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Abstract: Molecular dynamics (MD) techniques offer significant potential for optimizing mineral
extraction processes by simulating economically or physically restrictive conditions at the laboratory
level. Lithium, a crucial metal in the electromobility era, exemplifies the need for ongoing re-
evaluation of extraction techniques. This research aims to simulate the crystal structures of mineral
species present in a polylithionite mineral concentrate [KLi2Al(Si4O10)(F,OH)2] using crystallographic
data obtained from X-ray diffraction analysis. This study focuses on optimizing these structures,
validating them through density comparisons, and determining the interaction parameter between the
identified phases and lithium oxide (Li2O). The X-ray diffraction analysis revealed five predominant
mineral phases: quartz (SiO2), calcite [Ca(CO3)], pyrite (FeS2), cassiterite (SiO2), and a compound
Pb6O2(BO3)2SO4. Structural data, including lattice parameters, space groups, and atomic coordinates,
were used to construct the crystal structures with Materials Studio 8.0, employing the Crystal
Builder module. Optimization was performed using the Forcite module with the Smart optimization
algorithm and the Universal force field. The interaction parameter (χ) indicated an affinity between
lithium oxide and pyrite, as well as between calcite and quartz.

Keywords: mining; geometric optimization; structural validation; miscibility

1. Introduction

Molecular dynamics (MD) simulation techniques have become essential tools in re-
search across various fields, including biomolecules, polymers, minerals, and other com-
pounds. These techniques are used to test theoretical models and predict experimental
behaviors such as interactions and structural dynamics. By describing variations in po-
sitions, velocities, and orientations of molecules over time, MD simulations facilitate a
deeper understanding of these systems [1,2].

When implementing MD simulations, researchers often rely on complementary an-
alytical techniques to enhance accuracy and efficiency. Techniques such as X-ray crystal-
lography [3], electron microscopy [4], nuclear magnetic resonance (NMR) [5], and electron
paramagnetic resonance (EPR) are commonly used to support and refine simulation re-
sults [2].
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In the mining industry, MD simulations have diverse applications. They can aid in
the development of new compounds and structures and simulate interactions between
minerals to assess the stability of molecular complexes under varying pressure and tem-
perature conditions [6]. MD simulations can also evaluate the behavior of compounds or
crystalline structures under different pressures [7] and determine formation energies at
various temperatures [8]. By simulating laboratory conditions that might be challenging
to replicate experimentally due to economic or physical constraints, MD techniques offer
valuable insights [9].

In recent decades, focus has shifted towards exploring compounds and elements that
can aid in the decarbonization of energy sources and address current energy demands.
Energy storage and production technologies, such as rechargeable batteries [10], electric
vehicles [11], and storage cells [12], are key areas of exploration. Elements like lithium,
cobalt, zinc, and magnesium are being investigated as crucial components of energy
transition [13].

Mining companies are becoming increasingly interested in developing sustainable
technologies to reduce the environmental impact of mineral extraction. Biohydrometallurgy,
a branch of biotechnology, explores the economic potential of microbial interactions with
mineral compounds while addressing environmental concerns [14]. Molecular dynamics
simulations might enhance the efficiency of mineral extraction processes by generating
predictive models for ore deposits and optimizing biotechnological treatments [13].

This research focused on simulating the crystalline structures of mineral species
present in lithium concentrate from Bacanora Minerals, located in Bacadehuachi, Sonora,
Mexico. This study aimed to optimize these structures using X-ray diffraction (XRD)
analysis, allowing for a comparison between simulated structural approximations and those
observed in the mineral concentrate. Additionally, this research assessed the miscibility
parameters between the phases identified through XRD analysis and lithium oxide (Li2O)
to evaluate their affinity. This research could serve as a foundation for in silico evaluations
that might otherwise be economically prohibitive, offering significant benefits to the mining
industry and related lithium sectors.

