Solar Light Elimination of Bacteria, Yeast and Organic Pollutants by Effective Photocatalysts Based on Ag/Cr-TiO2 and Pd/Cr-TiO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials Preparation
2.2.1. Preparation of Cr-TiO2
2.2.2. Preparation of Pd/Cr-TiO2 and Ag/Cr-TiO2
2.2.3. Physicochemical Analysis of the Photocatalytic Materials
2.3. Photocatalytic Activity Tests
2.3.1. Sunset Yellow FCF Photocatalytic Removal
2.3.2. Photocatalytic Treatment of Polluted River Water Samples
2.3.3. Photocatalytic Elimination of Yeast
3. Results and Discussion
3.1. Physicochemical Analysis of Photocatalytic Materials
3.2. Photocatalytic Test Results
3.2.1. SY Degradation Results
Preliminary Tests: Photolysis and Process Conducted Using TiO2 or Cr-TiO2
Influence of Pd and Ag Loading
Influence of Photocatalyst Dosage
Influence of Initial Dye Concentration
Influence of Initial pH
Electric Energy Consumption Evaluation
- W1 [71]: The photocatalytic reaction was conducted in a reactor under visible light irradiation using a 200 W tungsten bulb from Osram. Optimal performance was achieved with the addition of 800 mg of CuCr2O4 photocatalytic nanoparticles to 0.05 L of SY aqueous solution.
- W2 [72]: The photocatalytic performance of a Pd-BiFeO3 composite was evaluated for the degradation of SY under visible light irradiation. The experiments were conducted in a photoreactor illuminated by a 105 W visible lamp. Each test analysed the photodegradation of 100 mL of dye aqueous solution, starting with an initial SY concentration of 10 ppm.
- W3 [73]: The photocatalytic activity of the TiO2/CAC sample was evaluated in a reactor under UV-A light using four parallel medium-pressure mercury lamps (8 W). Specifically, 50 mL of SY solution with an appropriate amount of catalyst was tested in each experiment.
- W4 [72]: A slurry reactor containing a suspension of HoAG5/g-C3N4 nanocomposite was used, irradiated by a 350 W xenon-mercury lamp. The volume of the SY aqueous solution was 100 mL.
- W5 [74]: The degradation experiment with the best performance was conducted by treating 200 mL of SY aqueous solution with an initial concentration of 10 ppm. The BiOBr dosage was 1.31 g L−1, and the system was irradiated using a 55 W light bulb as the visible light source.
- W6 [75]: The mineralization of SY using a ZnS-TiO2 photocatalyst was evaluated under UV-A light, provided by four parallel medium-pressure mercury lamps (8 W each). Optimal performance was observed with a 50 mL SY solution (~450 ppm) when the photocatalyst dosage was set to 5 g L−1.
- W7 [76]: The photocatalytic activity of selenium nanoparticles (Se-NPLs) was evaluated in a slurry reactor under UV-C light, utilizing an 8 W Herolab lamp. Each batch experiment involved using a 100 mL beaker containing 40 mg of Se-NPLs and 100 mL of a 5 mg L−1 aqueous SY solution.
