A Review of Wide Bandgap Semiconductors: Insights into SiC, IGZO, and Their Defect Characteristics
Abstract
:1. IGZO
1.1. Introduction
1.2. Physical Properties
1.3. Defects
1.3.1. Oxygen Vacancy
1.3.2. Oxygen Interstitial
1.3.3. Hydrogen Interstitial
1.3.4. Defects’ Impacts on Device Performance
1.3.5. Post-Processes
1.4. Application
1.4.1. Display Devices
1.4.2. DRAM
2. SiC
2.1. Introduction
2.2. Physical Properties
2.3. Defects
2.3.1. Intrinsic Defects
Carbon Vacancy
Ref | (+2/+1) | (+1/0) | (0/−1) | (−1/−2) | (+2/0) | (0/−2) |
---|---|---|---|---|---|---|
[145] | 1.67/1.64 | 1.75/1.84 | 2.8/2.71 | 2.74/2.79 | 1.71/1.74 | 2.77/2.75 |
[158] | 1.74/1.65 | 1.96/2.03 | 2.58/2.47 | 3.1/– | –/– | –/– |
[159] | 1.18/0.97 | 1.22/1.34 | 2.28/2.09 | 2.41/2.21 | –/– | –/– |
[160] | 0.99/0.97 | 1.47/1.52 | 2.07/2.47 | 2.49/2.85 | –/– | –/– |
[150] | –/– | –/– | –/– | –/– | 1.9/1.84 | 2.67/2.6 |
[148] | 1.44/1.44 | 1.51/1.61 | –/2.5 | –/2.53 | –/– | 2.54/– |
Silicon Vacancy
Carbon Interstitial
Silicon Interstitial
Carbon Antisite
Silicon Antisite
2.3.2. Impurities
Nitrogen
Aluminum
Boron
Iron
Nickel
Vanadium and Hydrogen
2.3.3. Complexes
Carbon Clusters
Other Complexes
2.4. Post-Processes
2.4.1. Carrier Lifetime
2.4.2. Mobility
2.4.3. Instability
2.5. Application
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosono, H.; Yasukawa, M.; Kawazoe, H. Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides. J. Non-Cryst. Solids 1996, 203, 334–344. [Google Scholar] [CrossRef]
- Hosono, H.; Kikuchi, N.; Ueda, N.; Kawazoe, H. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J. Non-Cryst. Solids 1996, 198–200, 165–169. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Nomura, K.; Hosono, H. Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 2010, 11, 044305. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Hong, T.; Lee, H.-M.; Kim, K.; Sasase, M.; Kim, J.; Hosono, H.; Park, J.-S. Amorphous IGZO TFT with High Mobility of ∼70 cm2/(V s) via Vertical Dimension Control Using PEALD. ACS Appl. Mater. Interfaces 2019, 11, 40300–40309. [Google Scholar] [CrossRef]
- Ide, K.; Nomura, K.; Hosono, H.; Kamiya, T. Electronic Defects in Amorphous Oxide Semiconductors: A Review. Phys. Status Solidi A 2019, 216, 1800372. [Google Scholar] [CrossRef]
- Billah, M.M.; Hasan, M.M.; Jang, J. Effect of Tensile and Compressive Bending Stress on Electrical Performance of Flexible a-IGZO TFTs. IEEE Electron Device Lett. 2017, 38, 890–893. [Google Scholar] [CrossRef]
- Lee, S.; Jeon, S.; Chaji, R.; Nathan, A. Transparent Semiconducting Oxide Technology for Touch Free Interactive Flexible Displays. Proc. IEEE 2015, 103, 644–664. [Google Scholar] [CrossRef]
- Won, D.; Bang, J.; Choi, S.H.; Pyun, K.R.; Jeong, S.; Lee, Y.; Ko, S.H. Transparent Electronics for Wearable Electronics Application. Chem. Rev. 2023, 123, 9982–10078. [Google Scholar] [CrossRef]
- Kase, N.; Kimizuka, N.; Miyakawa, N. Recent progress of the single crystal growth of homologous (InGaO3)m(ZnO)n. CrystEngComm 2022, 24, 4481–4495. [Google Scholar] [CrossRef]
- Assenmacher, W.; Schnakenburg, G.; Michiue, Y.; Kanke, Y.; Kimizuka, N.; Mader, W. Synthesis and crystal structure characterization of InGaZnO4 with a new defect structure. J. Solid State Chem. 2014, 215, 176–183. [Google Scholar] [CrossRef]
- Medvedeva, J.E.; Bhattarai, B.; Buchholz, D.B. Electronic Structure and Structural Randomness. In Amorphous Oxide Semiconductors; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 31–72. ISBN 978-1-119-71564-1. [Google Scholar]
- Noh, H.-K.; Chang, K.J.; Ryu, B.; Lee, W.-J. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors. Phys. Rev. B 2011, 84, 115205. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Ohta, H.; Uruga, T.; Hirano, M.; Hosono, H. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations. Phys. Rev. B 2007, 75, 035212. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Subgap states, doping and defect formation energies in amorphous oxide semiconductor a-InGaZnO4 studied by density functional theory. Phys. Status Solidi A 2010, 207, 1698–1703. [Google Scholar] [CrossRef]
- Körner, W.; Urban, D.F.; Elsässer, C. Origin of subgap states in amorphous In-Ga-Zn-O. J. Appl. Phys. 2013, 114, 163704. [Google Scholar] [CrossRef]
- De Meux, A.D.J.; Pourtois, G.; Genoe, J.; Heremans, P. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: Structure, tail states and strain effects. J. Phys. D Appl. Phys. 2015, 48, 435104. [Google Scholar] [CrossRef]
- Jia, J.; Suko, A.; Shigesato, Y.; Okajima, T.; Inoue, K.; Hosomi, H. Evolution of Defect Structures and Deep Subgap States During Annealing of Amorphous In-Ga-Zn Oxide for Thin-Film Transistors. Phys. Rev. Appl. 2018, 9, 014018. [Google Scholar] [CrossRef]
- Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 2006, 352, 851–858. [Google Scholar] [CrossRef]
- Hosono, H.; Yamashita, Y.; Ueda, N.; Kawazoe, H.; Shimidzu, K. New amorphous semiconductor: 2CdO⋅PbOx. Appl. Phys. Lett. 1996, 68, 661–663. [Google Scholar] [CrossRef]
- Yasukawa, M.; Hosono, H.; Ueda, N.; Kawazoe, H. Novel Transparent and Electroconductive Amorphous Semiconductor: Amorphous AgSbO3 Film. Jpn. J. Appl. Phys. 1995, 34, L281. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science 2003, 300, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Itagaki, N.; Den, T.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system. Appl. Phys. Lett. 2007, 90, 242114. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Yoon, G.; Khushabu, A.; Kim, J.-S.; Pae, S.; Cho, E.-C.; Yi, J. Effect of IGZO thin films fabricated by Pulsed-DC and RF sputtering on TFT characteristics. Mater. Sci. Semicond. Process. 2020, 120, 105264. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping. J. Disp. Technol. 2009, 5, 273–288. [Google Scholar] [CrossRef]
- Vogt, K.T.; Malmberg, C.E.; Buchanan, J.C.; Mattson, G.W.; Brandt, G.M.; Fast, D.B.; Cheong, P.H.-Y.; Wager, J.F.; Graham, M.W. Ultrabroadband density of states of amorphous In-Ga-Zn-O. Phys. Rev. Res. 2020, 2, 033358. [Google Scholar] [CrossRef]
- Barquinha, P.; Pereira, L.; Gonçalves, G.; Martins, R.; Fortunato, E. Toward High-Performance Amorphous GIZO TFTs. J. Electrochem. Soc. 2009, 156, H161. [Google Scholar] [CrossRef]
- Olziersky, A.; Barquinha, P.; Vilà, A.; Magaña, C.; Fortunato, E.; Morante, J.R.; Martins, R. Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors. Mater. Chem. Phys. 2011, 131, 512–518. [Google Scholar] [CrossRef]
- Moreira, M.; Carlos, E.; Dias, C.; Deuermeier, J.; Pereira, M.; Barquinha, P.; Branquinho, R.; Martins, R.; Fortunato, E. Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors. Nanomaterials 2019, 9, 1273. [Google Scholar] [CrossRef]
- Xu, W.; Hu, L.; Zhao, C.; Zhang, L.; Zhu, D.; Cao, P.; Liu, W.; Han, S.; Liu, X.; Jia, F.; et al. Low temperature solution-processed IGZO thin-film transistors. Appl. Surf. Sci. 2018, 455, 554–560. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Li, T.; Hu, Y.; Unnithan, R.; Skafidas, E. High Performance and High Yield Solution Processed IGZO Thin Film Transistors Fabricated with Low-Temperature Annealed Hafnium Dioxide Gate Dielectric. Adv. Electron. Mater. 2023, 9, 2300415. [Google Scholar] [CrossRef]
- Hong, T.; Kim, Y.; Choi, S.; Lim, J.H.; Park, J. Exploration of Chemical Composition of In–Ga–Zn–O System via PEALD Technique for Optimal Physical and Electrical Properties. Adv. Electron. Mater. 2023, 9, 2201208. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Yanagi, H.; Ikenaga, E.; Yang, K.; Kobayashi, K.; Hirano, M.; Hosono, H. Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy. Appl. Phys. Lett. 2008, 92, 202117. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Li, Y.; Jing, L.; Li, S.; Chen, X.; Zhang, B.; Shuai, W.; Tao, R.; Lu, X.; et al. Critical Effect of Oxygen Pressure in Pulsed Laser Deposition for Room Temperature and High Performance Amorphous In-Ga-Zn-O Thin Film Transistors. Nanomaterials 2022, 12, 4358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fan, Z.; Shen, A.; Dong, C. Atmosphere Effect in Post-Annealing Treatments for Amorphous InGaZnO Thin-Film Transistors with SiOx Passivation Layers. Micromachines 2021, 12, 1551. [Google Scholar] [CrossRef] [PubMed]
- De Meux, A.D.J.; Bhoolokam, A.; Pourtois, G.; Genoe, J.; Heremans, P. Oxygen vacancies effects in a-IGZO: Formation mechanisms, hysteresis, and negative bias stress effects. Phys. Status Solidi A 2017, 214, 1600889. [Google Scholar] [CrossRef]