2. Materials and Methods
2.1. Materials

The lithium-bearing mineral concentrate was a clay mineral identified as polylithionite
[KLi2Al(Si4O10)(F,OH)]2 [15]. This material was supplied by Bacanora Minerals, a company
located in Sonora, northeastern Mexico, approximately 11 km south of Bacadehuachi,
180 km northeast of Hermosillo, and about 170 km south of the US–Mexico border.

2.2. Methods
2.2.1. X-Ray Diffraction Analysis

The morphology of the mineral concentrate was assessed using X-ray diffraction
(XRD) analysis. The sample was crushed and sieved to obtain particles smaller than
200 mesh. It was then homogenized to ensure uniform exposure to the X-ray beam. A
Rigaku Miniflex 600 X-ray (Rigaku Corp., Tokyo, Japan) diffractometer was used, operating
at room temperature with a monochromatic Cu Kα radiation source (λ = 0.154 nm). The
analysis was conducted in stepped scan mode with a 2θ angular range of 5–90◦ and a step
size of 0.02◦.

2.2.2. Crystal Builder

To construct the crystal structures present in the mineral concentrate, we used the
Crystal Builder module of Materials Studio 8.0. This involved inputting structural parame-
ters derived from the XRD analysis, such as lattice parameters, space groups, angles, and
the coordinates of the constituent atoms for each crystal phase.
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2.2.3. Geometry Optimization

Geometric optimization of each structure was performed through an energetic evalua-
tion and conformational adjustment. Atomic coordinates and cell parameters were refined
until the structure reached its minimum energy state. This was accomplished using the
Forcite module [16] with the Smart optimization algorithm [17], which combines various
geometry optimization methods to better approximate minimum energy potential. The
Universal force field, which incorporates rules based on hybridization and connectivity,
was used to calculate forces on atoms from their potential energy. This force field is suit-
able for complex metallic compounds and predicts geometries and conformational energy
differences while considering the crystalline nature of the sample [18].

2.2.4. Structural Validation

Structural validation of the crystals involved comparing the densities of simulated
structures with those obtained experimentally. Structural densities are closely related to
intermolecular optimizations [19,20]; a higher percentage of agreement indicates greater
structural accuracy [21,22]. Experimental densities were obtained from X-ray diffraction
analysis, while simulated densities were calculated using Materials Studio 8.0. The percent-
age of agreement between experimental and simulated densities was then computed.

2.2.5. Miscibility

An atomic absorption analysis previously conducted on the mineral concentrate sam-
ples revealed a lithium concentration of 0.0052%. Given this concentration, lithium oxide
was not detected among most species in the X-ray diffraction analysis, as the equipment
requires a minimum concentration of 0.5% lithium. Therefore, we employed dynamic
simulation techniques to identify the likely predominant entity or species responsible for
lithium release. This was carried out using the Blends module of Materials Studio 8.0,
which considers the miscibility parameter. The Blends module uses the Flory–Huggins
model, a well-known theory of the thermodynamics of mixing and phase separation in
binary systems [23]. The general expression for the free energy of mixing is given by
Equation (1) [24].

∆G
RT

=
∅b
nb

ln∅b +
∅s

ns
ln∅s + χ∅b∅s (1)

where
∆G = Free energy of mixing per mole

(
∆G
mol

)
.

∅i = Volume fraction of component i.
ni = Degree of polymerization of component i.
χ = Interaction parameter.
T = Absolute temperature (K).
R = Universal gas constant

(
J

mol∗K

)
.

In the model, the first term represents the combinatorial entropy of the system. This
term is typically negative, which favors the formation of a mixed state in pure compounds.
A more negative combinatorial entropy value indicates a stronger attraction between the
interacting elements as they form a complex [25].

Conversely, the last term represents the free energy of mixing resulting from the
interaction. If the interaction parameter, χ, is positive, it disfavors the mixed state due to
the degrees of freedom and the restricted miscibility of the elements in the mixing complex,
which tend to segregate [25]. The interaction parameter (χ) is defined by Equation (2).