Analysis of the Possible Reaction Mechanism
3.2.2. Photocatalytic Treatment of Polluted River Water
3.2.3. Photocatalytic Test of Yeast Elimination
3.3. Discussion on Photocatalytic Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, P.; Ratan, J.K. Assessment of the negative effects of various inorganic water pollutants on the biosphere—An overview. In Inorganic Pollutants in Water; Elsevier: Amsterdam, The Netherlands, 2020; pp. 73–96. [Google Scholar] [CrossRef]
- Hernández, F.; Ibáñez, M.; Portolés, T.; Cervera, M.I.; Sancho, J.V.; López, F.J. Advancing towards universal screening for organic pollutants in waters. J. Hazard. Mater. 2015, 282, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ma, T.; Lan, Q.; Liu, B.; Liang, X. Single entity collision for inorganic water pollutants measurements: Insights and prospects. Water Res. 2023, 248, 120874. [Google Scholar] [CrossRef] [PubMed]
- Bitton, G. Wastewater Microbiology, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Gholipour, S.; Nikaeen, M.; Rabbani, D.; Mohammadi, F.; Manesh, R.M.; Besharatipour, N.; Bina, B. Occurrence of enteric and non-enteric microorganisms in coastal waters impacted by anthropogenic activities: A multi-route QMRA for swimmers. Mar. Pollut. Bull. 2023, 188, 114716. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, Q. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100255. [Google Scholar] [CrossRef]
- Rahman, A.; Khan, M.M. Chalcogenides as photocatalysts. New J. Chem. 2021, 45, 19622–19635. [Google Scholar] [CrossRef]
- Hu, Y.H. A highly efficient photocatalyst—Hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 2012, 51, 12410–12412. [Google Scholar] [CrossRef]
- Li, W.; Deng, Y.; Wu, Z.; Qian, X.; Yang, J.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833. [Google Scholar] [CrossRef]
- Li, Z.; Ding, D.; Liu, Q.; Ning, C. Hydrogen sensing with Ni-doped TiO2 nanotubes. Sensors 2013, 13, 8393–8402. [Google Scholar] [CrossRef]
- Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J. CO2 Util. 2018, 26, 98–122. [Google Scholar] [CrossRef]
- Xu, W.; Xie, Z.; Han, W.; Zhang, K.; Guo, D.; Chang, K. Rational design of interfacial energy level matching for CuGaS2 based photocatalysts over hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 11853–11862. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N–F–codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem. Mater. 2005, 17, 2596–2602. [Google Scholar] [CrossRef]
- Yu, J.; Yip, H.; Wong, P.K.; Zhao, J. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol. 2005, 39, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Altaf, M.; Shahid, M.; Zeyad, M.T. In situ solid-state fabrication of Z-Scheme BiVO4/g-C3N4 heterojunction photocatalyst with highly efficient-light visible activity and their antibacterial properties against bacterial pathogens. J. Mol. Struct. 2024, 1300, 137222. [Google Scholar] [CrossRef]
- Zhou, H.; Li, B.; Liu, J.; Yang, W.; Wang, W.; Hu, X.; Wang, S. Construction of novel tandem reaction system coupling H2O2 production with in situ bleaching over Au/TiO2 photocatalyst with different metal-support interactions. Process Saf. Environ. Prot. 2024, 183, 355–364. [Google Scholar] [CrossRef]
