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Abstract: Indium phosphide (InP) is widely utilized in the fields of electronics and photovoltaics due
to its high electron mobility and high photoelectric conversion efficiency. Strain engineering has been
extensively employed in semiconductor devices to adjust physical properties and enhance material
performance. In the present work, the band structure and electronic effective mass of InP under
different strains are investigated by ab initio calculations. The results show that InP consistently
exhibits a direct bandgap under different strains. Both uniaxial strain and biaxial tensile strain
exhibit linear effects on the change in bandgap values. However, the bandgap of InP is significantly
influenced by uniaxial compressive strain and biaxial tensile strain, respectively. The study of the InP
bandgap under different hydrostatic pressures reveals that InP becomes metallic when the pressure
is less than −7 GPa. Furthermore, strain also leads to changes in effective mass and the anisotropy
of electron mobility. The studies of electronic properties under different strain types are of great
significance for broadening the application of InP devices.

Keywords: indium phosphide; density functional theory; strain-induced modulation; bandgap;
electron effective mass

1. Introduction

As a III–V semiconductor material, indium phosphide (InP) exhibits outstanding opto-
electronic properties, including a direct bandgap, high electron mobility (4600 cm2·V−1·s−1)
and excellent photoelectric conversion efficiency (22.1%) [1]. Therefore, InP-based· materi-
als are widely utilized in high-speed optical fiber links, optical amplifiers, modulators and
solar cells [2,3].

Strain engineering is a powerful physical property modulation technique that can
lead to changes in various properties of crystals, such as bandgap transition [4–6], phase
transition [7], light absorption intensity [5,8,9], etc. It is widely used to improve the
performance of electronic and photonic devices [10–13]. For example, strained silicon
technology has been extensively adopted in Complementary Metal–Oxide–Semiconductor
(CMOS) devices to improve carrier mobility and, consequently, the conductivity through
the channel region [14]. Therefore, in order to better understand the properties of materials,
it is important to study changes in the electronic properties of semiconductor compounds
under different strains.

Currently, strain engineering has been widely applied in InP and InP-based materials.
Kim et al. investigated the electronic band structure and effective mass of InP and its
alloys under biaxial strain [15]. Mondal et al. examined the effect of uniaxial, biaxial
and isotropic strains on the bandgap of InP [16,17]. Kabita et al. explored the structural,
elastic and electronic properties of InP in sphalerite and rock salt phases under different
pressures, discovering that a pressure-induced structural phase transition from sphalerite
to rock salt occurred at 9.3 Gpa [18]. Branicio et al. studied the high-pressure phase of InP
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and found that the phase transition from Zinc Blende (ZB) to rock salt (RS) occurred at a
pressure of 10.2 Gpa [19]. These studies collectively demonstrate the promising advantages
of strain engineering in enhancing the performance of InP-based devices, but they do not
provide a comprehensive analysis of the trend of effective electronic properties of InP under
different strains. It is crucial to study the effect of strain on the effective mass of electrons,
as this property can affect the electronic conductivity of materials and ultimately affect
device performance.

In this paper, we discussed the study of the band structure and the electronic effective
mass of indium phosphide (InP) under different strains, using ab initio calculations to
analyze the effects of strain on bandgap values. We also explored the metallic properties of
InP under different hydrostatic pressures and the impact of strain on effective mass and the
anisotropy of electron mobility. Our findings provide useful information on fully unlocking
the potential of strain-engineered InP for power electronics and optical applications.

2. Materials and Methods

All simulations were performed by density functional theory (DFT) [20] implemented
in the QuantumATK software package of version 202312-SP1 [21]. The exchange–correlation
energies were processed within the generalized gradient approximation (GGA) in the form
of the Perdew–Burke–Ernzerhof (PBE) [22]. We utilized the PSEUDODOJO pseudopotential
with a high basis set to accurately extend the electron density [23], and a planewave cut-off
energy of 78 hartree was used for all structures. The energy difference was converged
to 10−5 eV and the maximum residual force was converged to 0.01 eV/Å. Prior to the
electronic structure calculations, geometry optimization was conducted. The number of
Monkhorst–Pack k-point sampling points [24] in the Brillouin zone was 8 × 8 × 8 for
the structural relaxation of the conventional cell containing 8 atoms. Figure 1a shows
the conventional unit cell of InP. The calculated InP exhibits a sphalerite structure. The
lattice parameter is 5.968 Å, which is in good agreement with previously reported values of
5.869 Å [25].
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Figure 1. (a) The conventional unit cell of InP. Schematic illustrations of (b) uniaxial, (c) biaxial and
(d) hydrostatic pressure. The red balls denote In atoms, and the yellow balls denote P atoms. The red
and blue arrows represent induced strain (εi) and optimized strain (ε0), respectively.



