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1. Introduction

The semiconductor industry is facing concerns regarding the saturation of Moore’s
Law [1]. To address this challenge, great efforts have been made to develop nano-scaled
functional electronic devices [2–5] in order to form a rapidly developing field of nanoelec-
tronics that focuses on the manipulation and control of nano-scale materials and devices.
Due to the quantum size effect, electrons in nanomaterials and devices exhibit many novel
properties, several of which have attracted great attention from researchers in various fields.
Nanoelectronics bridge the gap between traditional electronics and quantum mechanics,
achieving unprecedented miniaturization and enhanced functionality. The exploration of
materials, devices, and their applications in nanoelectronics has achieved significant break-
throughs in various industries, from healthcare to energy systems. It is widely believed that
nanoelectronics will replace microelectronics as the mainstay of information technology in
the coming decades, which will have a profound impact on human life.

2. An Overview of Published Articles

This Special Issue comprises ten research articles, two communication articles, and
three review articles covering a variety of fields:

Polymers in nanoelectronics. Nordendorf and their coauthors reported that dispersing
ferroelectric LiNbO3: Fe nanoparticles in liquid crystal–polymer composites could lower
transition temperatures and birefringence, thus enhancing the electro-optic performance [6].
For the optimization of the process of integration with Cu films, Ustad et. al. investigated
the adhesion of photosensitive polyimide (PSPI) films with different substrates, including
Si, SiN, SiO2, Cu, and Al. The PSPI films is stable on Cu substrate at high temperatures of
up to 350 ◦C. This will be helpful for new packaging applications, such as a 3D IC with a
Cu interconnect [7].

Devices in nanoelectronics. Zhao et al. simplified the fabrication process of thin-film
transistors (TFTs) prepared by high-power impulse magnetron sputtering (HiPIMS) at
room temperature via a two-step deposition pressure process. Compared with traditional
uniform channels, this process has the advantages of balancing the high mobility and
low threshold voltage of TFTs [8]. Xie et al. presented a ZnO TFT memory utilizing
self-assembled Au nanocrystals. The memory exhibits excellent memory performance,
including a program/erase window of 9.8 V, a 29% charge loss extrapolated to 10 years, and
remarkable endurance characteristics. Their work indicates that the fabricated TFT memory
has great potential for practical applications [9]. Alam et al. used a simple, non-toxic,
environmentally friendly, and water-driven method to manufacture gate dielectrics on
silicon substrates and successfully integrated the In2O3/HfO2 TFTs. The device exhibits
the best electrical performance at an optimized annealing temperature. Their results
demonstrate the potential application of aqueous solution technology for future low-cost,
energy-efficient, large-scale, and high-performance electronics [10]. Park et al. analyzed
the effects of interface traps on the output characteristics of an inversion mode n-channel
GaN Schottky barrier (SB)-MOSFET using TCAD simulations. The simulation results
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demonstrated that the shallow trap affected the device’s switching performance and photo-
response characteristics significantly, while the deep trap had a significant effect on the
device’s on-state performance [11]. Dou et al. designed and fabricated high-frequency
bulk acoustic wave (BAW) resonators based on Al1-xScxN-based piezoelectric films with Sc
concentrations as high as 30%. The fabricated BAW resonators demonstrate a large effective
electromechanical coupling of 17.8% at 4.75 GHz parallel resonant frequency and excellent
temperature stabilit with the temperature coefficient of frequency of −22.9 ppm/◦C [12].
Wu et al. investigated the effect of atomic layer deposition (ALD)-derived Al2O3 passivation
layers and annealing temperatures on the interfacial chemistry and transport properties
of the sputtering-deposited Er2O3 high-k gate dielectrics on Si substrate. Their work
shows that the ALD-derived Al2O3 passivation layer remarkably prevents the formation
of the low-k hydroxides generated by moisture absorption of the gate oxide and greatly
optimizes the gate dielectric properties. They achieved the lowest leakage current density of
4.57 × 10−9 A/cm2 and the smallest interfacial density of states of 2.38 × 1012 cm−2 eV−1