- Saroha, J.; Rani, E.; Devi, M.; Pathi, P.; Kumar, M.; Sharma, S.N. Plasmon-assisted photocatalysis of organic pollutants by Au/Ag–TiO2 nanocomposites: A comparative study. Mater. Today Sustain. 2023, 23, 100466. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, X.; Chen, Y.; Xu, J.; Zhang, Y. Simultaneous removal of bisphenol A and Cr (VI) by Pd–TiO2: Significantly improve the photocatalytic activity through synergistic effect. Solid State Sci. 2023, 146, 107346. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M. Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2. Appl. Catal. B Environ. 2014, 150–151, 107–115. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M. Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition. Appl. Catal. B Environ. 2015, 179, 305–312. [Google Scholar] [CrossRef]
- Ruzimuradov, O.; Musaev, K.; Mamatkulov, S.; Butanov, K.; Gonzalo-Juan, I.; Khoroshko, L.; Riedel, R. Structural and optical properties of sol-gel synthesized TiO2 nanocrystals: Effect of Ni and Cr (co) doping. Opt. Mater. 2023, 143, 114203. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Y.; Jiang, J.; Rong, Y.; Wang, Y.; Wu, Y.; Pan, C. Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J. Phys. Chem. C 2012, 116, 22619–22624. [Google Scholar] [CrossRef]
- Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Han, X.; Shao, G. Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study. J. Alloys Compd. 2013, 551, 118–124. [Google Scholar] [CrossRef]
- Kočí, K.; Matějů, K.; Obalová, L.; Krejčíková, S.; Lacný, Z.; Plachá, D.; Šolcová, O. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B Environ. 2010, 96, 239–244. [Google Scholar] [CrossRef]
- Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar] [CrossRef]
- Banerjee, A.N.; Hamnabard, N.; Joo, S.W. A comparative study of the effect of Pd-doping on the structural, optical, and photocatalytic properties of sol–gel derived anatase TiO2 nanoparticles. Ceram. Int. 2016, 42, 12010–12026. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.-C.; Juang, R.-S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Rossi, L.; Villabrille, P.I.; Morales-Torres, S.; Rosso, J.A. Palladium-modified TiO2 Photocatalysts: Synthesis, Characterization, and Environmental Application. Mater. Chem. Phys. 2023, 302, 127740. [Google Scholar] [CrossRef]
- Chlumsky, O.; Purkrtova, S.; Michova, H.; Sykorova, H.; Slepicka, P.; Fajstavr, D.; Ulbrich, P.; Viktorova, J.; Demnerova, K. Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens. Int. J. Mol. Sci. 2021, 22, 7892. [Google Scholar] [CrossRef]
- Tekin, D.; Tekin, T.; Kiziltas, H. Photocatalytic degradation kinetics of Orange G dye over ZnO and Ag/ ZnO thin film catalysts. Sci. Rep. 2019, 9, 17544. [Google Scholar] [CrossRef]
- Augustine, R.; Kalarikkal, N.; Thomas, S. Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl. Nanosci. 2016, 6, 337–344. [Google Scholar] [CrossRef]
- Mancuso, A.; Morante, N.; De Carluccio, M.; Sacco, O.; Rizzo, L.; Fontana, M.; Esposito, S.; Vaiano, V.; Sannino, D. Solar driven photocatalysis using iron and chromium doped TiO2 coupled to moving bed biofilm process for olive mill wastewater treatment. Chem. Eng. J. 2022, 450 Pt 2, 138107. [Google Scholar] [CrossRef]
- Gil, M.A.; Murcia, J.J.; Hernández-Laverde, M.; Morante, N.; Sannino, D.; Vaiano, V. Ag/Cr-TiO2 and Pd/Cr-TiO2 for Organic Dyes Elimination and Treatment of Polluted River Water in Presence of Visible Light. Nanomaterials 2023, 13, 2341. [Google Scholar] [CrossRef]