- Song, H.; Kang, G.; Kang, Y.; Han, S. The Nature of the Oxygen Vacancy in Amorphous Oxide Semiconductors: Shallow Versus Deep. Phys. Status Solidi B 2019, 256, 1800486. [Google Scholar] [CrossRef]
- De Meux, A.D.J.; Pourtois, G.; Genoe, J.; Heremans, P. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide. Phys. Rev. Appl. 2018, 9, 054039. [Google Scholar] [CrossRef]
- Han, W.H.; Chang, K.J. Subgap States near the Conduction-Band Edge Due to Undercoordinated Cations in Amorphous In-Ga-Zn-O and Zn-Sn-O Semiconductors. Phys. Rev. Appl. 2016, 6, 044011. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hirano, M.; Hosono, H. Electronic structure of oxygen deficient amorphous oxide semiconductor a-InGaZnO4–x: Optical analyses and first-principle calculations. Phys. Status Solidi C 2008, 5, 3098–3100. [Google Scholar] [CrossRef]
- Ryu, B.; Noh, H.-K.; Choi, E.-A.; Chang, K.J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors. Appl. Phys. Lett. 2010, 97, 022108. [Google Scholar] [CrossRef]
- Nahm, H.-H.; Kim, Y.-S. Undercoordinated indium as an intrinsic electron-trap center in amorphous InGaZnO4. NPG Asia Mater. 2014, 6, e143. [Google Scholar] [CrossRef]
- Nakashima, M.; Oota, M.; Ishihara, N.; Nonaka, Y.; Hirohashi, T.; Takahashi, M.; Yamazaki, S.; Obonai, T.; Hosaka, Y.; Koezuka, J. Origin of major donor states in In–Ga–Zn oxide. J. Appl. Phys. 2014, 116, 213703. [Google Scholar] [CrossRef]
- De Meux, A.D.J.; Pourtois, G.; Genoe, J.; Heremans, P. Effects of hole self-trapping by polarons on transport and negative bias illumination stress in amorphous-IGZO. J. Appl. Phys. 2018, 123, 161513. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Electronic structure of the amorphous oxide semiconductor a-InGaZnO4-x: Tauc-Lorentz optical model and origins of subgap states. Phys. Status Solidi A 2009, 206, 860–867. [Google Scholar] [CrossRef]
- Kim, G. Evaluation of oxygen-vacancy concentration through simulated hydrogen diffusion in amorphous In-Ga-Zn-O. Comput. Mater. Sci. 2022, 203, 111109. [Google Scholar] [CrossRef]
- Yao, J.; Xu, N.; Deng, S.; Chen, J.; She, J.; Shieh, H.P.D.; Liu, P.T.; Huang, Y.P. Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy. IEEE Trans. Electron Devices 2011, 58, 1121–1126. [Google Scholar] [CrossRef]
- Kim, C.H.; Jang, Y.H.; Hwang, H.J.; Song, C.H.; Yang, Y.S.; Cho, J.H. Bistable resistance memory switching effect in amorphous InGaZnO thin films. Appl. Phys. Lett. 2010, 97, 062109. [Google Scholar] [CrossRef]
- Han, W.H.; Oh, Y.J.; Chang, K.J.; Park, J.-S. Electronic Structure of Oxygen Interstitial Defects in Amorphous In-Ga-Zn-O Semiconductors and Implications for Device Behavior. Phys. Rev. Appl. 2015, 3, 044008. [Google Scholar] [CrossRef]
- Nahm, H.; Kim, Y.; Kim, D.H. Instability of amorphous oxide semiconductors via carrier-mediated structural transition between disorder and peroxide state. Phys. Status Solidi B 2012, 249, 1277–1281. [Google Scholar] [CrossRef]
- Zhou, X.; Shao, Y.; Zhang, L.; Lu, H.; He, H.; Han, D.; Wang, Y.; Zhang, S. Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors Under Positive Gate-Bias Stress. IEEE Electron Device Lett. 2017, 38, 1252–1255. [Google Scholar] [CrossRef]
- Sallis, S.; Butler, K.T.; Quackenbush, N.F.; Williams, D.S.; Junda, M.; Fischer, D.A.; Woicik, J.C.; Podraza, N.J.; White, B.E.; Walsh, A.; et al. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen. Appl. Phys. Lett. 2014, 104, 232108. [Google Scholar] [CrossRef]
- Ide, K.; Kikuchi, Y.; Nomura, K.; Kimura, M.; Kamiya, T.; Hosono, H. Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 2011, 99, 093507. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.; Hwang, S.; Kim, C.; Kim, Y.; Oh, S.; Baeck, J.H.; Bae, J.U.; Noh, J.; Lee, S.; et al. Excessive Oxygen Peroxide Model-Based Analysis of Positive-Bias-Stress and Negative-Bias-Illumination-Stress Instabilities in Self-Aligned Top-Gate Coplanar In–Ga–Zn–O Thin-Film Transistors. Adv. Electron. Mater. 2022, 8, 2101062. [Google Scholar] [CrossRef]
- Jeong, H.-S.; Cha, H.-S.; Hwang, S.-H.; Lee, D.-H.; Song, S.-H.; Kwon, H.-I. Effects of Oxygen Content on Operational Characteristics and Stability of High-Mobility IGTO Thin-Film Transistors during Channel Layer Deposition. Coatings 2021, 11, 698. [Google Scholar] [CrossRef]
- Bang, J.; Matsuishi, S.; Hosono, H. Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications. Appl. Phys. Lett. 2017, 110, 232105. [Google Scholar] [CrossRef]
- Tang, H.; Ishikawa, K.; Ide, K.; Hiramatsu, H.; Ueda, S.; Ohashi, N.; Kumomi, H.; Hosono, H.; Kamiya, T. Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In-Ga-Zn-O thin films. J. Appl. Phys. 2015, 118, 205703. [Google Scholar] [CrossRef]
- Sato, A.; Abe, K.; Hayashi, R.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hirano, M.; Hosono, H. Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor. Appl. Phys. Lett. 2009, 94, 133502. [Google Scholar] [CrossRef]
- Orui, T.; Herms, J.; Hanyu, Y.; Ueda, S.; Watanabe, K.; Sakaguchi, I.; Ohashi, N.; Hiramatsu, H.; Kumomi, H.; Hosono, H.; et al. Charge Compensation by Excess Oxygen in Amorphous In–Ga–Zn–O Films Deposited by Pulsed Laser Deposition. J. Disp. Technol. 2015, 11, 518–522. [Google Scholar] [CrossRef]
- Mattson, G.W.; Vogt, K.T.; Wager, J.F.; Graham, M.W. Hydrogen incorporation into amorphous indium gallium zinc oxide thin-film transistors. J. Appl. Phys. 2022, 131, 105701. [Google Scholar] [CrossRef]
- Tang, H.; Kishida, Y.; Ide, K.; Toda, Y.; Hiramatsu, H.; Matsuishi, S.; Ueda, S.; Ohashi, N.; Kumomi, H.; Hosono, H.; et al. Multiple Roles of Hydrogen Treatments in Amorphous In–Ga–Zn–O Films. ECS J. Solid State Sci. Technol. 2017, 6, P365–P372. [Google Scholar] [CrossRef]
- Velichko, R.; Magari, Y.; Furuta, M. Defect Passivation and Carrier Reduction Mechanisms in Hydrogen-Doped In-Ga-Zn-O (IGZO:H) Films upon Low-Temperature Annealing for Flexible Device Applications. Materials 2022, 15, 334. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Kong, Q.; Zhang, D.; Wang, X.; Zhou, Z.; Jiao, L.; Han, K.; Kang, Y.; Nguyen, B.-Y.; Ni, K.; et al. Hydrogen-Related Instability of IGZO Field-Effect Transistors. IEEE Trans. Electron Devices 2024, 71, 2995–3001. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Hosono, H. Effects of Diffusion of Hydrogen and Oxygen on Electrical Properties of Amorphous Oxide Semiconductor, In-Ga-Zn-O. ECS J. Solid State Sci. Technol. 2013, 2, P5–P8. [Google Scholar] [CrossRef]
- Noh, H.-K.; Park, J.-S.; Chang, K.J. Effect of hydrogen incorporation on the negative bias illumination stress instability in amorphous In-Ga-Zn-O thinfilm-transistors. J. Appl. Phys. 2013, 113, 063712. [Google Scholar] [CrossRef]
- Nahm, H.-H.; Park, C.H.; Kim, Y.-S. Bistability of Hydrogen in ZnO: Origin of Doping Limit and Persistent Photoconductivity. Sci. Rep. 2014, 4, 4124. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Wang, Y.; Wang, Y.; Xia, Z.; Yeung, F.S.Y.; Wong, M.; Kwok, H.S.; Wang, X.; Zhang, S.; Lu, L. Multiple effects of hydrogen on InGaZnO thin-film transistor and the hydrogenation-resistibility enhancement. J. Alloys Compd. 2023, 947, 169509. [Google Scholar] [CrossRef]
- Kang, Y.; Ahn, B.D.; Song, J.H.; Mo, Y.G.; Nahm, H.; Han, S.; Jeong, J.K. Hydrogen Bistability as the Origin of Photo-Bias-Thermal Instabilities in Amorphous Oxide Semiconductors. Adv. Electron. Mater. 2015, 1, 1400006. [Google Scholar] [CrossRef]
- Miyase, T.; Watanabe, K.; Sakaguchi, I.; Ohashi, N.; Domen, K.; Nomura, K.; Hiramatsu, H.; Kumomi, H.; Hosono, H.; Kamiya, T. Roles of Hydrogen in Amorphous Oxide Semiconductor In-Ga-Zn-O: Comparison of Conventional and Ultra-High-Vacuum Sputtering. ECS J. Solid State Sci. Technol. 2014, 3, Q3085–Q3090. [Google Scholar] [CrossRef]
- Kamiya, T.; Hosono, H. (Invited) Roles of Hydrogen in Amorphous Oxide Semiconductor. ECS Trans. 2013, 54, 103. [Google Scholar] [CrossRef]
- Chen, T.-C.; Chang, T.-C.; Tsai, C.-T.; Hsieh, T.-Y.; Chen, S.-C.; Lin, C.-S.; Hung, M.-C.; Tu, C.-H.; Chang, J.-J.; Chen, P.-L. Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress. Appl. Phys. Lett. 2010, 97, 112104. [Google Scholar] [CrossRef]
