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Abstract: Bubble printing is a patterning method in which particles are accumulated by the con-
vection of bubbles generated by laser focusing. It is attracting attention as a method that enables
the high-speed, high-precision patterning of various micro/nanoparticles. Although the bubble
printing method is used for metallic particles and organic particles, most reports have focused on the
patterning of solid particles and not on the patterning of liquid particles. In this study, liquid metal
wiring patterns were fabricated using a bubble printing method in which eutectic gallium-indium
alloy (EGaIn) colloidal particles (≈diameter 0.7 µm) were fixed on a glass substrate by generating
microbubbles through heat generation by focusing a femtosecond laser beam on the EGaIn colloidal
particles. The wiring was then made conductive by replacing gallium oxide, which served as a
resistance layer on the surface of the EGaIn colloidal particles, with silver via galvanic replacement.
Fine continuous lines of liquid metal colloids with a line width of 3.4 µm were drawn by reducing
the laser power. Liquid metal wiring with a conductivity of ≈1.5 × 105 S/m was formed on a glass
substrate. It was confirmed that the conductivity remained consistent even when the glass substrate
was bent to a curvature of 0.02 m−1.

Keywords: bubble printing; femtosecond laser; laser direct writing; liquid metal; eutectic gallium–
indium alloys; conductive patterns; flexible wires

1. Introduction

Laser processing technology has many excellent features, such as non-contact process-
ing, high-precision processing on the micrometer to sub-micrometer scale, and high-speed
scalable processing [1–4], and is used in a variety of fields, including electronics [5,6],
medical applications [7,8], three-dimensional (3D) printing [9–11], and nanomaterial syn-
thesis [12]. Laser processing technologies can be classified into several types, such as
those that utilize photochemical reactions, heat generated by light, and light pressure [13].
Typical methods based on photochemical reactions, stereolithography, and two-photon
lithography, which solidify liquid resin or a slurry mixed with resin and nanoparticles
through a photopolymerization reaction, are used to create 3D structures on the micro-
to macroscale using various types of lasers, such as ultraviolet lasers, blue lasers, and
femtosecond pulse lasers [9,14,15]. As a method using light-induced heat, selective laser
sintering, a 3D printing method based on powder bed fusion, is used to melt powder
materials with heat and then solidify them to create a variety of 3D structures made of
resins, metals, ceramics, etc. [10,11,15]. Therefore, laser-based 3D printing technologies
such as stereolithography and laser sintering are used in a wide range of fields, including
medicine, dentistry, industry, photonics, and micro-electro-mechanical systems [9,16,17].

Optical manipulation can manipulate and assemble micro-/nanoparticles using optical
radiation pressure, without photochemical reactions or heating by light [18,19]. Although
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optical manipulation can manipulate single micro and nanoparticles, it is not suitable for
the versatile or high-speed patterning of various particles, because the magnitude and
direction of the optical radiation pressure depend on the material properties and size of
the particles [18]. Therefore, microbubble-assisted printing has attracted attention as an
alternative method for accumulating micro-/nanoparticles using a laser beam [13]. This
method, also called bubble printing [20,21], bubble-pen lithography [22], and laser-induced
microbubble technology [23,24], utilizes a phenomenon in which a laser beam is focused in
a liquid to generate bubbles, and the flow formed around the bubbles causes the particles
to aggregate [13]. A wiring speed of 10 mm/s has also been demonstrated [20], and the
patterning of various particles such as metals [19,21,23], polymers [20,22,24], and quantum
dots has been reported [20,22]. The high-precision patterning of submicron particles at
a single-particle resolution has also been achieved [22]. However, previous studies have
only demonstrated the patterning of solid particles, and the arrangement of liquid colloidal
particles has not been demonstrated.

