT Based Humidity Sensor on Flexible PET Substrate. In Proceedings of the 17th International Meeting on Chemical Sensors—IMCS 2018, Vienna, Austria, 15–19 July 2018. [Google Scholar]
- Zhou, G.; Byun, J.H.; Oh, Y.; Jung, B.M.; Cha, H.J.; Seong, D.G.; Um, M.K.; Hyun, S.; Chou, T.W. Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(Vinyl Alcohol) Filaments. ACS Appl. Mater. Interfaces 2017, 9, 4788–4797. [Google Scholar] [CrossRef]
- Arunachalam, S.; Gupta, A.A.; Izquierdo, R.; Nabki, F. Suspended Carbon Nanotubes for Humidity Sensing. Sensors 2018, 18, 1655. [Google Scholar] [CrossRef]
- Cao, C.L.; Hu, C.G.; Fang, L.; Wang, S.X.; Tian, Y.S.; Pan, C.Y. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films. J. Nanomater. 2011, 2011, 707303. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.; Wu, K.; Han, R.; Zhou, Z.; Cui, T. Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis. Sensors 2009, 9, 1714–1721. [Google Scholar] [CrossRef]
- Pan, T.; Yu, Z.; Huang, F.; Yao, H.; Hu, G.; Tang, C.; Gu, J. Flexible Humidity Sensor with High Sensitivity and Durability for Respiratory Monitoring Using Near-Field Electrohydrodynamic Direct-Writing Method. ACS Appl. Mater. Interfaces 2023, 15, 28248–28257. [Google Scholar] [CrossRef]
- Turkani, V.S.; Maddipatla, D.; Narakathu, B.B.; Saeed, T.S.; Obare, S.O.; Bazuin, B.J.; Atashbar, M.Z. A Highly Sensitive Printed Humidity Sensor Based on a Functionalized MWCNT/HEC Composite for Flexible Electronics Application. Nanoscale Adv. 2019, 1, 2311–2322. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Cao, T.; Zhou, L.; Gu, E.; Yu, D.; Jiang, D. Layer-by-Layer Assembly and Humidity Sensitive Behavior of Poly(Ethyleneimine)/Multiwall Carbon Nanotube Composite Films. Sens. Actuators B Chem. 2006, 119, 512–515. [Google Scholar] [CrossRef]
- Lee, J.; Cho, D.; Jeong, Y. A Resistive-Type Sensor Based on Flexible Multi-Walled Carbon Nanotubes and Polyacrylic Acid Composite Films. Solid State Electron. 2013, 87, 80–84. [Google Scholar] [CrossRef]
- Pan, X.; Xue, Q.; Zhang, J.; Guo, Q.; Jin, Y.; Lu, W.; Li, X.; Ling, C. Effective Enhancement of Humidity Sensing Characteristics of Novel Thermally Treated MWCNTs/Polyvinylpyrrolidone Film Caused by Interfacial Effect. Adv. Mater. Interfaces 2016, 3, 1600153. [Google Scholar] [CrossRef]
- Yoo, K.P.; Lim, L.T.; Min, N.K.; Lee, M.J.; Lee, C.J.; Park, C.W. Novel Resistive-Type Humidity Sensor Based on Multiwall Carbon Nanotube/Polyimide Composite Films. Sens. Actuators B Chem. 2010, 145, 120–125. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Chan, Y.C.; Zhang, K. Fast Response Resistive Humidity Sensitivity of Polyimide/Multiwall Carbon Nanotube Composite Films. Sens. Actuators B Chem. 2011, 152, 99–106. [Google Scholar] [CrossRef]
- Kim, H.S.; Kang, J.H.; Hwang, J.Y.; Shin, U.S. Wearable CNTs—Based Humidity Sensors with High Sensitivity and Flexibility for Real—Time Multiple Respiratory Monitoring. Nano Converg. 2022, 9, 35. [Google Scholar] [CrossRef]
- Manohara, S.R.; Samal, S.S.; Rudreshappa, G.E. Humidity Sensing Properties of Multiwalled Carbon Nanotube/Polyvinyl Alcohol Nanocomposite Films. Nanosci. Nanotechnol.-Asia 2017, 6, 128–134. [Google Scholar] [CrossRef]
- Fei, T.; Jiang, K.; Jiang, F.; Mu, R.; Zhang, T. Humidity Switching Properties of Sensors Based on Multiwalled Carbon Nanotubes/Polyvinyl Alcohol Composite Films. J. Appl. Polym. Sci. 2014, 131, 1–7. [Google Scholar] [CrossRef]
- Myung, J.L.; Cheol-Jin, L.; Singh, V.R.; Kum-Pyo, Y.; Nam-Ki, M. Humidity Sensing Characteristics of Plasma Functionalized Multiwall Carbon Nanotube-Polyimide Composite Films. In Proceedings of the IEEE Sensors, Lecce, Italy, 26–29 October 2008; pp. 430–433. [Google Scholar] [CrossRef]
- Ding, S.; Yin, T.; Zhang, S.; Yang, D.; Zhou, H.; Guo, S.; Li, Q.; Wang, Y.; Yang, Y.; Peng, B.; et al. Fast-Speed, Highly Sensitive, Flexible Humidity Sensors Based on a Printable Composite of Carbon Nanotubes and Hydrophilic Polymers. Langmuir 2023, 39, 1474–1481. [Google Scholar] [CrossRef]
- Ni, Q.; Zhang, D.; Shan, G.; Zheng, Q.; Du, M. Preparation of PVA/CNTs Film with High Stability and Humidity Sensitivity Based on Multiple Process. Sens. Actuators A Phys. 2024, 372, 115372. [Google Scholar] [CrossRef]