Nanomaterials 2024, 14, 1756 3 of 10

Three types of strains, uniaxial strain, biaxial strain and hydrostatic pressures, are
applied in InP material, as shown in Figure 1b–d. The strain applied in the a-direction is
defined as εa = (a − a0)/a0, where a0 represents lattice constants in the strain-free state.
Uniaxial strain is simulated by applying strain along the a-axis while relaxing the other
two directions. Biaxial strain is simulated by straining the two directions, a and b, and then
relaxing the c-direction. The strain ranges from −10% to 10% in steps of 1%, resulting in a
total of 21 data points.

For bandgap calculations, the accurate Heyd–Scuseria–Ernzerhof (HSE06) hybrid
functional was adopted. To obtain an accurate bandgap, the method of k-path was chosen,
and a total number of 200 points was used here. The choice of the number of k-points can
be seen in Appendix A. The screening parameter of the α value [26] in the HSE simulation
was set at 0.44 to obtain a bandgap value of 1.427 eV, which is in good agreement with the
experimental value of 1.42 eV [27].

Regarding the calculations of strain dependence, we evaluated the strain dependence
of effective masses in the primary conduction band (CB) valleys. The carrier effective mass
(m∗) is shown in Equation (1).

1
m∗ =

1
h̄2

∂2E
∂k2 (1)

where m∗ is the effective mass, h̄ is the reduced Planck constant, E is the energy and k is
the wave vector in the reciprocal lattice. The values of m∗ were obtained by fitting the
energy dispersion of the conduction band minimum to the parabola function in different
k-directions near the Γ point.

3. Results
3.1. Uniaxial and Biaxial Strain
3.1.1. Lattice Structure

Before the calculations of electronic properties, the structure relaxation of strained InP
was performed. The results of optimized strain are shown in Figure 2a. It is observed that
the optimal strain decreases with the increment in both the corresponding induced uniaxial
and biaxial strain models.
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Figure 2. (a) Optimized strain values and (b) bond lengths of In–P under different strain states.
Uniaxial and biaxial correspond to the induced strain values. The dashed lines indicate the parameters
of In–P without any strain.

Notably, the change in the optimized strain under uniaxial strain is significantly less
than that observed under biaxial strain. Furthermore, the variation trend for the optimized
strain is opposite to that for the induced strain, which is consistent with the Poisson effect.
The Poisson’s ratio calculated from our uniaxial strain model is 0.35, which aligns well with
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the previous experimental value of 0.36 [28]. Since the Poisson ratio of biaxially strained
InP is higher, it is reasonable that the change in structural parameters under biaxial strain
is more pronounced.

In addition, the changes in bond length caused by these two types of strain were also
calculated, as depicted in Figure 2b. Within the studied strain range, the change in bond
length between In–P is roughly proportional to the induced strain. The biaxial strain has a
more pronounced effect on the bond length. At 10% uniaxial strain, the key length is 2.62 Å,
while for biaxial strain, the key length is 2.67 Å at 10% strain.

3.1.2. Band Structure

To gain a comprehensive understanding of the electronic band structure behavior
under strain, the strain-induced changes in bandgap values were further calculated,
as displayed in Figure 3. This figure illustrates the strain dependence of the valence
band maximum (VBM), the conduction band minimum (CBM) and the energy difference,
Eg (Eg = CBM − VBM), for the uniaxial and biaxial strain.
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valance band maximum and conduction band minimum, respectively.