in the Al2O3/Er2O3/Si MOS capacitor [13].
Energy-harvesting in nanoelectronics. Zhao et al. fabricated a self-powered tribo-

electric nanogenerator (TENG) based on fish scales. The fish-scale TENG is a kind of
flexible, wearable, and self-powered triboelectric nanogenerator showing great prospects
in regard to healthcare and body-information monitoring [14]. Zheng at al. fabricated a
ternary dielectric rotating triboelectric nanogenerator (TDR-TENG) based on TiO2/WO3
dual-band electrochromic material. The TDR-TENG can convert mechanical energy from
the environment into electrical energy to obtain a high output of 840 V, 23.9 µA, and
327 nC [15]. Chakraborty et al. fabricated a novel bio-based TENG comprising PDMS/
α-Fe2O3 nanocomposite film and a processed human-hair-based film. The TENG harvests
the vibrating energy and solar energy simultaneously by the integration of triboelectric
technology and photoelectric conversion techniques. Their work provides a new approach
towards self-powered photo-detection while developing a propitious green energy resource
for the circular bio-economy [16]. Wang et al. discussed the implementation of smart mate-
rials in TENGs: classification, design, function collaboration, and applications. They finally
highlighted the challenges and outlooks in this field [17].

Electrons in nanoelectronics. Tian et al. demonstrated that the two-dimensional elec-
tron gas (2DEG) on the (100) KTaO3 (KTO) surface undergoes a semiconductor–metal
transition under the illumination of visible light. Their results deepen the understanding of
the photoinhibition effect of 2DEG semiconductor on the KTO surface and contribute to the
exploration of the photoinduced modulation effect of 2DEG on the KTO surface [18]. Ban-
golla et al. reported the photoconduction properties of tungsten disulfide (WS2) nanoflakes
obtained by the mechanical exfoliation method. The WS2 photodetector exhibits superior
performance with responsivity in the range of 36–73 AW−1 and a normalized gain in the
range of 3.5–7.3 × 10−6 cm2 V−1 at a lower bias voltage of 1 V. The results suggest that
WS2 nanostructures are of potential as a building block for novel optoelectronic device ap-
plications [19]. Shi et al. found that the La0.5Na0.5TiO3 addition in (0.65BiFeO3–0.35BaTiO3)
composites can improve the electrostrain properties due to the phase boundary effect.
They obtained a good thermal stability of electrostrain with fluctuation η = 31% in a wide
temperature range of 25–180 ◦C in the sample with a La0.5Na0.5TiO3 doping level of 4%
mole. This work provides an implication for designing high-temperature piezoelectrics
and stable electrostrain materials [20]. In the review article by Slimani et al., the authors
highlighted the latest advancements in photonic curing for perovskite materials, hole trans-
port layers, and electron transport layer materials. They emphasized that the significance
of these advancements for perovskite solar cells could further highlight the importance of
this research and underline its essential role in creating more efficient and sustainable solar
technology [21].

Sensors and transducers in nanoelectronics. Yao et. al. reported that the (In + Nb)
co-doped HfO2 ceramics, Hf1−x(In0.5Nb0.5)xO2 with x = 0.005, exhibit a superior humidity
sensing performance. The good performance of the HfO2-based humidity sensor was
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ascribed to the defects created by doping, which improves the adsorption capacity for
water molecules [22]. Polachan et al. presented a review of the physics of the body–electrode
interface in on-body sensing and communication applications. They commented on how
the body–electrode interface distorts signals and how these distortions affect biopotential
sensing and human body communication [23].

3. Conclusions

Our Special Issue, although limited in theme, may promote and accelerate research on
materials, devices, and applications in nanoelectronics. As research in this field progresses,
we can expect even more groundbreaking developments in the near future.
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