- Toledo, P.; Hernandez Luna, I.S.; Hernandez-Cuevas, F.; Hernandez-Como, N. Electrical instabilities of a-IGZO TFTs under different conditions of bias and illumination stress. Microelectron. Reliab. 2023, 148, 115186. [Google Scholar] [CrossRef]
- Chowdhury, M.D.H.; Migliorato, P.; Jang, J. Time-temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors. Appl. Phys. Lett. 2011, 98, 153511. [Google Scholar] [CrossRef]
- Chen, W.-T.; Lo, S.-Y.; Kao, S.-C.; Zan, H.-W.; Tsai, C.-C.; Lin, J.-H.; Fang, C.-H.; Lee, C.-C. Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In–Ga–Zn–O Thin-Film Transistors. IEEE Electron Device Lett. 2011, 32, 1552–1554. [Google Scholar] [CrossRef]
- Aslam, M.; Chuang, M.-H.; Chang, S.-W.; Chen, Y.-H.; Lee, Y.-J.; Li, Y. Temperature-Dependent Hydrogen Modulations of Ultra-Scaled a-IGZO Thin Film Transistor Under Gate Bias Stress. IEEE Open J. Nanotechnol. 2024, 9–16. [Google Scholar] [CrossRef]
- Tai, Y.-H.; Liu, H.-W.; Chan, P.-C.; Chiu, S.-L. Degradation of a-IGZO Thin-Film Transistors Under Negative Bias and Illumination Stress in the Time Span of a Few Seconds. IEEE Electron Device Lett. 2018, 39, 696–698. [Google Scholar] [CrossRef]
- Li, S.; Wang, M.; Zhang, D.; Wang, H.; Shan, Q. A Unified Degradation Model of a-InGaZnO TFTs Under Negative Gate Bias with or Without an Illumination. IEEE J. Electron Devices Soc. 2019, 7, 1063–1071. [Google Scholar] [CrossRef]
- Mativenga, M.; Haque, F.; Billah, M.M.; Um, J.G. Origin of light instability in amorphous IGZO thin-film transistors and its suppression. Sci. Rep. 2021, 11, 14618. [Google Scholar] [CrossRef]
- Oh, H.; Yoon, S.-M.; Ryu, M.K.; Hwang, C.-S.; Yang, S.; Park, S.-H.K. Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor. Appl. Phys. Lett. 2010, 97, 183502. [Google Scholar] [CrossRef]
- Kim, J.; Oh, B.S.; Piao, M.; Joo, M.-K.; Jang, H.-K.; Ahn, S.-E.; Kim, G.-T. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors. J. Appl. Phys. 2014, 116, 245302. [Google Scholar] [CrossRef]
- Jallorina, M.P.A.; Bermundo, J.P.S.; Fujii, M.N.; Ishikawa, Y.; Uraoka, Y. Significant mobility improvement of amorphous In-Ga-Zn-O thin-film transistors annealed in a low temperature wet ambient environment. Appl. Phys. Lett. 2018, 112, 193501. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Device characteristics improvement of a-In–Ga–Zn–O TFTs by low-temperature annealing. Thin Solid Film. 2010, 518, 3017–3021. [Google Scholar] [CrossRef]
- Hanyu, Y.; Domen, K.; Nomura, K.; Hiramatsu, H.; Kumomi, H.; Hosono, H.; Kamiya, T. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 2013, 103, 202114. [Google Scholar] [CrossRef]
- Shin, H.S.; Ahn, B.D.; Rim, Y.S.; Kim, H.J. Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors. J. Inf. Disp. 2011, 12, 209–212. [Google Scholar] [CrossRef]
- Choi, S.-H.; Lim, M.-H.; Jung, W.-S.; Park, J.-H. Impacts of the Thermal Recovery Process on In–Ga–Zn–O (IGZO) TFTs. IEEE Electron Device Lett. 2014, 35, 835–837. [Google Scholar] [CrossRef]
- Park, S.; Bang, S.; Lee, S.; Park, J.; Ko, Y.; Jeon, H. The Effect of Annealing Ambient on the Characteristics of an Indium–Gallium–Zinc Oxide Thin Film Transistor. J. Nanosci. Nanotech. 2011, 11, 6029–6033. [Google Scholar] [CrossRef]
- Huang, X.D.; Song, J.Q.; Lai, P.T. Improved Performance of Scaled-Down α-InGaZnO Thin-Film Transistor by Ar Plasma Treatment. IEEE Electron Device Lett. 2016, 37, 1574–1577. [Google Scholar] [CrossRef]
- Huang, X.D.; Ma, Y.; Song, J.Q.; Lai, P.T.; Tang, W.M. Effects of Metal-Hydroxyl and InOx Defects on Performance of InGaZnO Thin-Film Transistor. IEEE Trans. Electron Devices 2018, 65, 1009–1013. [Google Scholar] [CrossRef]
- Mudgal, T.; Walsh, N.; Manley, R.G.; Hirschman, K.D. Impact of Annealing on Contact Formation and Stability of IGZO TFTs. ECS Trans. 2014, 61, 405–417. [Google Scholar] [CrossRef]
- Ide, K.; Kikuchi, Y.; Nomura, K.; Kamiya, T.; Hosono, H. Effects of low-temperature ozone annealing on operation characteristics of amorphous In–Ga–Zn–O thin-film transistors. Thin Solid Film. 2012, 520, 3787–3790. [Google Scholar] [CrossRef]
- Peng, C.; Yang, S.; Pan, C.; Li, X.; Zhang, J. Effect of Two-Step Annealing on High Stability of a-IGZO Thin-Film Transistor. IEEE Trans. Electron Devices 2020, 67, 4262–4268. [Google Scholar] [CrossRef]
- Jeon, J.K.; Um, J.G.; Lee, S.; Jang, J. Control of O-H bonds at a-IGZO/SiO2 interface by long time thermal annealing for highly stable oxide TFT. AIP Adv. 2017, 7, 125110. [Google Scholar] [CrossRef]
- Pi, T.; Xiao, D.; Yang, H.; He, G.; Wu, X.; Liu, W.; Zhang, D.W.; Ding, S.-J. High-Performance a-IGZO TFT Fabricated with Ultralow Thermal Budget via Microwave Annealing. IEEE Trans. Electron Devices 2022, 69, 156–159. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Tarsoly, G.; Choi, S.-G.; Ryu, H.-G.; Kim, S.-J. Influences of Oxygen Plasma Posttreatment on Electrical Characteristics of Amorphous Indium–Gallium–Zinc–Oxide Thin-Film Transistors. Phys. Status Solidi A 2021, 218, 2100205. [Google Scholar] [CrossRef]
- Abliz, A. Effects of hydrogen plasma treatment on the electrical performances and reliability of InGaZnO thin-film transistors. J. Alloys Compd. 2020, 831, 154694. [Google Scholar] [CrossRef]
- Kim, H.; Han, C.; Kim, D.; Choi, B. Electrical Performance and Reliability Enhancement of a-IGZO TFTs via Post-N2O Plasma Optimization. IEEE Trans. Electron Devices 2023, 70, 3611–3616. [Google Scholar] [CrossRef]
- Wang, C.; Peng, C.; Wen, P.; Xu, M.; Chen, L.; Li, X.; Zhang, J. Improvement of Performance of Back Channel Etching InGaZnO Thin-Film Transistors by CF4 Plasma Treatment. IEEE Trans. Electron Devices 2023, 70, 1687–1691. [Google Scholar] [CrossRef]
- Huang, X.D.; Song, J.Q.; Lai, P.T. Improved Stability of α-InGaZnO Thin-Film Transistor under Positive Gate Bias Stress by Using Fluorine Plasma Treatment. IEEE Electron Device Lett. 2017, 38, 576–579. [Google Scholar] [CrossRef]
- Huo, Y.; Liu, L.; Liu, G.; Wang, Z.; Chang, T.-L. 54-4: A 142-in. IGZO-TFT Glass-Substrate AM MiniLED Tiled Display with External Compensation and Multilayer Demura Algorithm. SID Symp. Dig. Tech. Pap. 2021, 52, 753–756. [Google Scholar] [CrossRef]
- Sasaki, T.; Hakoi, H.; Hashimoto, J.; Ni, M.; Otsubo, M.; Sato, T.; Shimada, S.; Minoura, K. 59-3: A Novel Transflective 31.5-inch IGZO-TFT LCD with a Twisted-VA Mode. SID Symp. Dig. Tech. Pap. 2020, 51, 882–884. [Google Scholar] [CrossRef]
- Fan, J.; Lee, C.Y.; Chen, S.; Gang, L.M.; Jun, Z.L.; Yang, S.; Cai, L.M.; Fei, X.H.; Nian, L.; Shi, J.; et al. 32-4: High transparent Active matrix Mini-LED Full Color Display with IGZO TFT Backplane. SID Symp. Dig. Tech. Pap. 2019, 50, 454–456. [Google Scholar] [CrossRef]
- Chen, W.; Huang, J.-J.; Chen, Y.; Qian, Y.; Ruan, S.; Su, C.-Y.; Tseng, C.-Y. P-1.3: Development of an 11.6-inch 144 Hz LCD Utilizing an IGZO TFT Backplane. SID Symp. Dig. Tech. Pap. 2021, 52, 420–422. [Google Scholar] [CrossRef]
- Nakano, F.; Nakamura, W.; Hara, Y.; Ueda, S.; Minoura, K.; Chen, W.T. 88-3: Late-News Paper: IGZO Backplane for Full-color Electrophoretic Display. SID Symp. Dig. Tech. Pap. 2023, 54, 1250–1253. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, J.; Liu, M.; Zhang, L.; Jiang, B.; Zhang, M.; Zhang, X. Highly transparent, ultra-thin flexible, full-color mini-LED display with indium–gallium–zinc oxide thin-film transistor substrate. J. Soc. Info. Disp. 2020, 28, 926–935. [Google Scholar] [CrossRef]
- Nakajima, Y.; Nakata, M.; Takei, T.; Fukagawa, H.; Motomura, G.; Tsuji, H.; Shimizu, T.; Fujisaki, Y.; Kurita, T.; Yamamoto, T. Development of 8-in. oxide-TFT-driven flexible AMOLED display using high-performance red phosphorescent OLED. J. Soc. Info. Disp. 2014, 22, 137–143. [Google Scholar] [CrossRef]
- Oota, M.; Hodo, R.; Ikeda, T.; Yamazaki, S.; Ando, Y.; Tsuda, K.; Koshida, T.; Oshita, S.; Suzuki, A.; Fukushima, K.; et al. 3D-Stacked CAAC-In-Ga-Zn Oxide FETs with Gate Length of 72 nm. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3.2.1–3.2.4. [Google Scholar]
- Belmonte, A.; Oh, H.; Rassoul, N.; Donadio, G.L.; Mitard, J.; Dekkers, H.; Delhougne, R.; Subhechha, S.; Chasin, A.; Van Setten, M.J.; et al. Capacitor-less, Long-Retention (>400 s) DRAM Cell Paving the Way towards Low-Power and High-Density Monolithic 3D DRAM. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 28.2.1–28.2.4. [Google Scholar]