χ =
Emix
RT

(2)

where Emix = mixing energy, i.e., the difference in free energy for the interaction between
the mixed state and the pure state.
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In the traditional Flory–Huggins model, each mixing component occupies a lattice site.
In such a lattice with a coordination number Z, binding energy represents the interaction
energy between two components. This interaction energy allows for the calculation of
mixing energy, the interaction parameter χ, and the construction of phase diagrams [25].
Mixing energy is described by Equation (3).

Emix =
1
2

Z(Ebs + Esb − Ebb − Ess) (3)

where Eij (E bs, Esb, Ebb, Ess) represent the binding energy between a unit of the component
and a unit of the component i and a unit of the component j.

On the other hand, the Blends module generates multiple molecular orientations by
calculating the interaction energy for each configuration. These orientations are classified
based on their assigned roles, which are termed the “base role” and “screen role.” There
are four possible combinations of these roles, each with an associated binding energy
value: base–base (Ebb), screen–screen (Ess), screen–base (Esb), and base–screen (Ebs) [26].
The mixing energy at a given temperature is represented by Equation (4).

Emix =
1
2
(Zbs⟨Ebs⟩T + Zsb⟨Esb⟩T − Zss⟨Ess⟩T) (4)

A value of χ ≤ 0 indicates that, at a given temperature, the molecules interact favor-
ably, allowing the mixture to potentially exhibit a single phase. Conversely, if χ ≥ 0, it
suggests that the molecules have a preference for being surrounded by similar components
rather than mixing. Finally, if χ ≫ 0, this indicates that the contribution to free energy
surpasses the combinatorial entropy of the mixture, leading to phase separation into two
distinct phases.

3. Results
3.1. X-Ray Diffraction Analysis

The results of the XRD analysis are shown in Figure 1. The data reveal the presence of
five predominant species. According to the quantitative Rietveld analysis (RIR) performed
by the equipment, the most abundant compound is quartz (SiO2), constituting 92% of the
sample. This is followed by calcite [Ca(CO3)], at 5.4%. Additionally, the analysis identified
pyrite (FeS2), tin oxide (SnO2), and a compound with the formula Pb6O2(BO3)2SO4.
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3.2. Crystal Builder

The XRD analysis provided crystallographic data, including space groups, lattice pa-
rameters (Table 1), and atomic positions within the crystal lattice (Table 2). This information
was utilized to construct crystals using the Crystal Builder module in Materials Studio
8.0 software.

Table 1. Crystallographic information obtained from XRD analysis of lithium-bearing min-
eral concentrate.

Phase Formula Space Group
Latency Parameters

a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

Calcite CaCO3 167: R-3c 4.9937 4.9937 17.0792 90 90 120
Quartz SiO2 152: P3121 4.9198 4.9198 5.4018 90 90 120
Pyrite FeS2 205: Pa-3 5.4279 5.4279 5.4279 90 90 90

Pb6O2(BO3)2SO4 B2O12Pb6S 62: Pnma 6.3849 11.3296 17.7568 90 90 90
Tin oxide SnSO4 62: Pnma 8.6952 5.3834 6.9650 90 90 90

Lithium Oxide * LiO2
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Table 2. Structural parameters corresponding to the atomic coordinates for each of the phases
obtained in the XRD analysis.

Phase Element X Y X

Calcite
(CaCO3)

Ca 0.000 0.000 0.000
C 0.000 0.000 0.250
O 0.257 0.000 0.250

Quartz
(SiO2)

Si 0.465 0.000 0.333
O 0.417 0.278 0.222

Pyrite
(FeS2)