In this study, liquid metal colloids were patterned onto a glass substrate using
microbubble-assisted printing to form electrically conductive lines. In many conven-
tional microbubble-assisted printing methods, bubbles were generated by locally heating
a substrate on which a thin metal film was formed by absorbing a laser beam [13,20–23].
However, because the metal-coated substrate was conductive, even if a pattern of conduc-
tive particles was fabricated on it, the wiring could not be directly formed. Several studies
on patterning by bubble printing on non-conductive substrates have been reported [23–27].
For example, Nishiyama et al. demonstrated a method to generate microbubbles by uti-
lizing the absorption of metal nanoparticles generated by an in situ photoreduction with
a focused laser beam, and deposited various particles such as SiO2, TiO2 and Fe2O3 on a
CaF2 substrate [26]. Edri et al. (2021) demonstrated bubble printing by irradiating a laser
beam along platinum wiring formed on a glass substrate by photoreduction, depositing
SiO2 particles on the metal wiring to form a multilayer structure [27]. In addition, bubble
printing using particle absorption has been used to form fine conductive patterns [23,24].
For example, Armon et al. demonstrated conductive line patterns of Ag nanoparticles
with a minimum line width of 1.7 µm [23]. Edri et al. (2020) also formed submicron wires
with a minimum line width of 650 nm with polyaniline particles, a type of conductive
polymer [24]. Table S1 compares this study to previous studies on bubble printing using
the aforementioned conductive materials.

In our method, we also utilize the absorption of liquid metal colloidal particles to
generate microbubbles and form conductive patterns on a non-conductive glass substrate.
In our experiments, a colloidal dispersion consisting of eutectic gallium–indium alloys
(EGaIn, 75% Ga, and 25% by weight), which were expected to have high electrical con-
ductivity (3.4 × 106 S/m [28]), was used. EGaIn has a melting point of 16 ◦C, is liquid
at room temperature [29] and has high biocompatibility [30]. Therefore, a wiring pattern
consisting of EGaIn colloidal particles was suitable for the flexible wiring required in
wearable sensors and biomedical devices. However, liquid metal colloids printed using
microbubble-assisted printing were insulated from each other because of the oxide films
on their surfaces. Therefore, the oxide film on the liquid metal colloid was removed by
applying an external mechanical force [31], laser sintering [32], and acoustic field to make it
conductive [33]. In this study, EGaIn colloidal particles patterned by bubble printing were
immersed in a silver nitrate solution and the oxide film on the surface of the EGaIn particles
was replaced with silver via galvanic replacement to produce conductive wiring. This
method was simpler than conventional activation methods, as it only required immersion
in liquid and had the advantage that the entire colloid surface could be activated uniformly.
Furthermore, compared to methods for forming flexible liquid-metal wiring, including
direct writing [34], screen printing [35], and vacuum filling in microchannels [36], this
method had the advantage that wiring patterns of various line widths and shapes can be
easily formed by controlling the laser intensity and scanning pattern, making it useful as
an automatic method for forming complex wiring patterns.
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In this study, we first evaluated the particle size of the prepared EGaIn colloidal parti-
cles using dynamic light scattering (DLS) and a scanning electron microscope (SEM) and
confirmed that the particles were less than 1 µm in size. Additionally, energy-dispersive
X-ray (EDX) analysis confirmed that the colloidal particles consisted of Ga and In. Next,
bubble printing with the EGaIn colloidal particles was performed using a custom-built
printing system equipped with a femtosecond laser. The EGaIn colloidal particles aggre-
gated along the laser scan trajectory. EDX measurements indicated that the aggregated
patterns contained Ga, confirming that liquid metal could be drawn by bubble printing and
that arbitrary shapes could be patterned by laser scanning. Because the EGaIn colloids pos-
sess an insulating oxide film on their surfaces, the patterned structures are non-conductive
and are unsuitable for wiring. Therefore, the oxide film was converted into a conduc-
tive metal film through galvanic replacement to render the structures conductive. We
investigated the optimal galvanic replacement processing time and silver nitrate solution
concentration for wiring applications and determined the conditions that achieved both
electrical conductivity and flexibility. In the experiments, the conductivity was calculated
using the resistance measured from the four-terminal measurements along with the cross-
sectional area and length of the formed patterns. Additionally, flexibility was assessed
based on the curvature and resistance values of the bent glass substrates. The line widths
of the formed patterns were examined by varying the laser power.

2. Materials and Methods
2.1. Materials

N-methyl pyrrolidone (NMP) and silver nitrate (AgNO3) were purchased from FUJI-
FILM Wako Pure Chemical Co. (Osaka, Japan). Gallium–indium eutectic was purchased
from Sigma-Aldrich Co., LLC (St. Louis, MO, USA). Gold wires (diameter 0.1 mm) were ob-
tained from Nilaco Co. (Tokyo, Japan). Conductive adhesive (Dotite D-500) was purchased
from Fujikura Kasei Co., Ltd. (Tokyo, Japan). A surface-mounted device light-emitting
diode (SMD LED, EIL33-3L) was obtained from OptoSupply Limited (Hong Kong, China).
Flexible glass with the trade name G-leaf (thickness: 100 µm) was obtained from Nippon
Electric Glass Co., Ltd. (Shiga, Japan).