Under biaxial compressive strain, the bandgap initially increases from 1.427 eV to
1.486 eV and then monotonically decreases from 1.486 eV to 1.346 eV. The maximum
bandgap occurs at approximately εi = −5%. Conversely, under biaxial tensile strain, the
bandgap decreases monotonically, continuously dropping from 1.427 eV to 0.120 eV. For
the same magnitude of biaxial compressive and tensile strains, the changes in the bandgap
are distinct. In the case of uniaxial strain, whether compressive or tensile, the bandgap
decreases monotonically as the strain increases. Moreover, when analyzing the VBM
and the CBM, it is observed that the trend in bandgap change is primarily affected by
the VBM under uniaxial compressive strain. In contrast, this trend is mainly driven by
the CBM under biaxial compressive strain. For tensile strain, both the CBM and VBM
contribute to the bandgap trend. A comparison of uniaxial and biaxial strains reveals
that uniaxial compressive strains show greater variation, and biaxial tensile strains exhibit
more significant variation. This indicates that uniaxial strain has a stronger influence on
electronic properties under compressive conditions, while biaxial strain exerts a greater
effect under tensile conditions. Within the strain range considered in this study, when
the relationship between the bandgap and strain is linear, the strain provides the largest
adjustment range for the bandgap, resulting in the most effective tuning. Additionally,
within the strain range of −10% < ε < 10%, InP consistently displays characteristics of a
direct bandgap semiconductor, which is directly related to the larger lattice constant of InP.
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The potential mechanism behind the evolution of the InP bandgap can be attributed
to changes in the In–P bond length caused by strain, which ultimately affect the distance
between the conduction band and the valence band. This phenomenon involves band
repulsion, a behavior observed in various semiconductor and insulator materials [15,29],
where the bandgap increases under compression and decreases under tension. Notably,
when uniaxial or biaxial strain is applied, the light-hole (LH) band shifts upward under
tensile strain, while the heavy-hole (HH) band moves upward under compressive strain [11].
This results in a reversal of the HH and LH bands at a higher compression, leading to a
decrease in the bandgap as the compression strain increases.

To obtain a more comprehensive understanding of the changes in bandgap charac-
teristics brought about by strain, we also examined the bandgap characteristics under
various strain states. Figure 4a,b depict the band structure of InP under strains of ±10%
and ±5%. The arrows indicate the direction from the VBM to the CBM. As strain increases,
a detailed analysis of the band structure shows that the electron valleys at the CBM become
increasingly “sharp”. Additionally, the hole valleys at the VBM also become increasingly
“sharp”, although the changes are relatively smaller. This results in a narrower bandgap.
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3.1.3. Electron Effective Mass

Establishing a clear relationship between hole effective masses and p-type conductivity
poses challenges due to the complexity and high anisotropy of hole effective masses [30–35]. To
further investigate the electronic properties of InP, we only calculated the electron effective
masses under various strain states. Specifically, we computed the electron effective masses
along three main crystal directions (Γ-X [100], Γ-C [110], and Γ-L [111]), denoted as m∗

a , m∗
b

and m∗
c respectively.

First, we compared our calculated effective mass of electrons without strain with
other reported results. As shown in Table 1, the effective mass of the unstrained electrons
calculated in this paper is 0.072, which demonstrates a good agreement between our
findings and the reported results.
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Table 1. The average values of electron effective mass m∗
e in InP with different functionals, where m0

is the free electron mass.

Functionals m∗
e /m0

This work (HSE06)
PBE

0.072
0.055 [33]

HSE06 0.089 [33]

Experiment 0.080 [36]
0.077 [37]

Furthermore, we analyzed the dependence of the electron effective mass of InP under
different strain states. The corresponding results are shown in Figure 5. To demonstrate
the variation in electron effective mass due to the external strain, the average value of
the electron effective mass (m∗

ave) across three directions was taken into consideration. To
qualitatively investigate anisotropy, the ratio of the maximum to the minimum values
(m∗

max/m∗
min) was also introduced, as illustrated in Figure 5c.
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the average electron effective mass and mass ratio of strain-free InP.

