Nanomaterials Toward CO2 Reduction and Conversion
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Kumar, L. Nanostructured catalysts for CO2 reduction: Systematic insights and emerging strategies. Res. Chem. Intermed. 2024, 50, 195. [Google Scholar] [CrossRef]
- Li, T.; Huang, H.; Wang, S.; Mi, Y.; Zhang, Y. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Res. 2023, 16, 8542. [Google Scholar] [CrossRef]
- Mustafa, A.; Lougou, B.G.; Shuai, Y.; Wang, Z.; Razzaq, S.; Shagdar, E.; Zhao, J.; Shan, J. Recent progresses in the mechanism, performance, and fabrication methods of metal-derived nanomaterials for efficient electrochemical CO2 reduction. J. Mater. Chem. A 2021, 9, 4558. [Google Scholar] [CrossRef]
- Saleh, T.A. Nanomaterials and hybrid nanocomposites for CO2 capture and utilization. RSC Adv. 2022, 12, 23869. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Liu, Y.; Song, Y.; Juang, L.; Guo, W.; Cao, X.; Dou, Y.; Cheng, L.; Geng, L.; Hu, Q.; et al. Recent development of nanomaterials for carbon dioxide electroreduction. SmartMat 2022, 3, 35. [Google Scholar] [CrossRef]
- Youns, Y.T.; Manshad, A.K.; Ali, J.A. Sustainable aspects behind the application of nanotechnology in CO2 sequestration. Fuel 2023, 349, 128680. [Google Scholar] [CrossRef]
- Kedruk, Y.Y.; Contestabile, A.; Zeng, J.; Fontana, M.; Laurenti, M.; Gritsenko, L.V.; Cicero, G.; Pirri, C.F.; Abdullin, K.A. Morphology Effects on Electro- and Photo-Catalytic Properties of Zinc Oxide Nanostructures. Nanomaterials 2023, 13, 2527. [Google Scholar] [CrossRef] [PubMed]
- Andrade, Ó.R.; Camarillo, R.; Martínez, F.; Jiménez, C.; Rincón, J. Impact of the Precursor on the Physicochemical Properties and Photoactivity of TiO2 Nanoparticles Produced in Supercritical CO2. Nanomaterials 2023, 13, 2328. [Google Scholar] [CrossRef] [PubMed]
- Dubadi, R.; Jaroniec, M. One-Pot Mechanochemical Synthesis of Carbons with High Microporosity and Ordered Mesopores for CO2 Uptake at Ambient Conditions. Nanomaterials 2023, 13, 2262. [Google Scholar] [CrossRef] [PubMed]
- Karawek, A.; Kittipoom, K.; Tansuthepverawongse, L.; Kitjanukit, N.; Neamsung, W.; Lertthanaphol, N.; Chanthara, P.; Ratchahat, S.; Phadungbut, P.; Kim-Lohsoontorn, P.; et al. The Photocatalytic Conversion of Carbon Dioxide to Fuels Using Titanium Dioxide Nanosheets/Graphene Oxide Heterostructure as Photocatalyst. Nanomaterials 2023, 13, 320. [Google Scholar] [CrossRef] [PubMed]
- Hiragond, C.B.; Powar, N.S.; In, S.-I. Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction. Nanomaterials 2020, 10, 2569. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camarillo, R. Nanomaterials Toward CO2 Reduction and Conversion. Nanomaterials 2024, 14, 1676. https://doi.org/10.3390/nano14201676
Camarillo R. Nanomaterials Toward CO2 Reduction and Conversion. Nanomaterials. 2024; 14(20):1676. https://doi.org/10.3390/nano14201676
Chicago/Turabian StyleCamarillo, Rafael. 2024. "Nanomaterials Toward CO2 Reduction and Conversion" Nanomaterials 14, no. 20: 1676. https://doi.org/10.3390/nano14201676
APA StyleCamarillo, R. (2024). Nanomaterials Toward CO2 Reduction and Conversion. Nanomaterials, 14(20), 1676. https://doi.org/10.3390/nano14201676