2.2. Characterization

The EGaIn colloidal particles in the dispersion were analyzed using dynamic light
scattering (DLS, ELS-Z2, Otsuka Electronics Co., Ltd., Hirakata, Osaka, Japan). The scan-
ning electron microscope (SEM) images were obtained using a JSM-6060LV microscope
(JEOL Ltd., Akishima, Tokyo, Japan). Energy-dispersive X-ray (EDX) spectra and mapping
images were obtained using SU8010 (Hitachi High-Tech Corp., Minato-ku, Tokyo, Japan).
The SEM observation and EDX analysis of the samples were gold deposited. Particle
size measurements using SEM images were performed using ImageJ software (version
1.54, NIH, Bethesda, MD, USA). The conductivity of the fabricated lines was calculated
using the resistance and size of the object. A gold wire was attached to the fabricated line
using conductive adhesive. The observation and size (length and width) of the fabricated
line were evaluated using a VHX6000 microscope (Keyence Corp., Osaka, Japan). The
height of the fabricated line was measured using a laser scanning microscope (VK-X250;
Keyence Corp., Osaka, Japan). The resistance of the object was then measured using a
digital multimeter (Agilent 34410A 6 1/2 digital multimeter, Agilent Technologies, Inc.,
Santa Clara, CA, USA) in a four-terminal sensing mode.

2.3. Bubble Printing System

Figure 1a shows the working principle of the bubble printing of liquid metal colloids.
In this method, a femtosecond laser beam focused onto a glass substrate is absorbed by
liquid metal colloids on the substrate, generating localized heat. The local heating generates
microbubbles, and liquid metal colloids are attracted around the microbubbles by thermal
and Marangoni convection. When a focused spot is scanned on the glass substrate, the
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microbubbles follow the focus, and a pattern of aggregated liquid metal colloids is formed
along the laser scanning path.
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Figure 1. Working principle and optical system of bubble printing. (a) Working principle,
(b) Schematic of the bubble printing system.

To demonstrate bubble printing, we constructed an optical system using a femtosecond
laser, Galvano scanners, and an XYZ stage (Figure 1b). In our laboratory, we have developed
several types of stereolithography systems, such as a blue laser scanning stereolithography
system [37–40] and two-photon lithography systems with a femtosecond laser [41,42]. In
this study, a bubble printing system was developed using basic two-photon lithography
technology. The detailed setup of this system is as follows. Laser light emitted by a
femtosecond laser (Mai Tai VF, Spectra-Physics Inc., Milpitas, CA, USA) with a wavelength
of 752 nm was adjusted using a variable neutral density (ND) filter. The laser was turned
on and off with an automatic open/closed shutter. The laser diameter was then expanded
using a beam expander (magnification: 10×) and laser scanning was performed using a
galvanometer mirror (GM-1015, Canon Inc., Tokyo, Japan). The galvano mirror reflected
laser beams according to 2D patterns. Next, after passing through the splitter cube, the
laser beam was focused by an objective lens with a numerical aperture of 0.65 onto the
glass substrate on which the EGaIn colloidal particle solution was dropped. In addition, the
laser beam reflected from the substrate was reflected by the splitter cube, passed through
the short pass filter, and focused on a charge-coupled device (CCD) camera. The laser
scanning began after the focal position was adjusted to the upper surface of the glass
substrate using an XYZ stage (OSMS20-85(XYZ), SIGMAKOKI Co., Ltd., Hidaka, Saitama,
Japan). To form large-scale patterns that exceed the field of view of the objective lens, after
scanning with the galvano mirrors, the XYZ stage is driven and the next area is drawn.
After completing bubble printing, a washing process was performed to remove excess
EGaIn colloidal particles. Thus, only the particles aggregated by the bubbles generated
through laser irradiation adhered to the substrate and remained, allowing for the formation
of any pattern during the laser scan.