- Duan, X.; Huang, K.; Feng, J.; Niu, J.; Qin, H.; Yin, S.; Jiao, G.; Leonelli, D.; Zhao, X.; Wang, Z.; et al. Novel Vertical Channel-All-Around (CAA) In-Ga-Zn-O FET for 2T0C-DRAM With High Density Beyond 4F2 by Monolithic Stacking. IEEE Trans. Electron Devices 2022, 69, 2196–2202. [Google Scholar] [CrossRef]
- Belmonte, A.; Oh, H.; Subhechha, S.; Rassoul, N.; Hody, H.; Dekkers, H.; Delhougne, R.; Ricotti, L.; Banerjee, K.; Chasin, A.; et al. Tailoring IGZO-TFT architecture for capacitorless DRAM, demonstrating >103 s retention, >1011 cycles endurance and Lg scalability down to 14 nm. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 10.6.1–10.6.4. [Google Scholar]
- Huang, K.; Duan, X.; Feng, J.; Sun, Y.; Lu, C.; Chen, C.; Jiao, G.; Lin, X.; Shao, J.; Yin, S.; et al. Vertical Channel-All-Around (CAA) IGZO FET under 50 nm CD with High Read Current of 32.8 μA/μm (Vth + 1 V), Well-performed Thermal Stability up to 120 °C; for Low Latency, High-density 2T0C 3D DRAM Application. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 13–17 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 296–297. [Google Scholar]
- Lu, W.; Zhu, Z.; Chen, K.; Liu, M.; Kang, B.-M.; Duan, X.; Niu, J.; Liao, F.; Dan, W.; Wu, X.-S.; et al. First Demonstration of Dual-Gate IGZO 2T0C DRAM with Novel Read Operation, One Bit Line in Single Cell, ION = 1500 μA/μm@VDS = 1 V and Retention Time > 300 s. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 26.4.1–26.4.4. [Google Scholar]
- Hu, Q.; Li, Q.; Zhu, S.; Gu, C.; Liu, S.; Huang, R.; Wu, Y. Optimized IGZO FETs for Capacitorless DRAM with Retention of 10 ks at RT and 7 ks at 85 °C at Zero Vhold with Sub-10 ns Speed and 3-bit Operation. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 26.6.1–26.6.4. [Google Scholar]
- Chen, C.; Duan, X.; Yang, G.; Lu, C.; Geng, D.; Li, L.; Liu, M. Inter-Layer Dielectric Engineering for Monolithic Stacking 4F2-2T0C DRAM with Channel-All-Around (CAA) IGZO FET to Achieve Good Reliability (>104 s Bias Stress, >1012 Cycles Endurance). In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 26.5.1–26.5.4. [Google Scholar]
- Subhechha, S.; Rassoul, N.; Belmonte, A.; Hody, H.; Dekkers, H.; Van Setten, M.J.; Chasin, A.; Sharifi, S.H.; Sutar, S.; Magnarin, L.; et al. Ultra-low Leakage IGZO-TFTs with Raised Source/Drain for Vt > 0 V and Ion > 30 µA/µm. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 13–17 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 292–293. [Google Scholar]
- Zhang, Y.-Y.; An, S.; Zheng, Y.; Lai, J.; Seo, J.-H.; Lee, K.H.; Kim, M. Releasable AlGaN/GaN 2D Electron Gas Heterostructure Membranes for Flexible Wide-Bandgap Electronics. Adv. Electron. Mater. 2022, 8, 2100652. [Google Scholar] [CrossRef]
- Gong, J.; Kim, D.; Jang, H.; Alema, F.; Wang, Q.; Zhou, J.; Li, Y.; Ng, T.K.; Qiu, S.; Liu, Y.; et al. Characteristics of grafted monocrystalline Si/β-Ga2O3 p–n heterojunction. Appl. Phys. Lett. 2024, 124, 262101. [Google Scholar] [CrossRef]
- Gong, J.; Zhou, J.; Wang, P.; Kim, T.; Lu, K.; Min, S.; Singh, R.; Sheikhi, M.; Abbasi, H.N.; Vincent, D.; et al. Synthesis and Characteristics of Transferrable Single-Crystalline AlN Nanomembranes. Adv. Electron. Mater. 2023, 9, 2201309. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van De Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef]
- Pensl, G.; Choyke, W.J. Electrical and optical characterization of SiC. Phys. B Condens. Matter 1993, 185, 264–283. [Google Scholar] [CrossRef]
- Mourya, S.; Jaiswal, J.; Malik, G.; Kumar, B.; Chandra, R. Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates. J. Appl. Phys. 2018, 123, 023109. [Google Scholar] [CrossRef]
- Park, C.H.; Cheong, B.-H.; Lee, K.-H.; Chang, K.J. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 1994, 49, 4485–4493. [Google Scholar] [CrossRef] [PubMed]
- Persson, C.; Lindefelt, U.; Sernelius, B.E. Band gap narrowing in n -type and p -type 3C-, 2H-, 4H-, 6H-SiC, and Si. J. Appl. Phys. 1999, 86, 4419–4427. [Google Scholar] [CrossRef]
- Ching, W.Y.; Xu, Y.-N.; Rulis, P.; Ouyang, L. The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC. Mater. Sci. Eng. A 2006, 422, 147–156. [Google Scholar] [CrossRef]
- Wu, R.; Zhou, K.; Yue, C.Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60. [Google Scholar] [CrossRef]
- Heine, V.; Cheng, C.; Needs, R.J. The Preference of Silicon Carbide for Growth in the Metastable Cubic Form. J. Am. Ceram. Soc. 1991, 74, 2630–2633. [Google Scholar] [CrossRef]
- Sik Yoo, W.; Matsunami, H. Solid-State Phase Transformation in Cubic Silicon Carbide. Jpn. J. Appl. Phys. 1991, 30, 545. [Google Scholar] [CrossRef]
- Boulle, A.; Dompoint, D.; Galben-Sandulache, I.; Chaussende, D. Polytypic transformations in SiC: Diffuse x-ray scattering and Monte Carlo simulations. Phys. Rev. B 2013, 88, 024103. [Google Scholar] [CrossRef]
- Ramakers, S.; Marusczyk, A.; Amsler, M.; Eckl, T.; Mrovec, M.; Hammerschmidt, T.; Drautz, R. Effects of thermal, elastic, and surface properties on the stability of SiC polytypes. Phys. Rev. B 2022, 106, 075201. [Google Scholar] [CrossRef]
- Peivaste, I.; Alahyarizadeh, G.; Minuchehr, A.; Aghaie, M. Comparative study on mechanical properties of three different SiC polytypes (3C, 4H and 6H) under high pressure: First-principle calculations. Vacuum 2018, 154, 37–43. [Google Scholar] [CrossRef]
- Zorman, C.A.; Parro, R.J. Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys. Status Solidi B 2008, 245, 1404–1424. [Google Scholar] [CrossRef]
- Contreras, S.; Konczewicz, L.; Arvinte, R.; Peyre, H.; Chassagne, T.; Zielinski, M.; Juillaguet, S. Electrical transport properties of p-type 4H-SiC: Electrical transport properties of p-type 4H-SiC. Phys. Status Solidi A 2017, 214, 1600679. [Google Scholar] [CrossRef]
- Liang, G.; Qian, H.; Su, Y.; Shi, L.; Li, Q.; Liu, Y. Review of solution growth techniques for 4H-SiC single crystal. China Foundry 2023, 20, 159–178. [Google Scholar] [CrossRef]
- Son, N.T.; Stenberg, P.; Jokubavicius, V.; Abe, H.; Ohshima, T.; Ul Hassan, J.; Ivanov, I.G. Energy levels and charge state control of the carbon antisite-vacancy defect in 4H-SiC. Appl. Phys. Lett. 2019, 114, 212105. [Google Scholar] [CrossRef]
- Csóré, A.; Von Bardeleben, H.J.; Cantin, J.L.; Gali, A. Characterization and formation of NV centers in 3C, 4H, and 6H SiC: An ab initio study. Phys. Rev. B 2017, 96, 085204. [Google Scholar] [CrossRef]
- Yan, X.; Li, P.; Kang, L.; Wei, S.-H.; Huang, B. First-principles study of electronic and diffusion properties of intrinsic defects in 4H-SiC. J. Appl. Phys. 2020, 127, 085702. [Google Scholar] [CrossRef]
- Dalibor, T.; Pensl, G.; Matsunami, H.; Kimoto, T.; Choyke, W.J.; Schöner, A.; Nordell, N. Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy. Phys. Stat. Sol. A 1997, 162, 199–225. [Google Scholar] [CrossRef]
- Hemmingsson, C.; Son, N.T.; Kordina, O.; Bergman, J.P.; Janzén, E.; Lindström, J.L.; Savage, S.; Nordell, N. Deep level defects in electron-irradiated 4H SiC epitaxial layers. J. Appl. Phys. 1997, 81, 6155–6159. [Google Scholar] [CrossRef]
- Klein, P.B.; Shanabrook, B.V.; Huh, S.W.; Polyakov, A.Y.; Skowronski, M.; Sumakeris, J.J.; O’Loughlin, M.J. Lifetime-limiting defects in n− 4H-SiC epilayers. Appl. Phys. Lett. 2006, 88, 052110. [Google Scholar] [CrossRef]
- Danno, K.; Nakamura, D.; Kimoto, T. Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation. Appl. Phys. Lett. 2007, 90, 202109. [Google Scholar] [CrossRef]
- Danno, K.; Kimoto, T. Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons. J. Appl. Phys. 2006, 100, 113728. [Google Scholar] [CrossRef]
- Sasaki, S.; Kawahara, K.; Feng, G.; Alfieri, G.; Kimoto, T. Major deep levels with the same microstructures observed in n-type 4H–SiC and 6H–SiC. J. Appl. Phys. 2011, 109, 013705. [Google Scholar] [CrossRef]
- Zhang, J.; Storasta, L.; Bergman, J.P.; Son, N.T.; Janzén, E. Electrically active defects in n-type 4H–silicon carbide grown in a vertical hot-wall reactor. J. Appl. Phys. 2003, 93, 4708–4714. [Google Scholar] [CrossRef]
- Storasta, L.; Bergman, J.P.; Janzén, E.; Henry, A.; Lu, J. Deep levels created by low energy electron irradiation in 4H-SiC. J. Appl. Phys. 2004, 96, 4909–4915. [Google Scholar] [CrossRef]
- Capan, I.; Brodar, T.; Pastuović, Ž.; Siegele, R.; Ohshima, T.; Sato, S.; Makino, T.; Snoj, L.; Radulović, V.; Coutinho, J.; et al. Double negatively charged carbon vacancy at the h- and k-sites in 4H-SiC: Combined Laplace-DLTS and DFT study. J. Appl. Phys. 2018, 123, 161597. [Google Scholar] [CrossRef]