- Landi, S., Jr.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Castañeda, C.; Santos, D.; Hernández, J.S.; Álvarez, A.; Rojas, H.; Gómez, R.; Rajabi, F.; Martínez, J.J.; Luque, R. Efficient NiO/F–TiO2 nanocomposites for 4-chlorophenol photodegradation. Chemosphere 2023, 315, 137606. [Google Scholar] [CrossRef]
- Shokri, S.; Shariatifar, N.; Molaee-Aghaee, E.; Jahed Khaniki, G.; Sadighara, P.; Faramarzi, M.A. Modeling sunset yellow removal from fruit juice samples by a novel chitosan-nickel ferrite nano sorbent. Sci. Rep. 2024, 14, 208. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem. Eng. J. 2015, 261, 3–8. [Google Scholar] [CrossRef]
- Deepika, S.; Harishkumar, R.; Dinesh, M.; Abarna, R.; Anbalagan, M.; Roopan, S.M.; Selvaraj, C.I. Photocatalytic degradation of synthetic food dye, sunset yellow FCF (FD&C yellow no. 6) by Ailanthus excelsa Roxb. possessing antioxidant and cytotoxic activity. J. Photochem. Photobiol. B Biol. 2017, 177, 44–55. [Google Scholar] [CrossRef]
- Rice, E.W.; Bridgewater, L. American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- International Organization for Standardization. Water Quality-Enumeration of Escherichia coli and Coliform Bacteria; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- International Organization for Standardization. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Chanda, A.; Rout, K.; Vasundhara, M.; Joshi, S.R.; Singh, J. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Adv. 2018, 8, 10939–10947. [Google Scholar] [CrossRef]
- Lee, J.H.; Yang, Y.S. Synthesis of TiO2 nanoparticles with pure brookite at low temperature by hydrolysis of TiCl4 using HNO3 solution. J. Mater. Sci. 2006, 41, 557–559. [Google Scholar] [CrossRef]
- Dubey, R.; Singh, S. Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results Phys. 2017, 7, 1283–1288. [Google Scholar] [CrossRef]
- El-Rady, A.A.A.; El-Sadek, A.M.S.; El-Sayed, B.M.M.; Assaf, F.H. Characterization and Photocatalytic Efficiency of Palladium Doped-TiO2 Nanoparticles. Adv. Nanoparticles 2013, 2, 372–377. [Google Scholar] [CrossRef]
- Ali, T.; Ahmed, A.; Alam, U.; Uddin, I.; Tripathi, P.; Muneer, M. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 2018, 212, 325–335. [Google Scholar] [CrossRef]
- Azambre, B.; Chebbi, M.; Ibrahim, N. Structure—Activity Relationships between the State of Silver on Different Supports and Their I2 and CH3I Adsorption Properties. Nanomaterials 2021, 11, 1300. [Google Scholar] [CrossRef] [PubMed]
- Singaravelan, R.; Bangaru Sudarsan Alwar, S. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl. Nanosci. 2015, 5, 983–991. [Google Scholar] [CrossRef]
- Morante, N.; Folliero, V.; Dell’Annunziata, F.; Capuano, N.; Mancuso, A.; Monzillo, K.; Galdiero, M.; Sannino, D.; Franci, G. Characterization and Photocatalytic and Antibacterial Properties of Ag- and TiOx-Based (x = 2, 3) Composite Nanomaterials under UV Irradiation. Materials 2024, 17, 2178. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Pham, M.T.; Nguyen, H.Q.; Cao, T.M.; Van Pham, V. Boosting visible-light-driven photocatalysis of nitrogen oxide degradation by Mott–Schottky Pd/TiO2 heterojunctions. Sep. Purif. Technol. 2024, 354, 129012. [Google Scholar] [CrossRef]