2.4. Preparation of EGaIn Colloidal Particles

The EGaIn colloidal particles were prepared according to the method described by
David et al. [43]. NMP (15 mL) and EGaIn (1 g) were placed in a 20 mL vial. The sample
was then fixed to a probe-type ultrasonic irradiation device (SONIFIER 250, BRANSON
Co., Danbury, CT, USA) and irradiated at a duty cycle of 1 s and output of 3 for 20 min at 0
◦C.

3. Results and Discussion
3.1. Characterization of EGaIn Colloidal Particles

Dispersions of EGaIn colloidal particles in NMP as the solvent were used. EGaIn
colloidal particles were obtained by sonicating bulk EGaIn mixed in a solvent, and dynamic
light scattering (DLS) measurements confirmed that the particles had an average diameter of
approximately 0.7 ± 0.2 µm (Figure S1). On the other hand, the average size of the prepared
particles measured by SEM was approximately 0.8 ± 0.3 µm (Figures S1 and 2a). The
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particle size obtained from the SEM measurements was slightly larger than that obtained
using DLS, possibly owing to the fusion or flattening of the particles when placed on the
SEM substrate. David et al. used a similar method to prepare EGaIn colloidal particles and
obtained good agreement with an average particle size of 1 µm [43]. Furthermore, EDX
mapping of the particles obtained by SEM confirmed that they were composed of gallium
(Figure 2b) and indium (Figure 2c). The slightly blurred contrast of the indium mapping
compared to that of the gallium mapping is probably because of the high proportion of
gallium in EGaIn. It is suggested that the particles consisted of EGaIn. This result indicates
that a dispersion consisting of EGaIn colloidal particles was obtained.
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3.2. Bubble Printing of EGaIn Colloidal Particles

The dispersion of EGaIn colloidal particles on a cover glass was irradiated by a 752 nm
femtosecond laser beam. The galvano mirrors for laser scanning and XYZ stage were
controlled by a computer, and the experiment was recorded using a CCD camera. The laser
beam was focused on the interface between the substrate and dispersion solution with a
lens to form a focal point. Microbubble generation was observed in the EGaIn colloidal
particle dispersion (Supplemental Video S1), while no bubbles were observed in NMP alone
(Supplemental Video S2). This is considered to be caused by the absorption of the laser
beam by the EGaIn colloidal particles, which generates heat and microbubbles. Bubbles
were observed even when water was used as a dispersant instead of NMP; however, large
amounts of bubbles were generated and stable modeling was difficult (Supplemental
Video S3). Nishiyama et al. used a water–ethanol mixture as a solvent for bubble printing
and concluded that high fabrication accuracy could not be obtained with water alone
and that the addition of ethanol, which has low evaporation energy, facilitates bubble
generation and high fabrication accuracy [26]. On the other hand, Edri et al. stated that
the use of NMP, which is a solvent with a high boiling point (202 ◦C), makes it easy to
control microbubbles [24,27]. Both Nishiyama et al. and Edrin et al. appear to reach
conflicting conclusions, although they argue about the ease of vaporization. NMP was
more appropriate than water for this study, but it would be difficult to discuss solvents
for bubble printing based simply on the ease of evaporation alone. Bubble generation is
related to surface tension. As water is a liquid with high surface tension (72.14 mNs/m2

at 25 ◦C [44]), the generation of bubbles with small diameters requires greater internal
pressure owing to Laplace pressure.

Figure 3a shows the results of scanning the laser from left to right. Agglomerated
particles were observed after the laser scanning, while bubbles were generated in the center
of the image (Supplemental Video S1). It is inferred that the EGaIn colloidal particles are
fixed at the interface between the bubble and substrate owing to the convection of the
solvent around the bubble (Figure 3b,c). To form the pattern, the focus on the substrate was
moved (800 µm/s) along a predetermined path using a galvanometer mirror to form the
line pattern. Figure 4a shows a camera image of a 20 µm wide model formed using a laser
power of 50 mW. An EDX mapping of the agglomerated structure of the particles confirmed
that it was derived from gallium and indium, and thus, it was confirmed that it was an
agglomerated structure of EGaIn colloidal particles. The laser scanning microscopy results
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show that the fabricated line is approximately 1 µm thick (Figure S2), and approximately
the same as the diameter of the EGaIn colloidal particles.
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Next, YNU (Figure 4a) and dumbbell (Figure 4b) patterns were fabricated to confirm
that patterns could be fabricated by laser scanning. The result indicated that bubble prints
of liquid colloids were demonstrated for the first time, as far as we know. Furthermore, the
conductivity was evaluated using a four-terminal method with conductive adhesive on
a gold wire in the squares at both ends of the dumbbell pattern, and the result was that
high resistance (>1 GΩ) and conductivity could not be obtained. The conductivity is low
compared to the bulk conductivity of EGaIn (3.4 × 106 S/m [28]), which suggests that the
conductivity of the fabricated wiring itself is lowered or that the wiring is defective. As
no obvious defects were noticed when the wiring was observed under high magnification
with SEM (Figure 4c), the resistivity of the wiring itself formed with liquid metal colloids
was considered high.