- Hornos, T.; Gali, A.; Svensson, B.G. Large-Scale Electronic Structure Calculations of Vacancies in 4H-SiC Using the Heyd-Scuseria-Ernzerhof Screened Hybrid Density Functional. MSF 2011, 679–680, 261–264. [Google Scholar] [CrossRef]
- Son, N.T.; Trinh, X.T.; Løvlie, L.S.; Svensson, B.G.; Kawahara, K.; Suda, J.; Kimoto, T.; Umeda, T.; Isoya, J.; Makino, T.; et al. Negative-U System of Carbon Vacancy in 4H-SiC. Phys. Rev. Lett. 2012, 109, 187603. [Google Scholar] [CrossRef]
- Hemmingsson, C.G.; Son, N.T.; Ellison, A.; Zhang, J.; Janzén, E. Negative-U centers in 4H silicon carbide. Phys. Rev. B 1998, 58, R10119–R101221998. [Google Scholar] [CrossRef]
- Coutinho, J.; Torres, V.J.B.; Demmouche, K.; Öberg, S. Theory of the carbon vacancy in 4H-SiC: Crystal field and pseudo-Jahn-Teller effects. Phys. Rev. B 2017, 96, 174105. [Google Scholar] [CrossRef]
- Bockstedte, M.; Marini, A.; Pankratov, O.; Rubio, A. Many-Body Effects in the Excitation Spectrum of a Defect in SiC. Phys. Rev. Lett. 2010, 105, 026401. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, R.; Zhang, Y.; Yang, D.; Pi, X. Compensation of p -type doping in Al-doped 4H-SiC. J. Appl. Phys. 2022, 131, 185703. [Google Scholar] [CrossRef]
- Bathen, M.E.; Coutinho, J.; Ayedh, H.M.; Ul Hassan, J.; Farkas, I.; Öberg, S.; Frodason, Y.K.; Svensson, B.G.; Vines, L. Anisotropic and plane-selective migration of the carbon vacancy in SiC: Theory and experiment. Phys. Rev. B 2019, 100, 014103. [Google Scholar] [CrossRef]
- Coutinho, J.; Gouveia, J.D.; Makino, T.; Ohshima, T.; Pastuović, Ž.; Bakrač, L.; Brodar, T.; Capan, I. M center in 4H-SiC is a carbon self-interstitial. Phys. Rev. B 2021, 103, L180102. [Google Scholar] [CrossRef]
- Storasta, L.; Tsuchida, H.; Miyazawa, T.; Ohshima, T. Enhanced annealing of the Z1∕2 defect in 4H–SiC epilayers. J. Appl. Phys. 2008, 103, 013705. [Google Scholar] [CrossRef]
- Hiyoshi, T.; Kimoto, T. Reduction of Deep Levels and Improvement of Carrier Lifetime in n-Type 4H-SiC by Thermal Oxidation. Appl. Phys. Express 2009, 2, 041101. [Google Scholar] [CrossRef]
- Kawahara, K.; Suda, J.; Kimoto, T. Analytical model for reduction of deep levels in SiC by thermal oxidation. J. Appl. Phys. 2012, 111, 053710. [Google Scholar] [CrossRef]
- Bathen, M.E.; Karsthof, R.; Galeckas, A.; Kumar, P.; Kuznetsov, A.Y.; Grossner, U.; Vines, L. Impact of carbon injection in 4H-SiC on defect formation and minority carrier lifetime. Mater. Sci. Semicond. Process. 2024, 176, 108316. [Google Scholar] [CrossRef]
- Ayedh, H.M.; Nipoti, R.; Hallén, A.; Svensson, B.G. Elimination of carbon vacancies in 4H-SiC employing thermodynamic equilibrium conditions at moderate temperatures. Appl. Phys. Lett. 2015, 107, 252102. [Google Scholar] [CrossRef]
- Kobayashi, T.; Harada, K.; Kumagai, Y.; Oba, F.; Matsushita, Y. Native point defects and carbon clusters in 4H-SiC: A hybrid functional study. J. Appl. Phys. 2019, 125, 125701. [Google Scholar] [CrossRef]
- Torpo, L.; Marlo, M.; Staab, T.E.M.; Nieminen, R.M. Comprehensive ab initio study of properties of monovacancies and antisites in 4H-SiC. J. Phys. Condens. Matter 2001, 13, 6203–6231. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Xu, Z.; Djurabekova, F.; Rommel, M.; Song, Y.; Fang, F. Density functional theory calculation of the properties of carbon vacancy defects in silicon carbide. Nanotechnol. Precis. Eng. 2020, 3, 211–217. [Google Scholar] [CrossRef]
- Cochrane, C.J.; Lenahan, P.M.; Lelis, A.J. Identification of a silicon vacancy as an important defect in 4H SiC metal oxide semiconducting field effect transistor using spin dependent recombination. Appl. Phys. Lett. 2012, 100, 023509. [Google Scholar] [CrossRef]
- Bathen, M.E.; Galeckas, A.; Coutinho, J.; Vines, L. Influence of hydrogen implantation on emission from the silicon vacancy in 4H-SiC. J. Appl. Phys. 2020, 127, 085701. [Google Scholar] [CrossRef]
- Janzén, E.; Gali, A.; Carlsson, P.; Gällström, A.; Magnusson, B.; Son, N.T. The silicon vacancy in SiC. Phys. B Condens. Matter 2009, 404, 4354–4358. [Google Scholar] [CrossRef]
- Kobayashi, T.; Shimura, T.; Watanabe, H. Oxygen-vacancy defect in 4H-SiC as a near-infrared emitter: An ab initio study. J. Appl. Phys. 2023, 134, 145701. [Google Scholar] [CrossRef]
- Lukin, D.M.; Dory, C.; Guidry, M.A.; Yang, K.Y.; Mishra, S.D.; Trivedi, R.; Radulaski, M.; Sun, S.; Vercruysse, D.; Ahn, G.H.; et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 2020, 14, 330–334. [Google Scholar] [CrossRef]
- Carter, S.G.; Soykal, Ö.O.; Dev, P.; Economou, S.E.; Glaser, E.R. Spin coherence and echo modulation of the silicon vacancy in 4H-SiC at room temperature. Phys. Rev. B 2015, 92, 161202. [Google Scholar] [CrossRef]
- Baranov, P.G.; Bundakova, A.P.; Soltamova, A.A.; Orlinskii, S.B.; Borovykh, I.V.; Zondervan, R.; Verberk, R.; Schmidt, J. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 2011, 83, 125203. [Google Scholar] [CrossRef]
- Davidsson, J.; Babar, R.; Shafizadeh, D.; Ivanov, I.G.; Ivády, V.; Armiento, R.; Abrikosov, I.A. Exhaustive characterization of modified Si vacancies in 4H-SiC. Nanophotonics 2022, 11, 4565–4580. [Google Scholar] [CrossRef]
- Soykal, Ö.O.; Dev, P.; Economou, S.E. Silicon vacancy center in 4H-SiC: Electronic structure and spin-photon interfaces. Phys. Rev. B 2016, 93, 081207. [Google Scholar] [CrossRef]
- Nagy, R.; Niethammer, M.; Widmann, M.; Chen, Y.-C.; Udvarhelyi, P.; Bonato, C.; Hassan, J.U.; Karhu, R.; Ivanov, I.G.; Son, N.T.; et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 2019, 10, 1954. [Google Scholar] [CrossRef] [PubMed]
- Widmann, M.; Lee, S.-Y.; Rendler, T.; Son, N.T.; Fedder, H.; Paik, S.; Yang, L.-P.; Zhao, N.; Yang, S.; Booker, I.; et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 2015, 14, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-F.; Yan, F.-F.; Li, Q.; Liu, Z.-H.; Cui, J.-M.; Liu, Z.-D.; Gali, A.; Xu, J.-S.; Li, C.-F.; Guo, G.-C. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nat. Commun. 2021, 12, 3223. [Google Scholar] [CrossRef] [PubMed]
- Simin, D.; Soltamov, V.A.; Poshakinskiy, A.V.; Anisimov, A.N.; Babunts, R.A.; Tolmachev, D.O.; Mokhov, E.N.; Trupke, M.; Tarasenko, S.A.; Sperlich, A.; et al. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide. Phys. Rev. X 2016, 6, 031014. [Google Scholar] [CrossRef]
- Wang, J.-F.; Liu, L.; Liu, X.-D.; Li, Q.; Cui, J.-M.; Zhou, D.-F.; Zhou, J.-Y.; Wei, Y.; Xu, H.-A.; Xu, W.; et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide. Nat. Mater. 2023, 22, 489–494. [Google Scholar] [CrossRef]
- Lohrmann, A.; Johnson, B.C.; McCallum, J.C.; Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 2017, 80, 034502. [Google Scholar] [CrossRef]
- Capan, I.; Brodar, T.; Bernat, R.; Pastuović, Ž.; Makino, T.; Ohshima, T.; Gouveia, J.D.; Coutinho, J. M-center in 4H-SiC: Isothermal DLTS and first principles modeling studies. J. Appl. Phys. 2021, 130, 125703. [Google Scholar] [CrossRef]
- Li, P.; Udvarhelyi, P.; Li, S.; Huang, B.; Gali, A. Carbon cluster emitters in silicon carbide. Phys. Rev. B 2023, 108, 085201. [Google Scholar] [CrossRef]
- Knežević, T.; Hadžipašić, A.; Ohshima, T.; Makino, T.; Capan, I. M-center in low-energy electron irradiated 4H-SiC. Appl. Phys. Lett. 2022, 120, 252101. [Google Scholar] [CrossRef]
- Karsthof, R.; Etzelmüller Bathen, M.; Kuznetsov, A.; Vines, L. Formation of carbon interstitial-related defect levels by thermal injection of carbon into n-type 4H-SiC. J. Appl. Phys. 2022, 131, 035702. [Google Scholar] [CrossRef]
- Knežević, T.; Brodar, T.; Radulović, V.; Snoj, L.; Makino, T.; Capan, I. Distinguishing the EH1 and S1 defects in n-type 4H-SiC by Laplace DLTS. Appl. Phys. Express 2022, 15, 101002. [Google Scholar] [CrossRef]
- Alfieri, G.; Mihaila, A. Isothermal annealing study of the EH1 and EH3 levels in n-type 4H-SiC. J. Phys. Condens. Matter 2020, 32, 465703. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Roma, G.; Wang, J. First-principles study of neutral silicon interstitials in 3C- and 4H-SiC. Philos. Mag. 2009, 89, 2271–2284. [Google Scholar] [CrossRef]
- Coutinho, J. Theory of the Thermal Stability of Silicon Vacancies and Interstitials in 4H–SiC. Crystals 2021, 11, 167. [Google Scholar] [CrossRef]
- Nakane, H.; Kato, M.; Ohkouchi, Y.; Trinh, X.T.; Ivanov, I.G.; Ohshima, T.; Son, N.T. Deep levels related to the carbon antisite–vacancy pair in 4H-SiC. J. Appl. Phys. 2021, 130, 065703. [Google Scholar] [CrossRef]