- Greenspan, L. Humidity Fixed Points of Binary Saturated Aqueous Solutions. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1977, 81A, 89–96. [Google Scholar] [CrossRef]
Materials | Production Method | Linearity | Sensitivity | Reference |
---|---|---|---|---|
PEG/Gold NP | Inkjet printing | Non-Linear | 105 variation from 1.8 to 95 RH% | [1] |
CNT ink | Gravure printing | Linear | 0.1%/% RH | [19] |
UV-curable electrolytes inks | Inkjet printing | Linear | 103 variation from 30 to 90 RH% | [2] |
PANI ink | Inkjet printing | Non-Linear | 308 Ω/RH% | [3] |
PEDOT:PVMA | Inkjet printing | Linear | −71.85%~−98.46% from 11~98% | [6] |
TiO2 | Screen printing | Linear | 4 orders of magnitude change from 24 to 90% RH | [7] |
PEDOT: PSS; Methyl Red; GO | Spin coating | Non-Linear | 180 kΩ/% RH | [9] |
GO | Drop casting | Non-Linear | 811 Ω/% RH | [10] |
Functionalized-MWCNT/HEC | Gravure printing | Linear | 0.048/% RH | [25] |
HEC/MWCNT | Casting | Linear | 0.10069 | [15] |
HEC/CBs | Casting | Linear | 0.10692 | |
pHEMA | Gravure press | Non-Linear | 172% at 80% RH | [16] |
PEI/oxidized MWCNT | Layer-by-layer(LbL) assembly | Non-Linear | 47 Ω/% RH | [26] |
Untreated and chemically treated MWCNT | Spraying | Linear | 120% resistance increase (sensitivity 1.34) | [22] |
Dispersed MWCNT | Dielectrophoresis | Linear | 0.5%/% RH | [23] |
MWCNT/PAA | Casting | Linear | 0.069/% RH | [27] |
SWCNT/PVA | Wet spinning | Non-Linear | 24 times higher from 60 to 100 RH% | [20] |
SWCNT/epoxy | Vacuum filtration | Linear | 0.03/% RH | [21] |
Plasma-treated-MWCNT/PI | Spin coating | Linear | 0.0047/% RH | [29] |
Functionalized-MWCNT/PI | Spin coating | Linear | 60 Ω/% RH | [34] |
PI/MWCNT | In situ polymerization | Linear | 0.00146/% RH | [30] |
MWCNT/PVP | Spin coating | Non-Linear | 4000% | [28] |
MWCNT/CNF | Near-field electrohydrodynamic direct writing (NFEDW) | Non-Linear | 61.5% (ΔR/R0) at 95 RH% | [24] |
PVA | Spin coating | Non-Linear | 105 variation from 35 to 94 RH% | [17] |
Functionalized-MWCNT/PVA | Casting | Non-Linear | 105 variation from 11 to 94% RH. | [32] |
CNT-COOH/PVA | Casting | Non-Linear | Switch 80–90% RH 32.3 at 100% RH | [33] |
CNT ink/PVP; CNT ink/PVA and CNT ink/gelatin | Spin coating | Non-Linear | 86, 48, and 31 Ω/% RH | [35] |
CNT-OH/crosslinked PVA | Spin coating | Linear | 99.97% from 40–86% RH. | [36] |
Salt | RH (%) | |
---|---|---|
Theoretical [37] | Hygrometer | |
Magnesium chloride (MgCl2) | 33 | 35 |
Potassium carbonate (K2CO3) | 44 | 44 |
Sodium chloride (NaCl) | 76 | 73 |
Potassium chloride (KCl) | 86 | 83 |
Potassium sulphate (K2SO4) | 97 | 99 |
Size | AIDTs (mm2) | AMWCNT/PVA (mm2) | Area Ratio |
---|---|---|---|
Small | 29.65 | 64 | 2.16 |
Medium | 75.72 | 132 | 1.74 |
Large | 105 | 210 | 2 |
Material | MWCNT % | Humidity Level (%) | Initial Resistance, R0 (Ω) | ΔR/R0 (%) | Dependence | Reference |
---|---|---|---|---|---|---|
Functionalized MWCNT/PVA nanocomposite | 5 | 11–50 | 5 × 1011 | −90 | Negative | [32] |
50–94 | 5 × 1010 | −100 | ||||
MWCNT-COOH/PVA | 5 | 11–75 | 6 × 104 | 41 | Positive | [33] |
75–100 | 8.5 × 104 | 488 | ||||
CNT ink/PVA | 2 | 11–96 | 110 | Positive | [35] | |
CNT-OH/crosslinked PVA | 1 | 40–84 | 108 | −99.97 | Negative | [36] |
MWCNT/PVA | 1 | 35–83 | 24 | 41 | Positive | This work |
83–99 | 33 | 509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.R.; Viana, J.C. The Development of a Flexible Humidity Sensor Using MWCNT/PVA Thin Films. Nanomaterials 2024, 14, 1653. https://doi.org/10.3390/nano14201653
Santos AR, Viana JC. The Development of a Flexible Humidity Sensor Using MWCNT/PVA Thin Films. Nanomaterials. 2024; 14(20):1653. https://doi.org/10.3390/nano14201653
Chicago/Turabian StyleSantos, Ana R., and Júlio C. Viana. 2024. "The Development of a Flexible Humidity Sensor Using MWCNT/PVA Thin Films" Nanomaterials 14, no. 20: 1653. https://doi.org/10.3390/nano14201653
APA StyleSantos, A. R., & Viana, J. C. (2024). The Development of a Flexible Humidity Sensor Using MWCNT/PVA Thin Films. Nanomaterials, 14(20), 1653. https://doi.org/10.3390/nano14201653