- Merenda, A.; Weber, M.; Bechelany, M.; Allioux, F.M.; Hyde, L.; Kong, L.; Dumee, L.F. Fabrication of Pd-TiO2 nanotube photoactive junctions via Atomic Layer Deposition for persistent pesticide pollutants degradation. Appl. Surf. Sci. 2019, 483, 219–230. [Google Scholar] [CrossRef]
- Walczak, M.M.; Dryer, D.A.; Jacobson, D.D.; Foss, M.G.; Flynn, N.T. pH Dependent Redox Couple: An Illustration of the Nernst Equation. J. Chem. Educ. 1997, 74, 1195. [Google Scholar] [CrossRef]
- Jayapandi, S.; Backialakshmi, P.; Soundarrajan, P.; Senthil Pandian, M.; Ramasamy, P.; Suresh Kumar, S.; Gopinathan, C. Construction of p–n junction type Ag2O/SnO2 heterostructure photocatalyst for enhanced organic dye degradation under direct sunlight irradiation: Experimental and theoretical investigations. J. Mater. Res. 2023, 38, 753–766. [Google Scholar] [CrossRef]
- Ye, F.; Qian, J.; Xia, J.; Li, L.; Wang, S.; Zeng, Z.; Mao, J.; Ahamad, M.; Xiao, Z.; Zhang, Q. Efficient photoelectrocatalytic degradation of pollutants over hydrophobic carbon felt loaded with Fe-doped porous carbon nitride via direct activation of molecular oxygen. Environ. Res. 2024, 249, 118497. [Google Scholar] [CrossRef]
- Wang, P.; Fan, S.; Li, X.; Duan, J.; Zhang, D. Modulating the molecular structure of graphitic carbon nitride for identifying the impact of the piezoelectric effect on photocatalytic H2O2 production. ACS Catal. 2023, 13, 9515–9523. [Google Scholar] [CrossRef]
- Carrizosa, I.; Munuera, G.; Castanar, S. Study of the interaction of aliphatic alcohols with TiO2: III. Formation of alkyl-titanium species during methanol decomposition. J. Catal. 1977, 49, 265–277. [Google Scholar] [CrossRef]
- Sasi, S.; Chandran, A.; Sugunan, S.K.; Krishna, A.C.; Nair, P.R.; Peter, A.; Shaji, A.N.; Subramanian, K.R.; Pai, N.; Mathew, S. Flexible Nano-TiO2 Sheets Exhibiting Excellent Photocatalytic and Photovoltaic Properties by Controlled Silane Functionalization—Exploring the New Prospects of Wastewater Treatment and Flexible DSSCs. ACS Omega 2022, 7, 25094–25109. [Google Scholar] [CrossRef]
- El-Alami, W.; Garzón Sousa, D.; Díaz González, J.M.; Fernández Rodríguez, C.; González Díaz, O.; Doña Rodríguez, J.M.; El Azzouzi, M.; Araña, J. TiO2 and F-TiO2 photocatalytic deactivation in gas phase. Chem. Phys. Lett. 2017, 684, 164–170. [Google Scholar] [CrossRef]
- Khakpash, N.; Simchi, A.; Jafari, T. Adsorption and solar light activity of transition-metal doped TiO2 nanoparticles as semiconductor photocatalyst. J. Mater. Sci. Mater. Electron. 2012, 23, 659–667. [Google Scholar] [CrossRef]
- Fang, W.; Yan, J.; Wei, Z.; Liu, J.; Guo, W.; Jiang, Z.; Shangguan, W. Account of doping photocatalyst for water splitting. Chin. J. Catal. 2024, 60, 1–24. [Google Scholar] [CrossRef]
- Rajamanickam, D.; Shanthi, M. Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 100–108. [Google Scholar] [CrossRef]
- Stella, R.J.; Sreevani, I.; Gurugubelli, T.R.; Ravikumar, R.V.S.S.N.; Koutavarapu, R. Enhanced Solar Light-Driven Photocatalytic Degradation of Tetracycline Using Fe3+-Doped CdO/ZnS Nanocomposite: Mechanistic Insights and Performance Evaluation. Catalysts 2023, 13, 1312. [Google Scholar] [CrossRef]