Fe 0.000 0.000 0.333
S 0.625 0.625 0.625

Pb6O2(BO3)2SO4

O 0.030 0.025 0.447
S 0.212 0.250 0.493
O 0.167 0.650 0.974
O 0.087 0.250 0.161
Pb 0.224 0.250 0.292
Pb 0.171 0.093 0.105
O 0.164 0.250 0.571
Pb 0.402 0.250 0.699
B 0.079 0.508 0.748
O 0.141 0.597 0.718
Pb 0.645 0.590 0.102
O 0.750 0.491 0.829
O 0.281 0.750 0.355
O 0.024 0.402 0.713

Tin sulfate
(O4SSn)

Sn 0.208 0.250 0.222
S 0.069 0.250 0.694
O -0.083 0.250 0.597
O 0.194 0.250 0.550
O 0.088 0.020 0.819

Lithium Oxide
(Li2O)

O 0.000 0.000 0.000
Li 0.250 0.750 0.250
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The first step in constructing the crystals was defining the unit cell, starting with
the information provided by the XRD analysis on lattice parameters, including size and
corresponding angles [28] (Table 1, Figure 2). Next, the coordinates of the atoms were
inputted to specify their positions within the cell (Table 2). For the creation of the lithium
oxide (Li2O) crystal, structural data such as lattice parameters, space groups, and atomic
coordinates were obtained from The “Materials Project” database [27].
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3.3. Geometry Optimization

Geometry optimization was carried out using the Forcite module, employing the Smart
optimization algorithm and the Universal force field. This process enabled us to achieve
the structures in their minimum energy state. Figures 3 and 4 illustrate the structures before
and after geometry optimization, highlighting differences in atomic size and arrangement.

The Universal force field (UFF) has been widely utilized in molecular dynamics (MD)
simulations across various studies involving inorganic compounds, demonstrating its
validity and reliability in computational modeling. The UFF is particularly advantageous
due to its ability to provide a consistent framework for simulating a diverse range of
materials, including metal–organic frameworks (MOFs) and other inorganic structures.

For instance, [29] conducted MD simulations using the UFF within the Forcite mod-
ule of Materials Studio to investigate the growth limits of ZIF-8 thin films. Their work
involved constructing defect-free models based on X-ray crystal structures, showcasing
the UFF’s capability to accurately represent the structural properties of complex inorganic
materials [29]. Similarly, [30] employed the UFF to calculate vibrational frequencies and
temperatures of rhodochrosite crystals, further validating the method’s effectiveness in
predicting the physical properties of inorganic compounds.

Moreover, the UFF has been successfully applied in studies focusing on gas separa-
tion processes. The authors of [31] utilized the UFF in their MD simulations to explore
the efficiency of helium separation using a two-dimensional metal–organic framework,
demonstrating the force field’s applicability in practical scenarios involving gas interactions.
Additionally, [32] highlighted the importance of selecting appropriate force fields for MOFs,
comparing the UFF with other generic force fields and finding it to yield reliable predictions
for CO2 separation processes.

The versatility of the UFF is further illustrated by its application in various other
studies. For example, Aly et al. optimized the molecular structures of metal complexes
using the UFF, confirming its utility in quantum chemical studies [33]. In another study, [34]
employed the UFF to simulate the behavior of polyether/polyamide-Ag membranes for
pollutant capture, reinforcing the method’s robustness in modeling interactions in com-
plex systems.
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2780.34 kcal/mol to calcite (A), 19.79 kcal/mol to quartz (C), and 475.62 kcal/mol to pyrite (E);
and simulated structures after geometric optimization with a final enthalpy of 81.39 kcal/mol to
calcite (B), −28.03 kcal/mol to quartz (D), and 368.69 kcal/mol to pyrite (F).