3.3. Improving the Electrical Conductivity of EGaIn Colloid Wires Using Galvanic Displacement

Previous studies have reported that EGaIn colloidal particles have a 0.5–1 nm thick
layer of gallium oxide (α-Ga2O3 or β-Ga2O3) on their surface [43]. Although EGaIn is con-
ductive, gallium oxide is an ultra-wide-bandgap semiconducting material [45]. Therefore,
the conductivity of the fabricated pattern should be considered low [46]. David et al. used
galvanic replacement, a substitution method that utilizes the difference in the reduction
potentials of metals [47] to replace the gallium oxide layer on the surface of EGaIn with a
conductive metal, to fabricate highly conductive particles [43]. However, this method can-
not be directly adapted for bubble printing. Their method used water as a solvent during
the galvanic replacement of particles; however, as mentioned above, water-based bubble
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printing is difficult to pattern in this system. Galvanic replacement was not confirmed
when NMP was used as the solvent (Figure S3). Unlike David et al. [43], we considered a
method of galvanic replacement after pattern formation (Figure 5) instead of direct galvanic
replacement on the particles. This is because NMP is better suited for bubble printing in a
solvent, whereas galvanic replacement is better suited for an aqueous solution.
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Figure 5. Illustration of the improved conductivity of a fabricated line using galvanic displacement.

Galvanic replacement was performed by immersing the dumbbell pattern in aqueous
AgNO3 solution for 24 h. Because the reduction potential of gallium (E◦ = −0.549 V [48]) is
lower than that of silver (E◦ = 0.7996 V [48]) in galvanic replacement, gallium is oxidized
and converted to gallium ions, while silver ions are reduced and deposited on the particle
surface [47,49]. Figure 6 shows the images of the patterns when immersed in aqueous
AgNO3 solutions of different concentrations. The sample immersed in 0.5 M AgNO3
formed numerous needle-like structures on the pattern, while the sample immersed in
12.7 M AgNO3 solution maintained the shape of the pattern. The value of 12.7 M was
chosen to be close to a saturated aqueous solution of silver nitrate at 20 ◦C. EDX spectra
confirmed that, during galvanic replacement, the formed pattern in gallium oxide of the
EGaIn colloid surface was replaced with silver (Figures S4 and S5). These results are
consistent with the report of Hoshyargar et al. that the surface morphology of EGaIn after
galvanic replacement varies with the concentration of the AgNO3 solution [49]. David
et al. explained that the surface structure changes with concentration because galvanic
replacement involves two processes: nucleation and polycrystal growth [43]. Galvanic
replacement at high concentrations favors the fabrication of wiring. This is because, during
galvanic replacement at a low concentration, the needle-like structures grow outside the
fabricated pattern, reducing the accuracy of modeling and increasing the likelihood of short
circuits. The conductivities of the samples galvanically substituted with 0.5 M AgNO3 and
12.7 M AgNO3 were (6.1 ± 1.6) × 104 and (1.4 ± 0.6) × 106 S/m, respectively. Conductivity
is greatly enhanced after galvanic replacement, possibly because of the replacement of
gallium oxide with silver, which acts as a conductor. The growth of silver polycrystals in
galvanic substitution may have improved conductivity due to reduced internal defects.
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AgNO3: (a) 0.5 M and (b) 12.7 M. Immersion time: 24 h.

To demonstrate that liquid metal colloid wiring is conductive, electronic circuits to
light up SMD LEDs were formed using conductive EGaIn patterns obtained by galvanic
replacement with 12.7 M AgNO3. This confirmed that the EGaIn patterns can function as
wiring, as shown in Figure 7 and Figure S6.
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Figure 7. Confirmation that the fabricated line functions as wiring from the lighting of the SMD LED.
Immersed in 12.7 M AgNO3 for 24 h.