- Hariani, P.L.; Said, M.; Salni; Aprianti, N.; Naibaho, Y.A.L.R. High Efficient Photocatalytic Degradation of Methyl Orange Dye in an Aqueous Solution by CoFe2O4-SiO2-TiO2 Magnetic Catalyst. J. Ecol. Eng. 2021, 23, 118–128. [Google Scholar] [CrossRef]
- Haleem, A.; Shafiq, A.; Chen, S.-Q.; Nazar, M.A. Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28, 1081. [Google Scholar] [CrossRef] [PubMed]
- Reymond, J.P.; Kolenda, F. Estimation of the point of zero charge of simple and mixed oxides by mass titration. Powder Technol. 1999, 103, 30–36. [Google Scholar] [CrossRef]
- Zyoud, A.; Zyoud, A.H.; Zyoud, S.H.; Nassar, H.; Zyoud, S.H.; Qamhieh, N.; Hajamohideen, A.; Hilal, H.S. Photocatalytic degradation of aqueous methylene blue using ca-alginate supported ZnO nanoparticles: Point of zero charge role in adsorption and photodegradation. Environ. Sci. Pollut. Res. Int. 2023, 30, 68435–68449. [Google Scholar] [CrossRef]
- de Sá, F.P.; Cunha, B.N.; Nunes, L.M. Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3). Chem. Eng. J. 2013, 215, 122–127. [Google Scholar] [CrossRef]
- Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 627–637. [Google Scholar] [CrossRef]
- Benrighi, Y.; Nasrallah, N.; Chaabane, T.; Belkacemi, H.; Bourkeb, K.W.; Kenfoud, H.; Baaloudj, O. Characterization and application of the spinel CuCr2O4 synthesized by sol–gel method for sunset yellow photodegradation. J. Sol-Gel Sci. Technol. 2022, 101, 390–400. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Lam, S.M.; Ng, D.Q.; Sin, J.C. Visible light photocatalytic degradation of sunset yellow dye and industrial textile wastewater using Pd-BiFeO3 composite. IOP Conf. Ser. Earth Environ. Sci. 2021, 835, 012001. [Google Scholar] [CrossRef]
- Pavasaryte, L.; Balu, S.; Yang, T.C.K. Synthesis of sol–gel derived holmium aluminium garnet on exfoliated g-C3N4: A novel visible-light-driven Z-scheme photocatalyst for the degradation of sunset yellow FCF. J. Mater. Sci. Mater. Electron. 2019, 30, 20132–20143. [Google Scholar] [CrossRef]
- Sin, J.C.; Lim, C.A.; Lam, S.M.; Zeng, H.H. Response surface approach for visible-light-driven photodegradation of sunset yellow over flower-like BiOBr hierarchical structures. AIP Conf. Proc. 2022, 2454, 050020. [Google Scholar] [CrossRef]
- Rajamanickam, D.; Shanthi, M. Photocatalytic mineralization of a water pollutant, Sunset Yellow dye by an advanced oxidation process using a modified catalyst. Toxicol. Environ. Chem. 2013, 95, 1484–1498. [Google Scholar] [CrossRef]
- Barani, A.; Alizadeh, S.R.; Ebrahimzadeh, M.A. A Comprehensive Review on Catalytic Activities of Green-Synthesized Selenium Nanoparticles on Dye Removal for Wastewater Treatment. Water 2023, 15, 3295. [Google Scholar] [CrossRef]
- Navidpour, A.; Ahmed, M.; Zhou, J. Photocatalytic Degradation of Pharmaceutical Residues from Water and Sewage Effluent Using Different TiO2 Nanomaterials. Nanomaterials 2024, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Uresti, D.B.; Ruíz-Gómez, M.A.; Vázquez, A.; Obregón, S. Enhanced electrophoretic deposition of hydrophobic BiVO4 photocatalytic coatings using Cu2+ ions as stabilizing agent. Mater. Today Chem. 2024, 38, 102065. [Google Scholar] [CrossRef]