- Son, N.T.; Hai, P.N.; Janzén, E. Silicon Antisite in 4H SiC. Phys. Rev. Lett. 2001, 87, 045502. [Google Scholar] [CrossRef]
- Wang, R.; Huang, Y.; Yang, D.; Pi, X. Impurities and defects in 4H silicon carbide. Appl. Phys. Lett. 2023, 122, 180501. [Google Scholar] [CrossRef]
- Ivanov, I.G.; Magnusson, B.; Janzén, E. Analysis of the sharp donor-acceptor pair luminescence in 4H-SiC doped with nitrogen and aluminum. Phys. Rev. B 2003, 67, 165211. [Google Scholar] [CrossRef]
- Evwaraye, A.O.; Smith, S.R.; Mitchel, W.C. Shallow and deep levels in n -type 4H-SiC. J. Appl. Phys. 1996, 79, 7726–7730. [Google Scholar] [CrossRef]
- Lebedev, A.A. Deep level centers in silicon carbide: A review. Semiconductors 1999, 33, 107–130. [Google Scholar] [CrossRef]
- Gerstmann, U.; Rauls, E.; Frauenheim, T.; Overhof, H. Formation and annealing of nitrogen-related complexes in SiC. Phys. Rev. B 2003, 67, 205202. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Xu, B.; Lu, Y.; Zhang, Y.; Wang, R.; Yang, D.; Pi, X. Deformation of 4H-SiC: The role of dopants. Appl. Phys. Lett. 2022, 120, 052105. [Google Scholar] [CrossRef]
- Wang, R.; Liu, X.; Li, J.; Luo, H.; Yang, G.; Yang, D.; Pi, X. Effect of nitrogen doping on the dislocation behaviors of 4H-SiC. In Proceedings of the 2022 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Oita, Japan, 6–9 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 324–326. [Google Scholar]
- Darmody, C.; Goldsman, N. Incomplete ionization in aluminum-doped 4H-silicon carbide. J. Appl. Phys. 2019, 126, 145701. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, R.; Qian, Y.; Zhang, Y.; Yang, D.; Pi, X. Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements. Chin. Phys. B 2022, 31, 046104. [Google Scholar] [CrossRef]
- Forsberg, U.; Danielsson, Ö.; Henry, A.; Linnarsson, M.K.; Janzén, E. Aluminum doping of epitaxial silicon carbide. J. Cryst. Growth 2003, 253, 340–350. [Google Scholar] [CrossRef]
- Sridhara, S.G.; Clemen, L.L.; Devaty, R.P.; Choyke, W.J.; Larkin, D.J.; Kong, H.S.; Troffer, T.; Pensl, G. Photoluminescence and transport studies of boron in 4H SiC. J. Appl. Phys. 1998, 83, 7909–7919. [Google Scholar] [CrossRef]
- Torres, V.J.B.; Capan, I.; Coutinho, J. Theory of shallow and deep boron defects in 4H-SiC. Phys. Rev. B 2022, 106, 224112. [Google Scholar] [CrossRef]
- Ghezellou, M.; Kumar, P.; Bathen, M.E.; Karsthof, R.; Sveinbjörnsson, E.Ö.; Grossner, U.; Bergman, J.P.; Vines, L.; Ul-Hassan, J. The role of boron related defects in limiting charge carrier lifetime in 4H–SiC epitaxial layers. APL Mater. 2023, 11, 031107. [Google Scholar] [CrossRef]
- Beyer, F.C.; Hemmingsson, C.G.; Leone, S.; Lin, Y.-C.; Gällström, A.; Henry, A.; Janzén, E. Deep levels in iron doped n- and p-type 4H-SiC. J. Appl. Phys. 2011, 110, 123701. [Google Scholar] [CrossRef]
- Song, H.K.; Kwon, S.Y.; Seo, H.S.; Moon, J.H.; Yim, J.H.; Lee, J.H.; Kim, H.J.; Jeong, J.K. Homoepitaxial growth and electrical characterization of iron-doped semi-insulating 4H-SiC epilayer. Appl. Phys. Lett. 2006, 89, 152112. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, T.; Guo, X.; Chen, M.; Ren, J.; La, P. Electronic structures and optical properties of Ni-doped 4H-SiC: Dispersion-corrected density functional theory investigations. Mater. Res. Express 2019, 6, 095911. [Google Scholar] [CrossRef]
- Lin, L.; Huang, J.; Yu, W.; Tao, H.; Zhu, L.; Wang, P.; Zhang, Z.; Zhang, J. Electronic structures and magnetic properties of (Ni,Al) co-doped 4H-SiC: A first-principles study. Comput. Mater. Sci. 2018, 155, 169–174. [Google Scholar] [CrossRef]
- Mitchel, W.C.; Mitchell, W.D.; Landis, G.; Smith, H.E.; Lee, W.; Zvanut, M.E. Vanadium donor and acceptor levels in semi-insulating 4H- and 6H-SiC. J. Appl. Phys. 2007, 101, 013707. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, R.; Zhang, N.; Zhang, Y.; Yang, D.; Pi, X. Effect of hydrogen on the unintentional doping of 4H silicon carbide. J. Appl. Phys. 2022, 132, 155704. [Google Scholar] [CrossRef]
- Shen, X.; Pantelides, S.T. Identification of a major cause of endemically poor mobilities in SiC/SiO2 structures. Appl. Phys. Lett. 2011, 98, 053507. [Google Scholar] [CrossRef]
- Kaneko, T.; Tajima, N.; Yamasaki, T.; Nara, J.; Schimizu, T.; Kato, K.; Ohno, T. Hybrid density functional analysis of distribution of carbon-related defect levels at 4H-SiC(0001)/SiO2 interface. Appl. Phys. Express 2018, 11, 011302. [Google Scholar] [CrossRef]
- Li, W.; Zhao, J.; Wang, D. An amorphous SiO2/4H-SiC(0001) interface: Band offsets and accurate charge transition levels of typical defects. Solid State Commun. 2015, 205, 28–32. [Google Scholar] [CrossRef]
- Shen, X.; Pantelides, S.T. Oxidation-Induced Epilayer Carbon Di-Interstitials as a Major Cause of Endemically Poor Mobilities in 4H-SiC/SiO2 Structures. MSF 2012, 717–720, 445–448. [Google Scholar] [CrossRef]
- Kagoyama, Y.; Okamoto, M.; Yamasaki, T.; Tajima, N.; Nara, J.; Ohno, T.; Yano, H.; Harada, S.; Umeda, T. Anomalous carbon clusters in 4H-SiC/SiO2 interfaces. J. Appl. Phys. 2019, 125, 065302. [Google Scholar] [CrossRef]
- Dutta, D.; De, D.S.; Fan, D.; Roy, S.; Alfieri, G.; Camarda, M.; Amsler, M.; Lehmann, J.; Bartolf, H.; Goedecker, S.; et al. Evidence for carbon clusters present near thermal gate oxides affecting the electronic band structure in SiC-MOSFET. Appl. Phys. Lett. 2019, 115, 101601. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Guo, Y.; Robertson, J. Carbon cluster formation and mobility degradation in 4H-SiC MOSFETs. Appl. Phys. Lett. 2021, 118, 031601. [Google Scholar] [CrossRef]
- Li, W.; Zhao, J.; Wang, D. Structural and electronic properties of the transition layer at the SiO2/4H-SiC interface. AIP Adv. 2015, 5, 017122. [Google Scholar] [CrossRef]
- Johnson, B.C.; Woerle, J.; Haasmann, D.; Lew, C.T.-K.; Parker, R.A.; Knowles, H.; Pingault, B.; Atature, M.; Gali, A.; Dimitrijev, S.; et al. Optically Active Defects at the SiC/SiO2 Interface. Phys. Rev. Appl. 2019, 12, 044024. [Google Scholar] [CrossRef]
- Wei, S.; Yin, Z.; Bai, J.; Xie, W.; Qin, F.; Su, Y.; Wang, D. The initial oxidation of the 4H-SiC (0001) surface with C-related point defects: Insight by first-principles calculations. Appl. Surf. Sci. 2023, 614, 156161. [Google Scholar] [CrossRef]
- Afanas’ev, V.V.; Ciobanu, F.; Dimitrijev, S.; Pensl, G.; Stesmans, A. SiC/SiO2 Interface States: Properties and Models. MSF 2005, 483–485, 563–568. [Google Scholar] [CrossRef]
- Shimizu, T.; Akiyama, T.; Ito, T.; Kageshima, H.; Uematsu, M.; Shiraishi, K. Ab initio-based approach for the oxidation mechanisms at SiO2/4H-SiC interface: Interplay of dry and wet oxidants during interfacial reaction. Phys. Rev. Mater. 2021, 5, 114601. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Robertson, J. Mobility degradation in 4H-SiC MOSFETs and interfacial formation of carbon clusters. Solid State Electron. 2021, 183, 108051. [Google Scholar] [CrossRef]
- Afanas’ev, V.V.; Stesmans, A.; Harris, C.I. Observation of Carbon Clusters at the 4H-SiC/SiO2 Interface. MSF 1998, 264–268, 857–860. [Google Scholar] [CrossRef]
- Jiang, C.; Morgan, D.; Szlufarska, I. Carbon tri-interstitial defect: A model for the DII center. Phys. Rev. B 2012, 86, 144118. [Google Scholar] [CrossRef]
- Bathen, M.E.; Vines, L. Manipulating Single-Photon Emission from Point Defects in Diamond and Silicon Carbide. Adv. Quantum Tech. 2021, 4, 2100003. [Google Scholar] [CrossRef]
- Kawahara, K.; Suda, J.; Kimoto, T. Deep levels generated by thermal oxidation in p-type 4H-SiC. J. Appl. Phys. 2013, 113, 033705. [Google Scholar] [CrossRef]
- Devynck, F.; Alkauskas, A.; Broqvist, P.; Pasquarello, A.; Caldas, M.; Studart, N. Energy levels of candidate defects at SiC/SiO2 interfaces. In Proceedings of the 29th International Conference on the Physics of Semiconductors, Rio de Janeiro, Brazil, 27 July–1 August 2009; pp. 108–109. [Google Scholar]
- Castelletto, S.; Johnson, B.C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T. A silicon carbide room-temperature single-photon source. Nat. Mater 2014, 13, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Rühl, M.; Bergmann, L.; Krieger, M.; Weber, H.B. Stark Tuning of the Silicon Vacancy in Silicon Carbide. Nano Lett. 2020, 20, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Lingner, T.; Greulich-Weber, S.; Spaeth, J.-M.; Gerstmann, U.; Rauls, E.; Hajnal, Z.; Frauenheim, T.; Overhof, H. Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair. Phys. Rev. B 2001, 64, 245212. [Google Scholar] [CrossRef]