The UFF has demonstrated significant reliability in predicting inorganic crystal struc-
tures, particularly when benchmarked against specialized force fields. For instance, Ad-
dicoat et al. showed that Universal force field for metal–organic frameworks (UFF4MOF)
parameters yield lattice parameters for MOFs comparable to those derived from dedicated
force fields, indicating the UFF’s robustness in this domain [35]. Furthermore, Jaillet et al.
emphasized the UFF’s versatility, as it encompasses parameterizations for all elements up to
atomic number 103, making it applicable across a wide range of inorganic systems [36]. This
adaptability is crucial for modeling complex interactions in materials science, as evidenced
by its successful application in various studies, including those on metal complexes [36].
Additionally, the accuracy of UFF computations has been validated through comparisons
with experimental data, reinforcing its utility in computational modeling of crystal struc-
tures [37]. Overall, the UFF’s comprehensive parameterization and proven performance in
diverse applications underscore its value in predicting inorganic crystal structures reliably.
In summary, the UFF has been validated through multiple studies that demonstrate its
effectiveness in simulating the molecular dynamics of inorganic compounds and mate-
rials. Its consistent performance across diverse applications underscores its relevance in
computational materials science.
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Figure 4. Simulated structures before geometric optimization with an initial enthalpy of
11867.75 kcal/mol to Pb6O2(BO3)2SO4 (G), 11867.75 kcal/mol to tin sulfate (I), and 81.78 kcal/mol
to lithium oxide (K); and simulated structures after geometric optimization with a final enthalpy of
5466.76 kcal/mol to Pb6O2(BO3)2SO4 (H), and 5466.76 kcal/mol to tin sulfate (J).

3.4. Structural Validation

Table 3 presents the structural validation for the optimized figures by density com-
parison, where coincidence can be observed for five of the six simulated structures, except
for calcite.

Table 3. Structural validation of the optimized figures by density comparison.

Name Formula
Density
[g/cm3]

Experimental Simulated

Calcite CaCO3 2.703 1.697
Quartz SiO2 2.643 2.708
Pyrite FeS2 4.983 4.594

Pb6O2(BO3)2SO4 B2O12Pb6S 7.699 6.330
Tin sulfate SnSO4 4.375 3.540

Lithium oxide LiO2 1.960 1.959
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Errors in calculated densities, both experimental and simulation-based, can arise from
several factors. For experimental densities obtained through X-ray diffraction, inaccuracies
may stem from instrumental calibration, sample purity, and environmental conditions
during measurement, which can affect the precision of density values [38]. Additionally,
the presence of defects or imperfections in the crystal structure can lead to discrepancies
between measured and theoretical densities.

In simulation-based density calculations, such as those performed using Materials
Studio, errors can occur due to the choice of computational parameters, including the
level of theory, basis set, and optimization algorithms used [39]. Furthermore, approxima-
tions inherent in the models, such as the generalized gradient approximation (GGA) in
density functional theory, can lead to systematic errors in predicted densities [40]. Assump-
tions made regarding intermolecular interactions and simplifications in the simulation
models can also contribute to inaccuracies [41]. Overall, a comprehensive understanding
of both experimental and computational limitations is essential for interpreting density
results accurately.

3.5. Interaction Parameter

The interaction parameter (χ) was evaluated, and was taken as the basis on which the
miscibility of each of the simulated crystals would be evaluated, with lithium oxide as a
screen, thus obtaining the miscibility parameters presented in Table 4.

Table 4. Interaction parameter χ (Chi) for Li2O for each simulated crystal.

Base Display χ

Pb6O2(BO3)2SO4 LiO2 67.4689
Tin sulfate LiO2 11.1287

Quartz LiO2 8.9556
Calcite LiO2 4.2978
Pyrite LiO2 0.6052

The Flory–Huggins interaction parameter χ can be related to the Hildebrand solubility
parameter δ and expressed as a function of temperature. A small value of χ is generally an
indicator of miscibility in a binary system [42].

4. Discussion

Geometric optimization, which involves reducing cell sizes and adjusting atomic
arrangements, led to a significant decrease in the system’s specific enthalpy. For calcite,
this change was from an initial enthalpy of 2780.34 kcal/mol (A) to a final enthalpy of
81.39 kcal/mol (B). Geometric optimization was conducted for each simulated crystal, as
shown in Figures 3 and 4. However, the simulated crystal for lithium oxide (K) was not
geometrically optimized because the data from the database already represent the ideal
crystal structure for that compound in its minimum energy state [43–45].