A closer look at the band structure as strain increases reveals that as the bandgap
narrows, the electron valley at the CBM becomes increasingly “sharper” (see Figure 4).
According to k·p perturbation theory, the effective electron mass (m∗

a) at the Γ point is
approximately proportional to the bandgap value. Under biaxial strain, there is almost
a linear decreasing relationship between electron effective mass and strain, as shown in
Figure 5b, where m∗

a equals m∗
b, which is attributed to the isotropy of InP crystals. For

uniaxial strain, a linear increase in electron effective mass is observed with compressive
strain, while under tensile strain, the trend reverses. Compared with biaxial strain, the
electron effective mass is slightly reduced under uniaxial strain. As illustrated in Figure 5c,
the anisotropic variation under tensile strain exceeds that of compressive strain, while
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the isotropic change in biaxial strain surpasses that of uniaxial strain. Since the electron
mobility µ = qτ/m∗ is determined by the effective mass of the electron, theoretically,
increasing strain can enhance carrier mobility and electron anisotropy, allowing for the
modulation of the electron’s effective mass and mass ratio.

3.2. Pressure-Induced Strain

To further investigate the effect of strain on the electronic properties of InP, we also
calculated the properties of InP under hydrostatic pressure. Since InP undergoes a phase
transition at pressures exceeding 9.3 GPa [18], the pressure we chose ranged from −8 to
9 GPa for our study. The structural parameters of InP at different hydrostatic pressures
are shown in Figure 6a,b. From Figure 6a, it is evident that the lattice constant gradually
decreases with increasing pressure. Figure 6b shows that as pressure increases, the strain
progressively diminishes. The structural parameters of the crystal change significantly
under applied pressure, which in turn affects the electronic structure of the material.
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different hydrostatic pressures.

To more effectively study the changes in electronic structure brought about by pressure
variations, we probed into the influence of pressure on the energy band. The impacts of
pressure on the bandgap are displayed in Figure 7a. It is noted that as the pressure rises,
the bandgap progressively increases. Simultaneously, the VBM steadily decreases and
approaches stability, while the CBM gradually increases. Specifically, when the pressure
increases from 0 GPa to 9 GPa, the VBM drops from −0.81 eV to −1.21 eV, and the CBM
increases from 0.62 eV to 1.04 eV. Consequently, the bandgap grows from 1.43 eV to 2.25 eV.
When the pressure increases from 0 GPa to −8 GPa, the VBM rises from −0.81 eV to 0 eV,
and the CBM decreases from 0.62 eV to 0 eV. Thus, the bandgap decreases from 1.43 eV to
0 eV. Notably, at a pressure of −7 GPa, InP exhibits metallic properties due to the vanished
bandgap. Simultaneously, the electron effective mass under different pressures was also
computed. Owing to the isotropy of InP, the electron effective mass is identical in all
directions. The calculated electron effective mass as a function of pressure is illustrated in
Figure 7b. As the pressure gradually increases, the electron effective mass also goes up,
although the rate of increase diminishes. Theoretically, increasing the pressure can enhance
carrier mobility, enabling the modulation of the electron effective mass and mass ratio.
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4. Conclusions

In the present work, we conducted a systematic study on the impact of various strains,
including uniaxial, biaxial and hydrostatic pressure, on the lattice structure and electronic
properties of indium phosphide (InP).

1. Under uniaxial strain, the bandgap decreases linearly as strain increases. In the
calculation of the effective mass of the electron, it increases linearly with the increase
in the compressive strain, but the trend is the opposite under tensile strain.

2. Under biaxial compressive strain, the bandgap initially increases and then decreases
with increasing strain. For biaxial tensile strain, the bandgap decreases linearly with
increasing strain. In the calculation of the effective mass of the electron, compared
with biaxial strain, it is slightly reduced under uniaxial strain.

3. Under hydrostatic pressure, the bandgap increases with increasing pressure. Below
−7 GPa, the bandgap value shows a metallic state. In the calculation of the effective
mass of the electron, owing to the isotropy of InP, it is identical in all directions.

For all three strains, InP always maintains a direct bandgap. The calculations of
effective mass indicate that the electron effective mass generally decreases with the increase
in strain. Notably, the anisotropy of the electron effective mass shows an upward trend,
with fluctuations under both tensile and compressive strains. Our research provides a
theoretical foundation and experimental guidance for the fabrication of InP-based devices
through strain engineering.
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Appendix A

To verify the influence of k-point sampling, we increased the number of points used
in the k-path to 400 and 600, as shown in Figure A1. Compared with the calculated results
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from 200 points, the electron effective mass under uniaxial and biaxial strain did not change
a lot with the denser k-points, which proves that the k-point samples used in our article are
accurate enough for the calculation of effective mass.
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