The EDX peak for Ga disappears at 12.7 M. In the case of immersion in 12.7 M AgNO3,
no gallium-derived peaks were detected, even when the EDX acceleration voltage was
increased to 20 kV (Figure S7). The X-ray production range of silver with an acceleration
voltage of 20 kV from Castaing’s equation [50] is 1.1 µm. The X-ray production range was
larger when calculated using Ga or In. All the gallium is estimated to be replaced by silver
because the fabrication line is approximately 1 µm thick (Figure S2). In the EDX spectrum
of the fabricated line, a silicon peak originating from the glass substrate was observed at
an acceleration voltage of 20 kV (Figure S7), indicating that the thickness of the fabricated
line was analyzed. In addition, indium peaks were observed, which remained within the
fabricated line. The conductivity of the sample immersed in 12.7 M is lower than that of
silver (6.30 × 107 S/m [51]). As the wiring is formed by agglomerating particles that are
not in complete contact with each other, areas where they are in contact may exist, and this
may reduce the conductivity. Although conductive wiring has been successfully fabricated,
we expected that wiring fabricated under these conditions would have difficulty combining
with the flexibility derived from liquid metal.

Next, we examined the conditions under which conductivity and flexibility could be
expected. The immersion time in 12.7 M AgNO3 varied from 24 h to 1, 3, 5, and 10 min.
After the immersion for 1, 3, and 5 min, both Ag and Ga peaks were observed in the EDX
spectrum (Figures S8–S10), and it was assumed that the wiring structure was formed with
only the surface replaced by silver. However, when the immersion time was increased
to 10 min, EDX mapping showed that gallium was lost at many locations, although the
remaining areas of gallium could be detected (Figure S11). Longer immersion times were
associated with a lower Ga content. The conductivity of each sample was then evaluated.
Two of the six samples immersed for 1 min in AgNO3 were not conductive, and even those
that were conductive had a maximum conductivity of 1.2 × 103 S/m. This is considered to
be owing to the insufficient galvanic displacement and low conductivity at an immersion
time of 1 min. After 3, and 5, and 10 min of immersion, the conductivities were (7.1 ± 11)
× 104, (1.5 ± 2.0) × 105, and (7.9 ± 5.4) × 105 S/m, respectively. Higher conductivity was
obtained with longer silver nitrate immersion times. This is consistent with the increase in
the intensity of silver in EDX. The EDX results and conductivity measurements indicated
that the sample with 5 min galvanic replacement at 12.7 M was the best sample in achieving
both flexibility and conductivity. This is because sufficient EGaIn remained to provide
flexibility and conductivity. It is considered sufficiently conductive for wiring use. Under
these conditions, we believe that EGaIn colloidal particles with conductive metal shells,
similar to those reported by David et al. [43], form a line-like structure, as shown in Figure 5.

To demonstrate flexible wiring, we used an ultra-thin glass substrate (G-Leaf OA-10G,
Nippon Electric Glass Co., Ltd., Otsu, Siga, Japan) with a thickness of 100 µm, which
has excellent properties such as high flexibility, high hardness, and optical transparency.
Specifically, EGaIn colloidal particles were bubble printed to fabricate wiring, immersed in
12.7 M AgNO3 for 5 min, and then deformed at curvatures of 0, 0.050, 0.010, 0.013, 0.017,
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and 0.020 mm−1 to measure the resistance. A jig with the specified curvature was fabricated
using a fused deposition modeling (FDM)-type 3D printer (Guider 2, Flashforge Technology
Co., Ltd., Jinhua, Zhejiang, China) and bent by fixing flexible glass with fabricated wiring.
The results showed no significant change in the resistance to wire bending (Figure 8). It was
confirmed that the conductivity was maintained against bending, and flexible wiring was
achieved. In addition, the flexible glass itself was destroyed at a curvature of 0.025 mm−1,
so the wiring itself could withstand bending of more than 0.020 mm−1 in curvature.
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3.4. Fabrication of a Fine Line Pattern

Because controlling the laser power is considered to change the bubble diameter and
determine the line width of the pattern, we investigated the minimum laser power required
to generate bubbles and accumulate the particles on the substrate. Figure 9 shows the
linewidths of the patterns at different laser powers ranging from 15 to 50 mW. The minimum
line width of 3.4 µm was achieved at 15 mW, which was the lowest laser power that enabled
bubble printing. The line width could be controlled by increasing the laser power.
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4. Conclusions