The differences observed in structural validation for the optimized figures, as mea-
sured by density comparisons, may stem from the optimization process, which includes
two main stages: energy evaluation and conformation adjustment. In the energy evaluation
stage, conformations and energy terms are assessed and defined. The conformation adjust-
ment stage aims to reduce energy expression, which may be achieved through adjustment
or require additional iterations. The efficiency of the optimization is determined by both
the time taken to evaluate the energy expression and the number of iterations needed to
reach the minimum energy state [46]. Although two full simulations were performed for
each structure, no significant change in structural density was observed. To achieve the
minimum energy state, it may be necessary to increase the number of iterations or vary the
force field.
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The interaction parameter χ ≥ 0 indicates a tendency for components to remain
separate without mixing, as seen with the lowest values in interactions between pyrite and
lithium oxide (0.6052), calcite (4.2978), and quartz (8.9556). Conversely, an χ ≫ 0 value
suggests phase separation in the mixture, as observed for the Pb6O2(BO3)2SO4 compound.

In molecular dynamics simulations conducted using Materials Studio, the values of
binding energies and coordination numbers (Z) are derived through a combination of
computational techniques and modules available within the software. The binding energy,
which quantifies the stability of a molecular system, is typically calculated using density
functional theory (DFT) or force field methods. For instance, the DMol3 module in Materials
Studio is frequently employed to perform DFT calculations, allowing researchers to obtain
total energies and electronic properties essential for determining binding energies [47,48].

Coordination numbers, which indicate the number of nearest neighbors surrounding
a central atom, are often derived from the analysis of radial distribution functions (RDFs)
obtained during MD simulations. The Forcite module in Materials Studio is particularly
useful for such calculations, as it allows for the simulation of molecular interactions and
the extraction of structural information from the resulting trajectories [49]. By analyzing
the RDF, one can determine the peak positions corresponding to the distances of near-
est neighbors, which directly informs the coordination number [50]. This approach has
been validated in various studies, where MD simulations have successfully modeled the
solvation shells and coordination environments of ions in different solvents [50].

Furthermore, the integration of these computational techniques with advanced visual-
ization tools in Materials Studio enhances our understanding of material properties at the
atomic level. For example, the CASTEP module can be utilized for geometry optimization
and electronic structure calculations, which are crucial for accurately determining both
binding energies and coordination numbers in complex materials [51,52]. The combination
of these methodologies allows researchers to comprehensively analyze interactions within
materials, leading to insights into their mechanical and thermal properties [53].

In summary, the determination of binding energies and coordination numbers in
molecular dynamics simulations using Materials Studio involves a multifaceted approach
that leverages DFT calculations, force field methods, and detailed structural analysis of
simulation data. This integrated methodology provides a robust framework for exploring
the intricate behaviors of materials at the molecular level.

5. Conclusions

In conclusion, the application of molecular dynamics (MD) simulations in this study
is strongly supported by key quantitative characteristics that enhance our understanding
of mineral extraction processes, particularly for lithium. The identification of five mineral
phases—quartz, calcite, pyrite, tin oxide, and Pb6O2(BO3)2SO4—highlights the complexity
of the polylithionite mineral concentrate, necessitating detailed MD simulations to model
their interactions. Structural optimization through precise crystallographic data, including
lattice parameters and atomic coordinates, enables reliable predictions of phase behavior.
Additionally, the validation of optimized structures via density comparisons provides a
critical benchmark for assessing thermodynamic properties. The calculated miscibility pa-
rameters (χ) further illustrate significant affinities between lithium oxide and pyrite, as well
as between calcite and quartz, offering valuable insights for optimizing extraction pathways.
These findings collectively underscore the importance of MD simulations in advancing
sustainable lithium extraction methodologies in the context of the electromobility era.
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