- Lee, E.M.Y.; Yu, A.; De Pablo, J.J.; Galli, G. Stability and molecular pathways to the formation of spin defects in silicon carbide. Nat Commun. 2021, 12, 6325. [Google Scholar] [CrossRef]
- Bockstedte, M.; Mattausch, A.; Pankratov, O. Ab initio study of the migration of intrinsic defects in 3C-SiC. Phys. Rev. B 2003, 68, 205201. [Google Scholar] [CrossRef]
- Umeda, T.; Son, N.T.; Isoya, J.; Janzén, E.; Ohshima, T.; Morishita, N.; Itoh, H.; Gali, A.; Bockstedte, M. Identification of the Carbon Antisite-Vacancy Pair in 4H-SiC. Phys. Rev. Lett. 2006, 96, 145501. [Google Scholar] [CrossRef]
- Umeda, T.; Ishoya, J.; Ohshima, T.; Morishita, N.; Itoh, H.; Gali, A. Identification of positively charged carbon antisite-vacancy pairs in 4H-SiC. Phys. Rev. B 2007, 75, 245202. [Google Scholar] [CrossRef]
- Szász, K.; Ivády, V.; Abrikosov, I.A.; Janzén, E.; Bockstedte, M.; Gali, A. Spin and photophysics of carbon-antisite vacancy defect in 4H silicon carbide: A potential quantum bit. Phys. Rev. B 2015, 91, 121201. [Google Scholar] [CrossRef]
- Yi, A.; Wang, C.; Zhou, L.; Zhu, Y.; Zhang, S.; You, T.; Zhang, J.; Ou, X. Silicon carbide for integrated photonics. Appl. Phys. Rev. 2022, 9, 031302. [Google Scholar] [CrossRef]
- Klein, P.B. Carrier lifetime measurement in n− 4H-SiC epilayers. J. Appl. Phys. 2008, 103, 033702. [Google Scholar] [CrossRef]
- Kimoto, T.; Danno, K.; Suda, J. Lifetime-killing defects in 4H-SiC epilayers and lifetime control by low-energy electron irradiation. Phys. Status Solidi B 2008, 245, 1327–1336. [Google Scholar] [CrossRef]
- Kimoto, T.; Niwa, H.; Okuda, T.; Saito, E.; Zhao, Y.; Asada, S.; Suda, J. Carrier lifetime and breakdown phenomena in SiC power device material. J. Phys. D Appl. Phys. 2018, 51, 363001. [Google Scholar] [CrossRef]
- Saito, E.; Suda, J.; Kimoto, T. Control of carrier lifetime of thick n-type 4H-SiC epilayers by high-temperature Ar annealing. Appl. Phys. Express 2016, 9, 061303. [Google Scholar] [CrossRef]
- Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 2015, 54, 040103. [Google Scholar] [CrossRef]
- Ayedh, H.M.; Hallén, A.; Svensson, B.G. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species. J. Appl. Phys. 2015, 118, 175701. [Google Scholar] [CrossRef]
- Okamoto, D.; Yano, H.; Hatayama, T.; Fuyuki, T. Removal of near-interface traps at SiO2/4H–SiC (0001) interfaces by phosphorus incorporation. Appl. Phys. Lett. 2010, 96, 203508. [Google Scholar] [CrossRef]
- Fiorenza, P.; Bongiorno, C.; Giannazzo, F.; Alessandrino, M.S.; Messina, A.; Saggio, M.; Roccaforte, F. Interfacial electrical and chemical properties of deposited SiO2 layers in lateral implanted 4H-SiC MOSFETs subjected to different nitridations. Appl. Surf. Sci. 2021, 557, 149752. [Google Scholar] [CrossRef]
- Tachiki, K.; Kaneko, M.; Kimoto, T. Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation. Appl. Phys. Express 2021, 14, 031001. [Google Scholar] [CrossRef]
- Lelis, A.J.; Green, R.; Habersat, D.B.; El, M. Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs. IEEE Trans. Electron Devices 2015, 62, 316–323. [Google Scholar] [CrossRef]
- Yano, H.; Kanafuji, N.; Osawa, A.; Hatayama, T.; Fuyuki, T. Threshold Voltage Instability in 4H-SiC MOSFETs With Phosphorus-Doped and Nitrided Gate Oxides. IEEE Trans. Electron Devices 2015, 62, 324–332. [Google Scholar] [CrossRef]
- Karadavut, O.; Chaudhuri, S.K.; Kleppinger, J.W.; Nag, R.; Mandal, K.C. Enhancement of radiation detection performance with reduction of EH6/7 deep levels in n-type 4H–SiC through thermal oxidation. Appl. Phys. Lett. 2022, 121, 012103. [Google Scholar] [CrossRef]
- Ichikawa, S.; Kawahara, K.; Suda, J.; Kimoto, T. Carrier Recombination in n-Type 4H-SiC Epilayers with Long Carrier Lifetimes. Appl. Phys. Express 2012, 5, 101301. [Google Scholar] [CrossRef]
- Okuda, T.; Miyazawa, T.; Tsuchida, H.; Kimoto, T.; Suda, J. Enhancement of carrier lifetime in lightly Al-doped p-type 4H-SiC epitaxial layers by combination of thermal oxidation and hydrogen annealing. Appl. Phys. Express 2014, 7, 085501. [Google Scholar] [CrossRef]
- Murata, K.; Tawara, T.; Yang, A.; Takanashi, R.; Miyazawa, T.; Tsuchida, H. Wide-ranging control of carrier lifetimes in n-type 4H-SiC epilayer by intentional vanadium doping. J. Appl. Phys. 2019, 126, 045711. [Google Scholar] [CrossRef]
- Yoshioka, H.; Nakamura, T.; Kimoto, T. Generation of very fast states by nitridation of the SiO2/SiC interface. J. Appl. Phys. 2012, 112, 024520. [Google Scholar] [CrossRef]
- Fujihira, K.; Tarui, Y.; Imaizumi, M.; Ohtsuka, K.; Takami, T.; Shiramizu, T.; Kawase, K.; Tanimura, J.; Ozeki, T. Characteristics of 4H–SiC MOS interface annealed in N2O. Solid State Electron. 2005, 49, 896–901. [Google Scholar] [CrossRef]
- Komatsu, N.; Ohmoto, M.; Uemoto, M.; Ono, T. Density functional theory calculations for investigation of atomic structures of 4H-SiC/SiO2 interface after NO annealing. J. Appl. Phys. 2022, 132, 155701. [Google Scholar] [CrossRef]
- Akiyama, T.; Kageshima, H.; Shiraishi, K. Reaction of NO molecule at 4H-SiC/SiO2 interface and its orientation dependence: A first-principles study. Jpn. J. Appl. Phys. 2024, 63, 03SP80. [Google Scholar] [CrossRef]
- Tachiki, K.; Kimoto, T. Improvement of Both n- and p-Channel Mobilities in 4H-SiC MOSFETs by High-Temperature N₂ Annealing. IEEE Trans. Electron Devices 2021, 68, 638–644. [Google Scholar] [CrossRef]
- Chanthaphan, A.; Hosoi, T.; Shimura, T.; Watanabe, H. Study of SiO2/4H-SiC interface nitridation by post-oxidation annealing in pure nitrogen gas. AIP Adv. 2015, 5, 097134. [Google Scholar] [CrossRef]
- Akiyama, T.; Shimizu, T.; Ito, T.; Kageshima, H.; Shiraishi, K. Reaction of nitrous oxide and ammonia molecules at 4H-SiC/SiO2 interface: An ab initio study. Surf. Sci. 2022, 723, 122102. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Shao, C.; Robertson, J.; Liu, S.; Guo, Y. Defects and Passivation Mechanism of the Suboxide Layers at SiO₂/4H-SiC (0001) Interface: A First-Principles Calculation. IEEE Trans. Electron Devices 2021, 68, 288–293. [Google Scholar] [CrossRef]
- Shimizu, T.; Akiyama, T.; Nakamura, K.; Ito, T.; Kageshima, H.; Uematsu, M.; Shiraishi, K. Reaction of NO molecule at 4H-SiC/SiO2 interface: An ab initio study for the effect of NO annealing after dry oxidation. Jpn. J. Appl. Phys. 2021, 60, SBBD10. [Google Scholar] [CrossRef]
- Wang, M.; Yang, M.; Liu, W.; Qi, J.; Yang, S.; Han, C.; Geng, L.; Hao, Y. A Highly Efficient Annealing Process with Supercritical N2O at 120 °C for SiO2/4H–SiC Interface. IEEE Trans. Electron Devices 2021, 68, 1841–1846. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, C.; Yin, Z.; Qin, F.; Wang, D. Plasma passivation of near-interface oxide traps and voltage stability in SiC MOS capacitors. J. Appl. Phys. 2019, 125, 185703. [Google Scholar] [CrossRef]
- Fujimoto, H.; Kobayashi, T.; Sometani, M.; Okamoto, M.; Shimura, T.; Watanabe, H. Degradation of NO-nitrided SiC MOS interfaces by excimer ultraviolet light irradiation. Appl. Phys. Express 2022, 15, 104004. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kimoto, T. Carbon ejection from a SiO2/SiC(0001) interface by annealing in high-purity Ar. Appl. Phys. Lett. 2017, 111, 062101. [Google Scholar] [CrossRef]
- Kobayashi, T.; Suda, J.; Kimoto, T. Reduction of interface state density in SiC (0001) MOS structures by post-oxidation Ar annealing at high temperature. AIP Adv. 2017, 7, 045008. [Google Scholar] [CrossRef]
- Fujimoto, H.; Kobayashi, T.; Shimura, T.; Watanabe, H. Improvement of interface properties in SiC(0001) MOS structures by plasma nitridation of SiC surface followed by SiO2 deposition and CO2 annealing. Appl. Phys. Express 2023, 16, 074004. [Google Scholar] [CrossRef]
- Puschkarsky, K.; Grasser, T.; Aichinger, T.; Gustin, W.; Reisinger, H. Review on SiC MOSFETs High-Voltage Device Reliability Focusing on Threshold Voltage Instability. IEEE Trans. Electron Devices 2019, 66, 4604–4616. [Google Scholar] [CrossRef]
- Ettisserry, D.P.; Goldsman, N.; Akturk, A.; Lelis, A.J. Structure, bonding, and passivation of single carbon-related oxide hole traps near 4H-SiC/SiO2 interfaces. J. Appl. Phys. 2014, 116, 174502. [Google Scholar] [CrossRef]