NMP dispersions of EGaIn colloidal particles were obtained by ultrasonic irradiation.
The diameter of the particles was confirmed to be approximately 1 µm using DLS and SEM.
Direct laser wiring using a femtosecond laser was performed with the NMP dispersion of
EGaIn colloidal particles. Bubble prints of liquid colloids were demonstrated for the first
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time, as far as we know. SEM-EDX and CCD observations confirmed that the microbubbles
generated by irradiating the NMP dispersion of the EGaIn colloidal particles by a fem-
tosecond laser beam caused the deposition of particles on the glass substrate according to
the trajectory of the laser scanning. Because the gallium oxide layer on the surface of the
EGaIn colloidal particles functions as a resistance layer, we replaced gallium oxide with
silver through galvanic replacements. As a result, optimized conductive wiring with a
conductivity of (1.5 ± 2.0) × 105 S/m was successfully fabricated. In addition, the ability to
achieve both conductivity and flexibility was demonstrated by a bending test with wiring
fabricated on a flexible glass substrate. Since the flexibility of glass substrates is limited,
more flexible organic films will be considered in the future. Furthermore, the optimization
of the laser power in bubble printing enabled the wiring of a fine line pattern with a
minimum line width of 3.4 µm. The proposed method can be used to fabricate flexible
conductive wiring consisting of liquid metal colloids, thereby allowing the fabrication of
sophisticated flexible electronic devices such as sensors and batteries.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nano14201665/s1. Table S1: Comparison of this study with previous
papers on bubble printing with conductive materials; Figure S1: Scanning electron microscope
(SEM) image and dynamic light scattering (DLS) histogram of gallium–indium eutectic alloy (Ga-
In) particles; Figure S2: Example of height evaluation of the fabricated line using a laser scanning
microscope; Figure S3: Energy-Dispersive X-ray Spectroscopy (EDX)-SEM image of a sample in which
silver nitrate (AgNO3) was added to NMP to attempt galvanic replacement of the surface of Ga-In
colloidal particles. EDX mapping of Silver (Ag) on Ga-In colloidal particles has not been observed,
and experiments using Ga-In colloidal particles in N-methylpyrrolidone (NMP) confirm the difficulty
of galvanic replacement of the colloidal particles. Acceleration voltage: 6 kV; Figure S4: EDX spectra
of the inside and outside of the processed line for galvanic replacement with 0.5 M AgNO3 for 24 h
and the corresponding EDX mapping of gallium (Ga) and Ag. Acceleration voltage: 6 kV; Figure S5:
EDX spectra of the inside and outside of the processed line for galvanic replacement with 12.7 M
AgNO3 for 24 h and the corresponding EDX mapping of Ga and Ag. Acceleration voltage: 6 kV;
Figure S6: Off state of the fabricated wiring and SMD LED; Figure S7: EDX spectra of the inside
and outside of the processed line for galvanic replacement with 12.7 M AgNO3 for 24 h and the
corresponding EDX mapping of Ga and Ag. Acceleration voltage: 20 kV; Figure S8: EDX spectra
of the inside and outside of the processed line for galvanic replacement with 12.7 M AgNO3 for
1 min and the corresponding EDX mapping of Ga and Ag. Acceleration voltage: 6 kV; Figure S9:
EDX spectra of the inside and outside of the processed line with galvanic replacement with 12.7 M
AgNO3 for 3 min and the corresponding EDX mapping of Ga and Ag. Acceleration voltage: 6 kV;
Figure S10: EDX spectra of the inside and outside of the processed line with galvanic replacement
with 12.7 M AgNO3 for 5 min and the corresponding EDX mapping of Ga and Ag. Acceleration
voltage: 6 kV; Figure S11: EDX spectra of the inside1, inside 2, and outside of the processed line with
galvanic replacement with 12.7 AgNO3 for 10 min and the corresponding EDX mapping of Ga and
Ag. Acceleration voltage: 6 kV; Supplemental Video S1: Microbubble generation was observed in
the EGaIn colloidal solution dispersed in NMP and agglomerated particles were observed after laser
scanning; Supplemental Video S2: Laser irradiation of NMP solution; Supplemental Video S3: Excess
microbubble generation in liquid metal colloidal solution dispersed in water.
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