- Tammaro, O.; Morante, N.; Marocco, A.; Fontana, M.; Castellino, M.; Barrera, G.; Allia, P.; Tiberto, P.; Arletti, R.; Fantini, R.; et al. The beneficial role of nano-sized Fe3O4 entrapped in ultra-stable Y zeolite for the complete mineralization of phenol by heterogeneous photo-Fenton under solar light. Chemosphere 2023, 345, 140400. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, A.; Sacco, O.; Vaiano, V.; Sannino, D.; Pragliola, S.; Venditto, V.; Morante, N. Visible light active Fe-Pr co-doped TiO2 for water pollutants degradation. Catal. Today 2021, 380, 93–104. [Google Scholar] [CrossRef]
- Puga, F.; Navío, J.A.; Hidalgo, M.C. A critical view about use of scavengers for reactive species in heterogeneous photocatalysis. Appl. Catal. A Gen. 2024, 685, 119879. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; Pérez-Losada, M.; López-Tenllado, F.; Hidalgo-Carrillo, J.; Herrera-Beurnio, C.; Estévez, R.; Marinas, A.; Urbano, J. Insight into the reaction mechanism of photocatalytic production of solketal. Catal. Today 2024, 429, 114506. [Google Scholar] [CrossRef]
- Mureithi, A.W.; Sun, Y.; Mani, T.; Howell1, A.R.; Zhao, J. Impact of hole scavengers on photocatalytic reduction of nitrobenzene using cadmium sulfide quantum dots. Cell Rep. Phys. Sci. 2022, 3, 100889. [Google Scholar] [CrossRef]
- Augustin, A.; Ganguly, P.; Shenoy, S.; Chuaicham, C.; Pillai, S.; Sasaki, K.; Lee, A.; Sekar, K. Impact of Hole Scavengers on Efficient Photocatalytic Hydrogen Production. Adv. Susiainable Syst. 2024, 2400321. [Google Scholar] [CrossRef]
- Fuku, K.; Takioka, R.; Iwamura, K.; Todoroki, M.; Sayama, K.; Ikenaga, N. Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4. Appl. Catal. B Environ. 2020, 272, 119003. [Google Scholar] [CrossRef]
- Lv, Z.; Song, W.; Pu, Y.; Su, M.; Zheng, H.; Wang, D.; Gao, J.; He, J.; Ouyang, L. Directly Synthesis of H2O2 on Pd-In/TiO2 Catalyst and In-Situ Activation for Efficient Degradation of Tetracycline. SSRN 2024. [Google Scholar] [CrossRef]
- Lee, K.M.; Abd Hamid, S.B.; Lai, C.W. Mechanism and kinetics study for photocatalytic oxidation degradation: A case study for phenoxyacetic acid organic pollutant. J. Nanomater. 2015, 2015, 940857. [Google Scholar] [CrossRef]
- Valentine Rupa, A.; Vaithiyanathan, R.; Sivakumar, T. Noble metal modified titania catalysts in the degradation of Reactive Black 5: A kinetic approach. Water Sci. Technol. 2011, 64, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Thabet, S.; Simonet, F.; Lemaire, M.; Guillard, C.; Cotton, P. Impact of photocatalysis on fungal cells: Depiction of cellular and molecular effects on Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2014, 80, 7527–7535. [Google Scholar] [CrossRef]
- Walker, G.M. Yeast Physiology and Biotechnology; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Bacon, J.S.; Farmer, V.C.; Jones, D.; Taylor, I.F. The glucan components of the cell wallof baker’s yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure. Biochem. J. 1969, 114, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Fleet, G.H.; Manners, D.J. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. J. Gen. Microbiol. 1976, 94, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.L.; Huang, G.L.; Zhao, F.Y.; Zhou, L.; Huang, S.; Li, H. The antioxidant activities of six (1→3)-β-d-glucan derivatives prepared from yeast cell wall. Int. J. Biol. Macromol. 2017, 98, 216–221. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, G.L. The derivatization and antioxidant activities of yeast mannan. Int. J. Biol. Macromol. 2018, 107, 755–761. [Google Scholar] [CrossRef]