- Ettisserry, D.P.; Goldsman, N.; Lelis, A.J. Role of Oxygen Vacancies in Short- and Long-Term Instability of Negative Bias-Temperature Stressed SiC MOSFETs. IEEE Trans. Electron Devices 2017, 64, 1007–1014. [Google Scholar] [CrossRef]
- Rozen, J.; Dhar, S.; Zvanut, M.E.; Williams, J.R.; Feldman, L.C. Density of interface states, electron traps, and hole traps as a function of the nitrogen density in SiO2 on SiC. J. Appl. Phys. 2009, 105, 124506. [Google Scholar] [CrossRef]
- Noguchi, M.; Iwamatsu, T.; Amishiro, H.; Watanabe, H.; Kita, K.; Miura, N. Improvement in the Channel Performance and NBTI of SiC-MOSFETs by Oxygen Doping. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; IEEE: Piscataway, NJ, USA, 2019; p. 20.4.1. [Google Scholar]
- Lelis, A.J.; Habersat, D.; Green, R.; Ogunniyi, A.; Gurfinkel, M.; Suehle, J.; Goldsman, N. Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements. IEEE Trans. Electron Devices 2008, 55, 1835–1840. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, A.Q. Extreme high efficiency enabled by silicon carbide (SiC) power devices. Mater. Sci. Semicond. Process. 2024, 172, 108052. [Google Scholar] [CrossRef]
- Yuan, X.; Laird, I.; Walder, S. Opportunities, Challenges, and Potential Solutions in the Application of Fast-Switching SiC Power Devices and Converters. IEEE Trans. Power Electron. 2021, 36, 3925–3945. [Google Scholar] [CrossRef]
- Xun, Q.; Xun, B.; Li, Z.; Wang, P.; Cai, Z. Application of SiC power electronic devices in secondary power source for aircraft. Renew. Sustain. Energy Rev. 2017, 70, 1336–1342. [Google Scholar] [CrossRef]
- Adamowicz, M.; Szewczyk, J. SiC-Based Power Electronic Traction Transformer (PETT) for 3 kV DC Rail Traction. Energies 2020, 13, 5573. [Google Scholar] [CrossRef]
- Ding, R.; Dou, Z.; Qi, Y.; Mei, W.; Liu, G. Analysis on characteristic of 3.3-kV full SiC device and railway traction converter design. IET Power Electron. 2022, 15, 978–988. [Google Scholar] [CrossRef]
- Eguchi, H. Technology trends of automotive semiconductors for CASE application. In Proceedings of the 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia), Himeji, Japan, 15–19 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 27–30. [Google Scholar]
- Schefer, H.; Fauth, L.; Kopp, T.H.; Mallwitz, R.; Friebe, J.; Kurrat, M. Discussion on Electric Power Supply Systems for All Electric Aircraft. IEEE Access 2020, 8, 84188–84216. [Google Scholar] [CrossRef]
- Barzkar, A.; Ghassemi, M. Components of Electrical Power Systems in More and All-Electric Aircraft: A Review. IEEE Trans. Transp. Electrific. 2022, 8, 4037–4053. [Google Scholar] [CrossRef]
- Kimoto, T. High-voltage SiC power devices for improved energy efficiency. Proc. Jpn. Acad. Ser. B 2022, 98, 161–189. [Google Scholar] [CrossRef] [PubMed]
- Allca-Pekarovic, A.; Kollmeyer, P.J.; Mahvelatishamsabadi, P.; Mirfakhrai, T.; Naghshtabrizi, P.; Emadi, A. Comparison of IGBT and SiC Inverter Loss for 400V and 800V DC Bus Electric Vehicle Drivetrains. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 6338–6344. [Google Scholar]
- Pradhan, R.; Keshmiri, N.; Emadi, A. On-Board Chargers for High-Voltage Electric Vehicle Powertrains: Future Trends and Challenges. IEEE Open J. Power Electron. 2023, 4, 189–207. [Google Scholar] [CrossRef]
- Kouchaki, A.; Nymand, M. High efficiency three-phase power factor correction rectifier using SiC switches. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. P.1–P.10. [Google Scholar]
- Zhu, K.; Bhalla, A.; Dodge, J. Enabling 99.3% Efficiency in 3.6 kW Totem-Pole PFC Using New 750 V Gen 4 SiC FETs. IEEE Power Electron. Mag. 2021, 8, 30–37. [Google Scholar] [CrossRef]
- Saha, J.; Kumar, N.; Panda, S.K. A Futuristic Silicon-Carbide (SiC)-Based Electric-Vehicle Fast Charging/Discharging (FC/dC) Station. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 2904–2917. [Google Scholar] [CrossRef]
- Li, L.; Yuan, S.; Amina, K.; Zhai, P.; Su, Y.; Lou, R.; Hao, X.; Shan, H.; Xue, T.; Liu, H.; et al. Robust and fast response solar-blind UV photodetectors based on the transferable 4H-SiC free-standing nanowire arrays. Sens. Actuators A Phys. 2022, 346, 113878. [Google Scholar] [CrossRef]
- Mo, J.; Li, J.; Zhang, Y.; Romijn, J.; May, A.; Erlbacher, T.; Zhang, G.; Vollebregt, S. A Highly Linear Temperature Sensor Operating up to 600 °C in a 4H-SiC CMOS Technology. IEEE Electron Device Lett. 2023, 44, 995–998. [Google Scholar] [CrossRef]
- Soltau, N.; Wiesner, E.; Stumpf, E.; Idaka, S.; Hatori, K. Electric-Energy Savings using 3.3 kV Full-SiC Power-Modules in Traction Applications. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- He, J.; Sangwongwanich, A.; Yang, Y.; Zhang, K.; Iannuzzo, F. Design for Reliability of SiC-MOSFET-Based 1500-V PV Inverters with Variable Gate Resistance. IEEE Trans. Ind. Applicat. 2022, 58, 6485–6495. [Google Scholar] [CrossRef]
- Chen, Z.; Rizi, H.S.; Xu, W.; Yu, R.; Huang, A.Q. Hardware Design of a 150 kW/1500 V All-SiC Grid-forming Photovoltaic Synchronous Generator (PVSG). In Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 20–24 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1977–1984. [Google Scholar]
Ref | Bond Length (Å) | Coordination Number | Density (g/cm3) | |||||
---|---|---|---|---|---|---|---|---|
In-O | Ga-O | Zn-O | In | Ga | Zn | |||
Calculation | [13] | 2.15 | 1.79 | 2 | 5.36 | 4.25 | 4.22 | 5.58 |
[14] | 2.2 | 2 | 2 | 5 | 5 | 4 | 5.71 | |
[15] | 2.12 | 1.91 | 1.92 | 4.8 | 5 | 4 | 6.1 | |
[16] | – | – | – | 5.24 | 4.9 | 4.41 | 5.77 | |
[17] | 2.14 | 1.9 | 2 | 5.26 | 4.83 | 4.25 | 5.91 | |
Experiment | [13] | 2.11 | 2 | 1.95 | 4.5 | 4.3 | 4.6 | 5.9 |
[18] | 2.16 | 1.87 | 1.97 | 4.9 | 5.0 | 4.5 | – |
Ref | Method | W/L (μm/μm) | Dielectric | In:Ga:Zn | Mobility (cm2/V·s) | SS (V/dec) | Ion/Ioff | Vth (V) |
---|---|---|---|---|---|---|---|---|
[23] | Sputtering | (100–300)/(10–50) | SiO2 | 37:13:50 | 12 (μsat) | – | 108 | 3 |
[27] | Sputtering | 25/25 | SiO2 | 2:1:2 | 52 (μFE) | 0.25 | 108 | 1 |
4:1:2 | 74 (μFE) | 0.29 | 108 | 0.2 | ||||
[28] | Sputtering | 25/25 | SiO2 | 3:6:2 | 52 (μFE) | 0.25 | – | 1.9 |
[29] | Solution | 160/20 | Al2O3 | 3:1:1 | 3 (μsat) | 0.073 | 106 | – |
[30] | Solution | 1500/100 | Al2O3 | 5:1:1 | 9 | 0.22 | 106 | 0.2 |
[31] | Solution | 300/30 | HfO2 | 9:1:2 | 86 (μFE) | 0.14 | – | −0.3 |
[5] | PEALD | 40/20 | SiO2 | 23:14:8 | 74 (μsat) | 0.26 | 109 | −1.3 |
[32] | PEALD | 40/20 | SiO2 | 5:3:1 | 24 (μsat) | 0.29 | 108 | 0.5 |
64:15:22 | 44 (μsat) | 0.25 | 109 | −1.1 |
Ref | Trap Level Position (eV) | Bandgap (eV) | Formation Energy (eV) | Atom Number |
---|---|---|---|---|
[15] | 0.28–0.73 | 1.4 | 3.9–5 | 84 |
[13] | 1.64 | 3.1 | 3–5.8 | 84 |
[16] | 1.36–2.45 | 2.7 | 3.4–5 | 84 |
[42] | 1 | 2.5 | – | 112 |
[39] | 1.14 | 2 | – | 336 |
1.51 | 3.1 | – | 168 | |
[36] | 0.89–2 | 2.5 | – | 105 |
[38] | 0.75–1.55 | 2.9 | 0.7–5.2 | 490 |
[37] | 0.8–1.2 | 2.9 | – | 112 |
Ref. | Structure | W/L (nm/nm) | Ion (μA/μm) | Ioff (A/μm) | Retention (s) | SS (mV/dec) | Vth (V) |
---|---|---|---|---|---|---|---|
[107] | Single gate | 70/45 | 0.2 | 3 × 10−19 | >400 | – | −0.4 |
[108] | CAA | – | 30 | 2 × 10−7 | 300 | 230 | −3.5 |
[109] | Single gate | 180/50 | 4 | <10−19 | >1000 | – | 0 |
[110] | CAA | – | 33 | 4 × 10−19 | – | 92 | −0.2 |
[111] | Double gate | 220/14 | 1500 | – | >300 | 77 | – |
[112] | Single gate | – | 24 | 6 × 10−20 | >10,000 | – | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shangguan, Q.; Lv, Y.; Jiang, C. A Review of Wide Bandgap Semiconductors: Insights into SiC, IGZO, and Their Defect Characteristics. Nanomaterials 2024, 14, 1679. https://doi.org/10.3390/nano14201679
Shangguan Q, Lv Y, Jiang C. A Review of Wide Bandgap Semiconductors: Insights into SiC, IGZO, and Their Defect Characteristics. Nanomaterials. 2024; 14(20):1679. https://doi.org/10.3390/nano14201679
Chicago/Turabian StyleShangguan, Qiwei, Yawei Lv, and Changzhong Jiang. 2024. "A Review of Wide Bandgap Semiconductors: Insights into SiC, IGZO, and Their Defect Characteristics" Nanomaterials 14, no. 20: 1679. https://doi.org/10.3390/nano14201679
APA StyleShangguan, Q., Lv, Y., & Jiang, C. (2024). A Review of Wide Bandgap Semiconductors: Insights into SiC, IGZO, and Their Defect Characteristics. Nanomaterials, 14(20), 1679. https://doi.org/10.3390/nano14201679