- Khan, M.; Wu, Z.; Mao, S.; Shah, S.N.A.; Lin, J.M. Controlled grafted poly (quaternized-4-vinylpyridine-co-acrylic acid) brushes attract bacteria for effective antimicrobial surfaces. J. Mater. Chem. 2018, 6, 3782–3791. [Google Scholar] [CrossRef]
Photocatalysts | DAnatase (nm) | SBET (m2g−1) | Lattice Parameters (A°) | Band Gap (eV) | |
---|---|---|---|---|---|
a = b | c | ||||
TiO2 | 7.71 | 107 | 3.69 | 9.33 | 3.22 |
Cr-TiO2 | 7.59 | 113 | 3.73 | 9.41 | 2.15 |
Ag (0.1%)/Cr-TiO2 | 7.68 | 91 | 3.75 | 9.44 | 2.16 |
Ag (0.5%)/Cr-TiO2 | 8.14 | 92 | 3.75 | 9.44 | 2.12 |
Pd (0.1%)/Cr-TiO2 | 7.66 | 95 | 3.75 | 9.44 | 2.00 |
Pd (0.5%)/Cr-TiO2 | 7.74 | 103 | 3.75 | 9.44 | 2.03 |
Photocatalyst | Type of Light | P (kW) | k (min−1) | t90% (min) | V (L) | EE/O (kWh m−3) | System |
---|---|---|---|---|---|---|---|
CuCr2O4 | Visible Light | 0.20 | 0.014 | 164.5 | 0.05 | 4761.9 | [70] |
Pd-BiFeO3 | Visible Light | 0.11 | 0.017 | 136.2 | 0.1 | 1035.5 | [71] |
TiO2/CAC | UV-A | 0.03 | 0.039 | 59.0 | 0.05 | 273.5 | [75] |
HoAG5/g-C3N4 | Visible Light | 0.35 | 0.037 | 61.6 | 0.1 | 1559.7 | [73] |
BiOBr | Visible Light | 0.06 | 0.007 | 343.7 | 0.2 | 684.1 | [74] |
ZnS-TiO2 | UV-A | 0.03 | 0.040 | 57.6 | 0.05 | 266.7 | [75] |
Se-NPLs | UV-C | 0.01 | 0.002 | 1151.3 | 0.1 | 666.7 | [76] |
Pd(0.1%)/ Cr-TiO2 | Solar Light | 0.02 | 0.070 | 32.9 | 0.1 | 38.1 | Our system |
Treatment | pH | Chlorides (mg/L) | Nitrates (mg/L) | Conductivity (µS/cm) |
---|---|---|---|---|
Starting river water sample | 6.78 | 118 | 1.3 | 119.2 |
Photolysis | 6.60 | 116 | 1.2 | 118.8 |
TiO2 | 7.03 | 27 | 0.6 | 24.1 |
Cr-TiO2 | 6.91 | 24 | 1.1 | 79.3 |
Ag (0.1%)/Cr-TiO2 | 6.61 | 16 | 1.1 | 87.0 |
Ag (0.5%)/Cr-TiO2 | 6.85 | 20 | 0.9 | 82.1 |
Pd (0.1%)/Cr-TiO2 | 6.92 | 22 | 1.1 | 16.2 |
Pd (0.5%)/Cr-TiO2 | 6.79 | <3 | 0.3 | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Laverde, M.; Morante, N.; Gutiérrez, B.L.; Murcia, J.J.; Monzillo, K.; Sannino, D.; Vaiano, V. Solar Light Elimination of Bacteria, Yeast and Organic Pollutants by Effective Photocatalysts Based on Ag/Cr-TiO2 and Pd/Cr-TiO2. Nanomaterials 2024, 14, 1730. https://doi.org/10.3390/nano14211730
Hernández-Laverde M, Morante N, Gutiérrez BL, Murcia JJ, Monzillo K, Sannino D, Vaiano V. Solar Light Elimination of Bacteria, Yeast and Organic Pollutants by Effective Photocatalysts Based on Ag/Cr-TiO2 and Pd/Cr-TiO2. Nanomaterials. 2024; 14(21):1730. https://doi.org/10.3390/nano14211730
Chicago/Turabian StyleHernández-Laverde, Mónica, Nicola Morante, Blanca Liliana Gutiérrez, Julie Joseane Murcia, Katia Monzillo, Diana Sannino, and Vincenzo Vaiano. 2024. "Solar Light Elimination of Bacteria, Yeast and Organic Pollutants by Effective Photocatalysts Based on Ag/Cr-TiO2 and Pd/Cr-TiO2" Nanomaterials 14, no. 21: 1730. https://doi.org/10.3390/nano14211730
APA StyleHernández-Laverde, M., Morante, N., Gutiérrez, B. L., Murcia, J. J., Monzillo, K., Sannino, D., & Vaiano, V. (2024). Solar Light Elimination of Bacteria, Yeast and Organic Pollutants by Effective Photocatalysts Based on Ag/Cr-TiO2 and Pd/Cr-TiO2. Nanomaterials, 14(21), 1730. https://doi.org/10.3390/nano14211730